Data-Driven Subgrid-Scale Modeling: Stability, Extrapolation & Interpretation

Pedram Hassanzadeh

Yifei Guan (postdoc)

Adam Subel (undergrad student \rightarrow PhD at Courant)

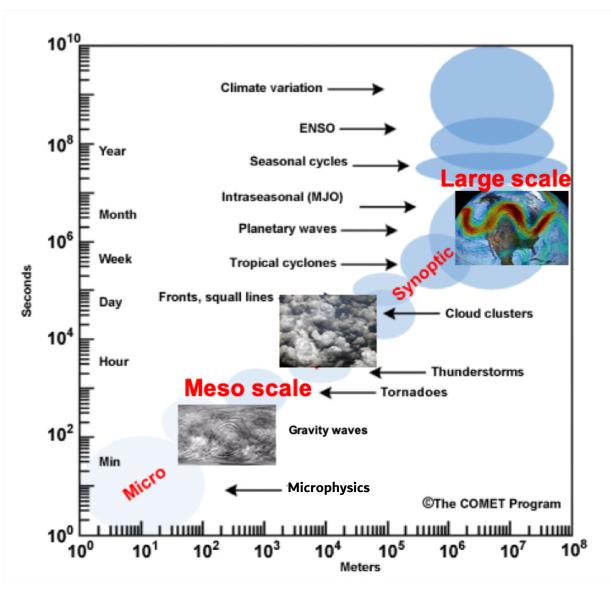
Ashesh Chattopadhyay (PhD student)

Rice University

KITP 2021

Climate, Weather Extremes & Turbulence:

spatio-temporal, *multi-scale*, *multi-physics*, high-dimensional & chaotic ...



X: large/slow-scale variables The main variables of interest

Y: small/fast-scale variables Influence the spatio-temporal variability of X

Traditional approach:

Coarse-resolution numerical solver + physics-based subgrid-scale (SGS) model

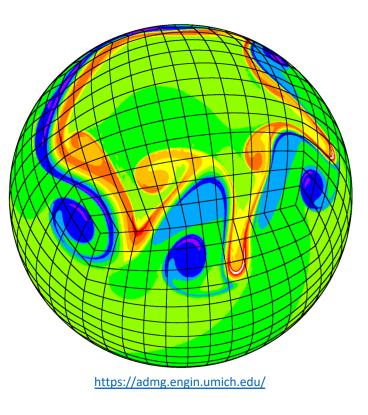
Large-scale processes

 $\dot{X} = \mathbf{F}(X, \mathbf{P}(X))$

solved numerically at O(10)-O(100)km resolutions

Closure for SGS processes (parameterization)

 $Y = \mathbf{P}(X)$



ML-based approach:

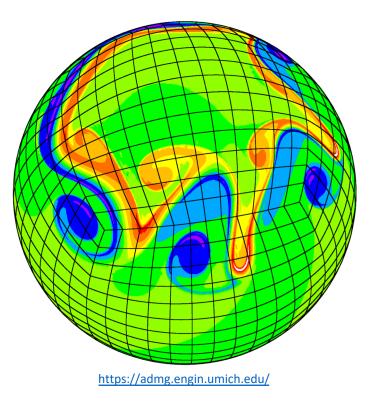
Coarse-resolution numerical solver + data-driven subgrid-scale (SGS) model

Large-scale processes

 $\dot{X} = \mathbf{F}(X, \mathbf{NN}(X))$

solved numerically at O(10)-O(100)km resolutions

Data-driven closure for SGS processes (*data-driven parameterization*, DD-P)



Y = NN(X)

Main focus of this talk: *Non-parametric* DD-P

Using ML for modeling weather/climate/turbulence: Questions, challenges & opportunities

• How to use ML?

Non-parametric DD-P

• How to choose the ML method?

Dealing with poor (high-quality) data regimes
Incorporating physics/PDEs' properties

- Interpretability
- Generalization (i.e., extrapolation: to different forcing)

Instability: blow-up in coupled (ML+numerical solver) models

Using ML for modeling weather/climate/turbulence: Questions, challenges & opportunities

- How to use ML?
- How to choose the ML method?

Dealing with poor (high-quality) data regimes

Incorporating physics/PDEs' properties

Interpretability

Generalization (i.e., extrapolation)

transfer learning

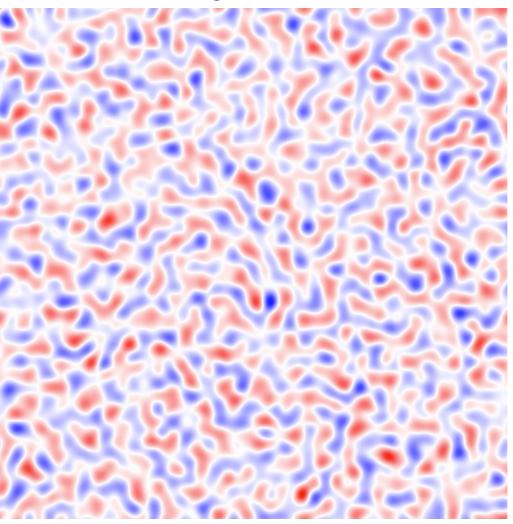
Instability: blow-up in coupled (ML+numerical solver) models

Test case: 2D Turbulence

$$\frac{\partial\omega}{\partial t} + J(\omega,\psi) = \frac{1}{Re} \nabla^2 \omega + f^0$$

 $\nabla^2 \psi = -\omega$

 ω : Vorticity ψ : Streamfunction $J(\omega, \psi)$: Jacobian Re:Reynold number f: Forcing Direct numerical simulation (DNS) Re=32000; grid=2048 x 2048



Large-Eddy Simulation (LES)

$$\frac{\partial \omega}{\partial t} + J(\omega, \psi) = \frac{1}{\text{Re}} \nabla^2 \omega$$
Gaussian
$$\frac{\partial \overline{\omega}}{\partial t} + J(\overline{\omega}, \overline{\psi}) = \frac{1}{\text{Re}} \nabla^2 \overline{\omega} + \underbrace{\left[J(\overline{\omega}, \overline{\psi}) - \overline{J(\omega, \psi)}\right]}_{\Pi = \nabla \times (\nabla \cdot \tau^{SGS}) \cdot \hat{z}}$$

Re=32000 DNS grid = 2048 x 2048 , time step = Δt LES grid = 256 x 256 , time step = $10\Delta t$ Gaussian filter + coarse graining

Guan, Chattopadhyay, Subel & Hassanzadeh, Stable a posteriori LES of 2D turbulence with convolutional neural networks: backscattering analysis and generalization to higher Re via transfer learning, in revision arXiv: 2102.11400

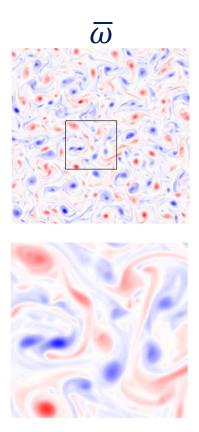
physics-based parameterization: Smagorinsky's model (1963) $\Pi = v_e \nabla^2 \overline{\omega}$

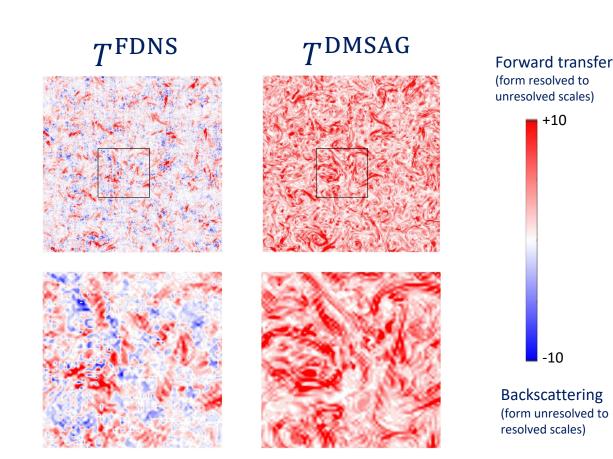
data-driven, non-parametric parameterization (DD-P): $\Pi = NN(\overline{\omega}, \overline{\psi})$

Major shortcoming of many physics-based models: Only diffusive, not accounting for *backscattering*

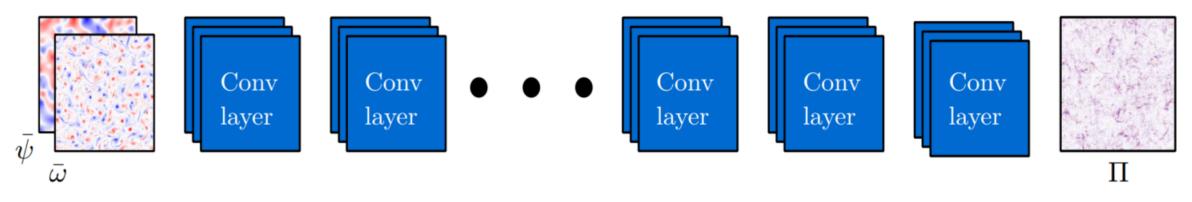
 $T = \prod \nabla^2 \overline{\omega}$ T: subgrid-scale transfer

 $T^{\text{DSMAG}} = v_e \ \nabla^2 \overline{\omega} \ \nabla^2 \overline{\omega} \ge 0$ (Dynamic Smagorinsky, Germano et al. 1991)





Spatially non-local, non-parametric DD-P using CNNs



10 layers (64 filters, 5 x 5) + ReLU + no pooling/upsampling

Training: find θ that minimizes

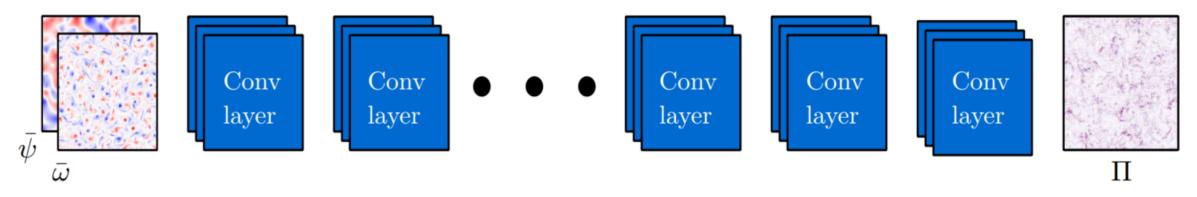
$$\mathcal{L} = \frac{1}{N} \sum_{n=1}^{N} \left(\Pi_n - CNN(\bar{\psi}_n, \bar{\omega}_n, \theta) \right)^2$$

Offline testing:

 $\Pi(x,y) = CNN(\overline{\psi},\overline{\omega},\theta)$

- Physics agnostic neural network architecture
- Physics agnostic loss function
- Deterministic parameterization
- Memoryless parameterization
- No uncertainty quantification (UQ)
- Use clean (noise-free) DSN data for training

Spatially non-local, non-parametric DD-P using CNNs



10 layers (64 filters, 5 x 5) + ReLU + no pooling/upsampling

$$\mathcal{L} = \frac{1}{N} \sum_{n=1}^{N} \left(\prod_{n} - CNN(\overline{\psi}_{n}, \overline{\omega}_{n}, \theta) \right)^{2}$$

Training dataset:

From 7 DNS runs started from random initial conditions

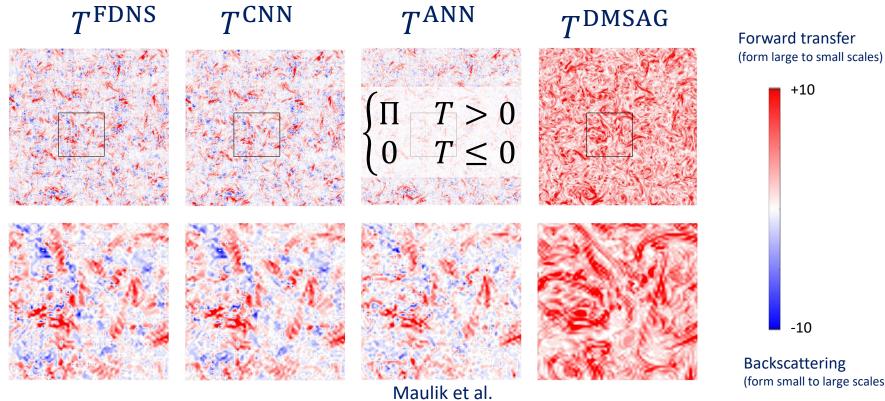
Validation dataset:

From 3 DNS runs started from random initial conditions

Testing dataset:

From 5 DNS runs started from random initial conditions ¹¹

A priori (offline) test of DD-P



2019 JFM

(form small to large scales)

 $c = corr{\Pi^{FDNS}, \Pi^{model}}$ averaged over 100 samples

	SMAG	DSMAG	ANN	CNN
Correlation coefficient c	0.55	0.55	0.86	0.93

Stability of a posteriori (coupled) LES model?

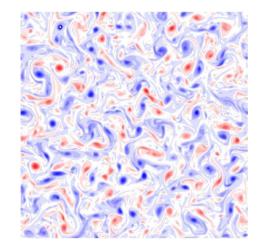
A priori accuracy of the CNN-based DD-P & the fate of coupled LES run as a function of the numer of training samples, *N*

N	500	1000	10000	30000	50000
С	0.78	0.83	0.90	0.92	0.93
Fate	Unstable	Unstable	Unstable	Stable	Stable

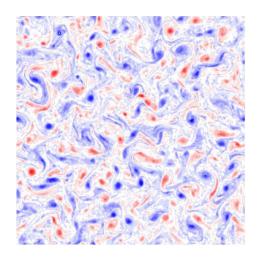
- Backscattering is harder to learn data drivenly when the training set is small
- Speculation: Disproportionally low accuracy for backscattering is the reason for instabilities

Accuracy of a posteriori (online) LES with DD-P

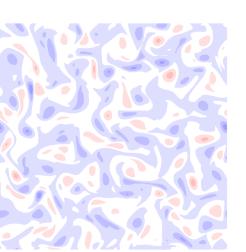
FDNS

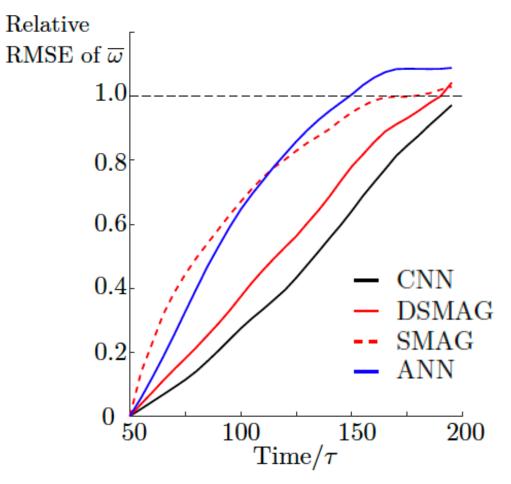


LES-CNN

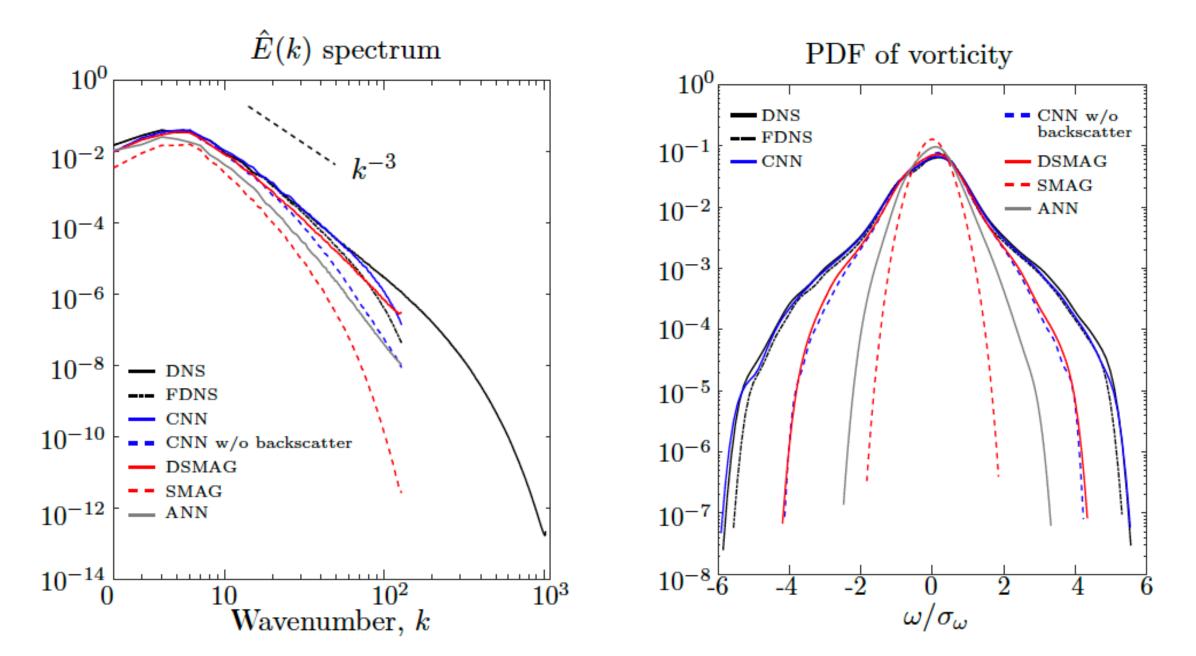


LES-SMAG





Accuracy of a posteriori (online) LES with DD-P



Using ML for modeling weather/climate/turbulence: Questions, challenges & opportunities

• Best ways to use ML?

Non-parametric DD-P

• How to choose the ML method?

Dealing with poor (high-quality) data regimes
Incorporating physics/PDEs' properties

- Interpretability
- Generalization (i.e., extrapolation: to different forcing)

Instability: blow-up in coupled (ML+numerical solver) models

Instabilities could be due to inaccuracies resulting from small training set

Physics-agnostic CNNs: Some of the shortcomings in the small-data regime

Small- vs big-data regimes: not just the number of samples, but also *inter-sample* correlations

- Data augmentation: build symmetries into the input samples
- Equivariant CNNs: physics built into the architecture
- Physics-constrained loss functions: $\langle \overline{\omega} \Pi \rangle^{\text{FDNS}} = \langle \overline{\omega} \Pi \rangle^{\text{CNN}}$

Physics-constrained learning: Same performance with 50 and 2000 samples

Guan, Subel, Chattopadhyay, & Hassanzadeh, *Learning physics-constrained data-driven subgrid-scale closures in the small-data regime for stable large-eddy simulations,* to be submitted soon

Subel, Chattopadhyay, Guan & Hassanzadeh, Data-driven subgrid-scale modeling of forced Burgers turbulence using deep learning with generalization to higher Reynolds numbers via transfer learning, Physics of Fluids (2021)

Using ML for modeling weather/climate/turbulence: Questions, challenges & opportunities

- Best ways to use ML?
- How to choose the ML method?

Dealing with poor (high-quality) data regimes

Incorporating physics/PDEs' properties

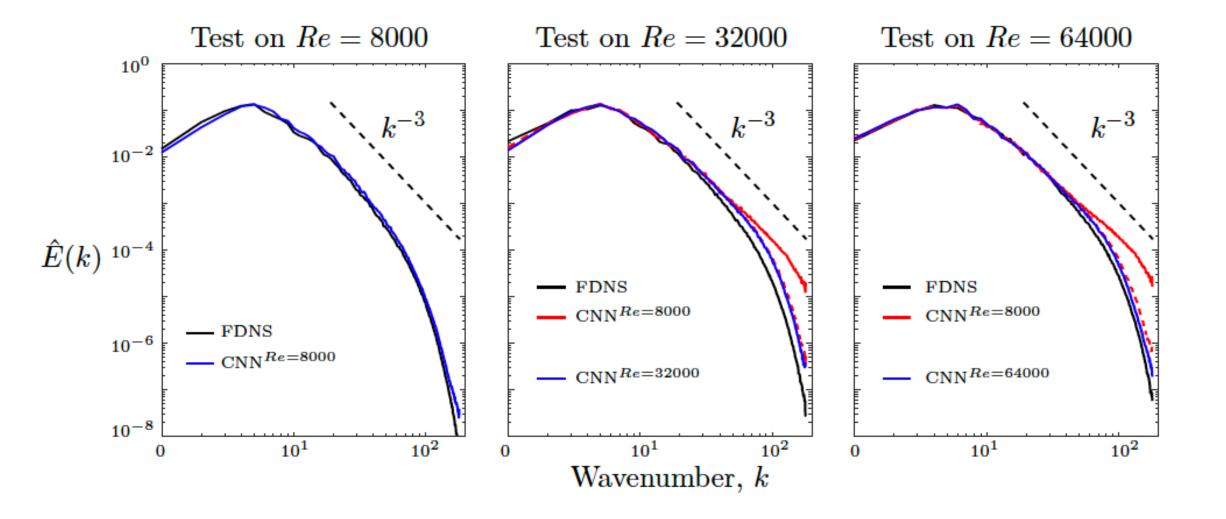
Interpretability

Generalization (i.e., extrapolation)

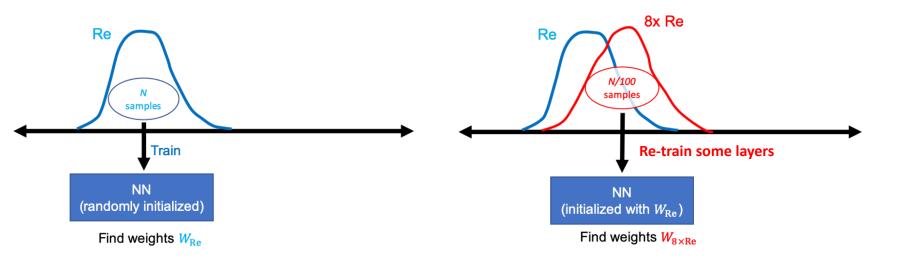
transfer learning

Instability: blow-up in coupled (ML+numerical solver) models

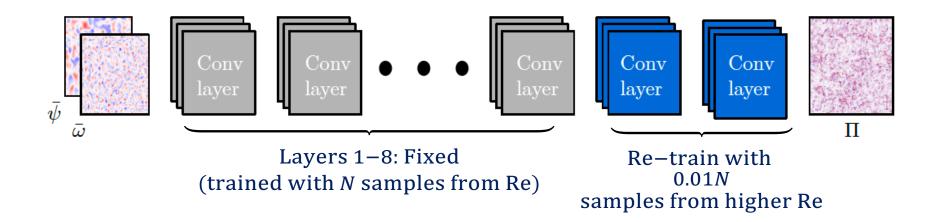
DD-P does not extrapolate to higher *Re*



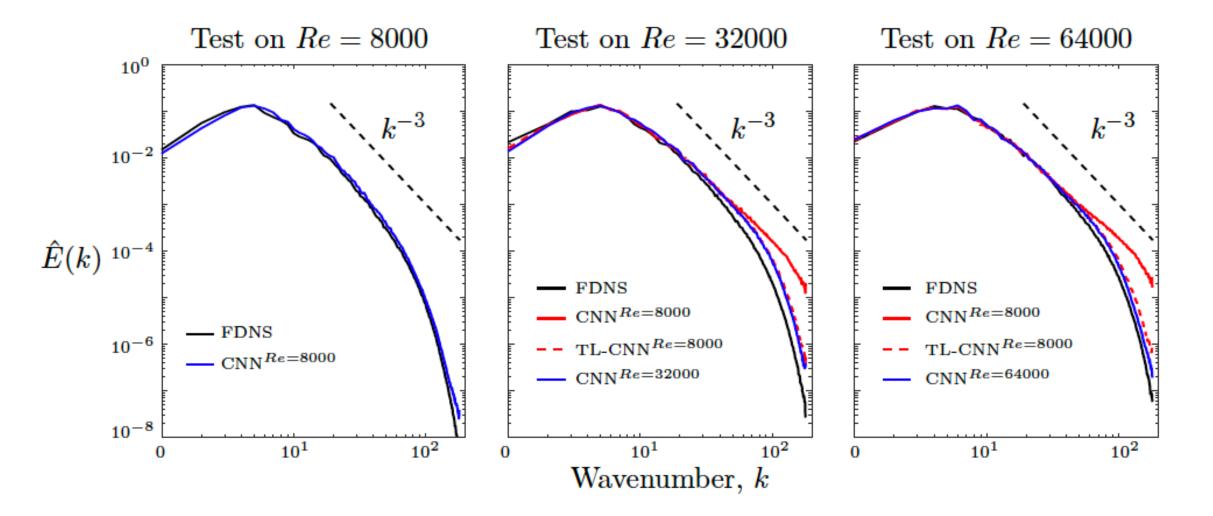
Generalization to higher Re via transfer learning



Chattopadhyay, Subel & Hassanzadeh, Data-driven super-parameterization using deep learning: Experimentation with multiscale Lorenz 96 systems and transfer learning. J. Advances in Modeling Earth Systems (2020)



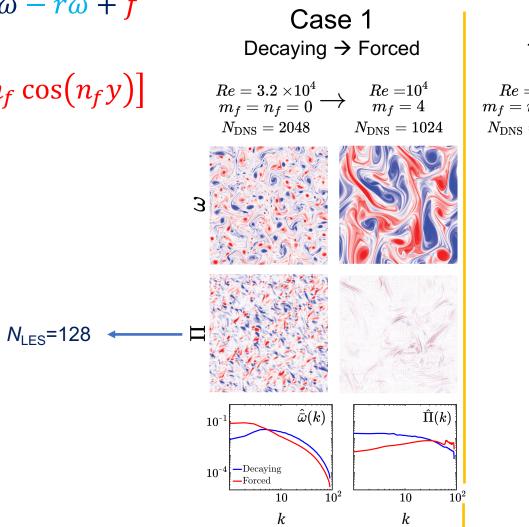
Generalization to higher Re via transfer learning



Guan, Chattopadhyay, Subel & Hassanzadeh, Stable a posteriori LES of 2D turbulence with convolutional neural networks: backscattering analysis and generalization to higher Re via transfer learning, in revision <u>arXiv: 2102.11400</u>

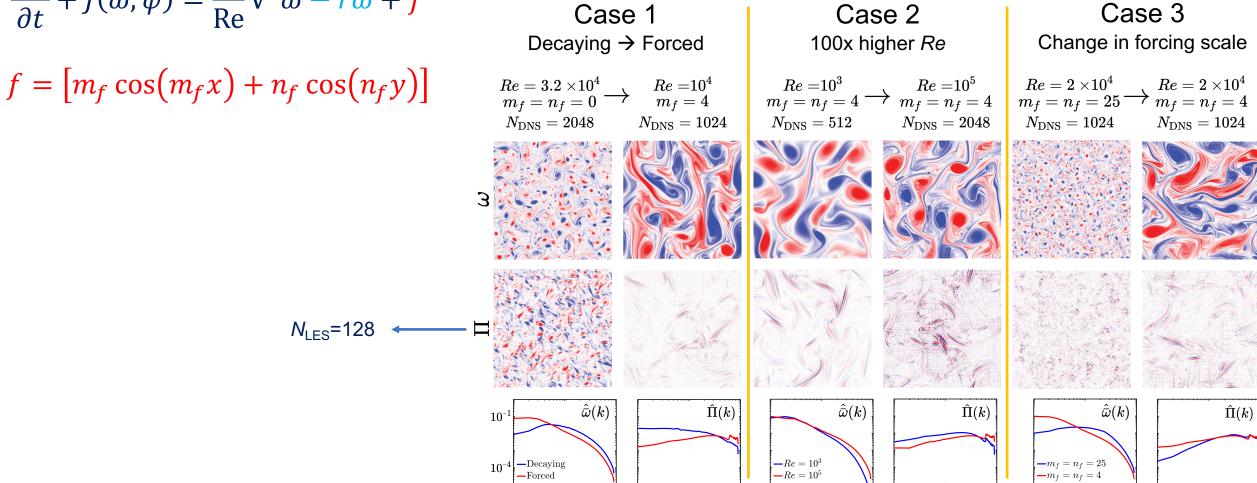
$$\frac{\partial \omega}{\partial t} + J(\omega, \psi) = \frac{1}{\text{Re}} \nabla^2 \omega - r\omega + f$$

 $f = [m_f \cos(m_f x) + n_f \cos(n_f y)]$



Case 2
100x higher ReCase 3
Change in forcing scale $Re = 10^3$
 $m_f = n_f = 4$
 $N_{\text{DNS}} = 512$ $Re = 10^5$
 $m_f = n_f = 4$
 $N_{\text{DNS}} = 2048$ $Re = 2 \times 10^4$
 $m_f = n_f = 25$
 $N_{\text{DNS}} = 1024$

$$\frac{\partial \omega}{\partial t} + J(\omega, \psi) = \frac{1}{\text{Re}} \nabla^2 \omega - r\omega + f$$



10

 10^2

10

 10^{2}

10

 10^{2}

10

 10^2

 10^{2}

10

 10^{2}

10

BNN: Base CNN trained with *N* samples from the base or target system

TLNN: Retrained BNN with N/10 samples from the target system

$$\frac{\partial \omega}{\partial t} + J(\omega, \psi) = \frac{1}{\text{Re}} \nabla^2 \omega - r\omega + f$$

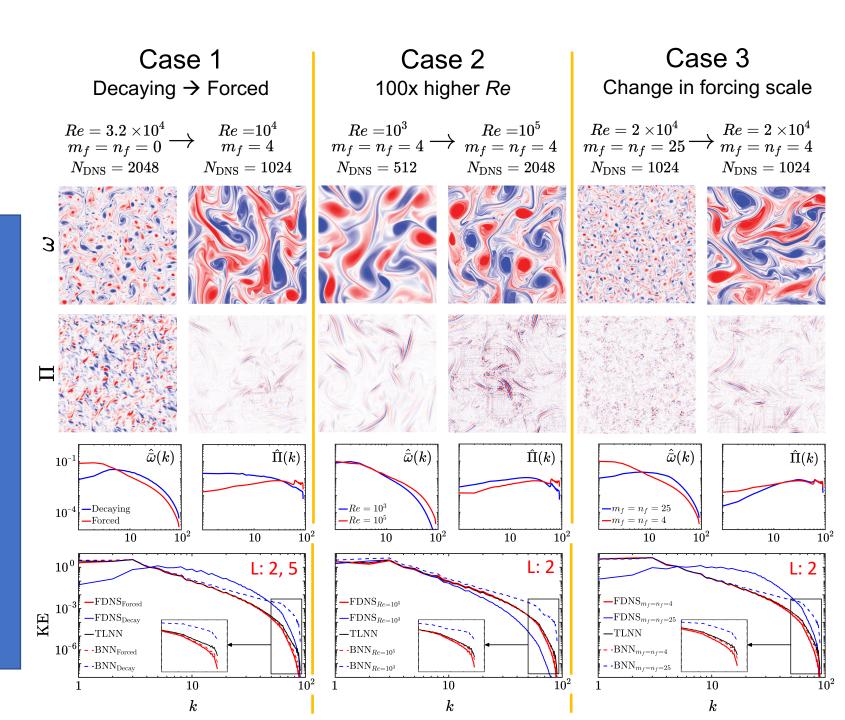
 $f = [m_f \cos(m_f x) + n_f \cos(n_f y)]$

Questions:

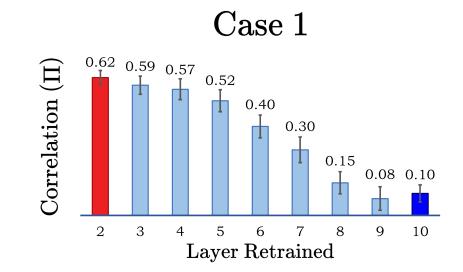
- What is learnt during transfer learning?
- For a given BNN and new system, what are the optimal layer(s) to retrain?

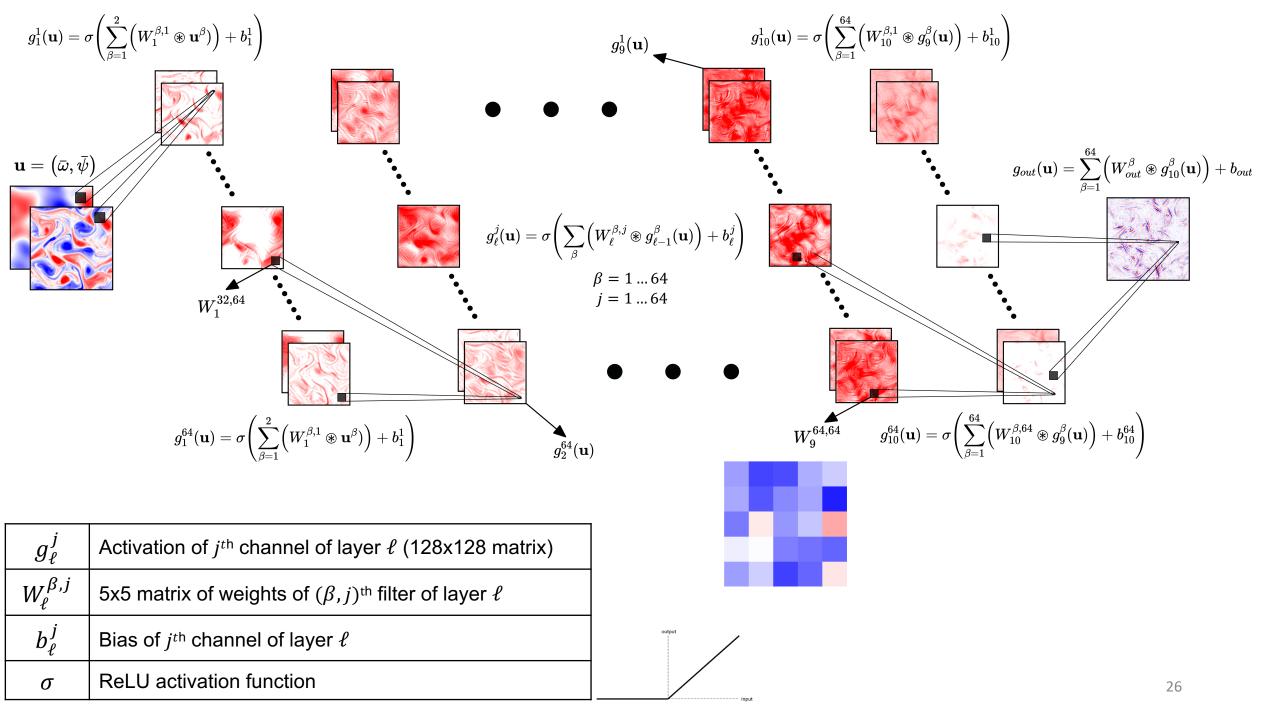
Ultimate goals:

- A framework to guide TL
- Build more accurate TLNNs with fewer retraining samples

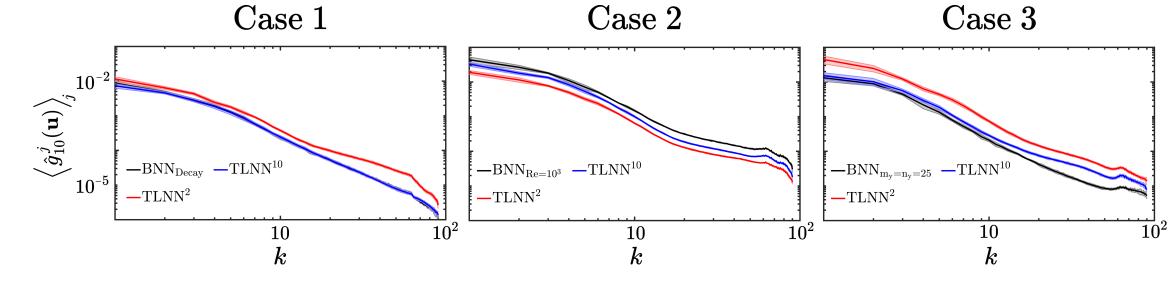


Best layers to re-train? The shallowest ones



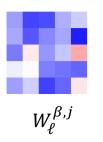


Re-training deeper layers leads to small/no changes in the output, particularly at large scales



$$g_{\ell}^{j} = \sigma \left(\sum_{\beta} \left(W_{\ell}^{\beta,j} \circledast g_{\ell-1}^{\beta} \right) + b_{\ell}^{j} \right) \qquad h_{\ell}^{j} = \sum_{\beta} \left(W_{\ell}^{\beta,j} \circledast g_{\ell-1}^{\beta} \right) + b_{\ell}^{j}$$

$$\hat{g}_{\ell}^{j} = \sum_{\alpha} \left(e^{-i\left(k_{x}x_{\alpha} + k_{y}y_{\alpha}\right)} \right) \circledast \hat{h}_{\ell}^{j}(m,n)$$
$$(x_{\alpha}, y_{\alpha}) \in \left\{ (x, y) \left| h_{\ell}^{j}(x, y) > 0 \right\}$$

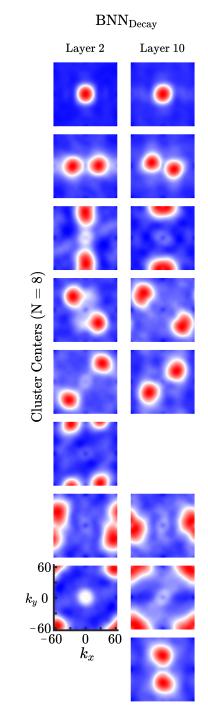


What are the filters?

Spectra of BNN filters

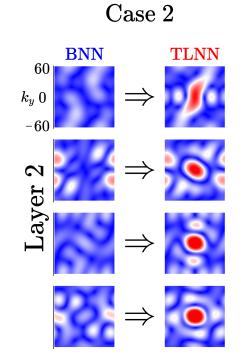
 $\widehat{W}_{\ell}^{eta,j}$

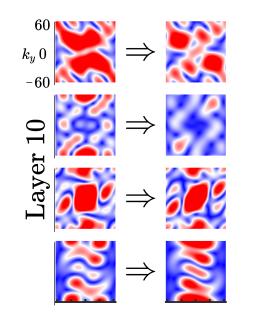
 $\beta = 1, 2 \dots 64$ $j = 1, 2 \dots 64$



How do filters change during transfer learning?

Isolated the 4 filters that have changed the most after transfer learning (based on Frobenius norm)





How can we determine *a priori* what layers can change the most for new data? Calculate the *loss landscape* of the BNN layers for new data

$$\theta_{\ell} = \left\{ W_{\ell}^{\beta, j}, b_{\ell} \right\}$$

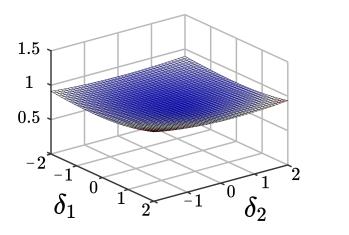
Pick layer(s): L

 (Θ_1, Θ_2) : two random, normalized matrices

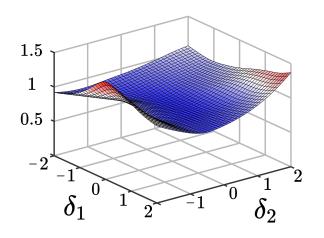
Perturb θ_L : $\tilde{\theta}_L = \theta_L + \delta_1 \Theta_1 + \delta_2 \Theta_2$

Compute $\mathcal{L}(\boldsymbol{u}^{new}, \theta_{\ell \neq L}, \tilde{\theta}_L)$

Li et al. (2018) arXiv: 1712.09913 Krishnapriyan et al. (2021) arXiv:2109.01050



Layer 2



Layer 10

Questions & answers (for this application & this NN architecture):

- 1) What is learnt during transfer learning?
 - A number of new spectral filters (mostly low-pass filters)

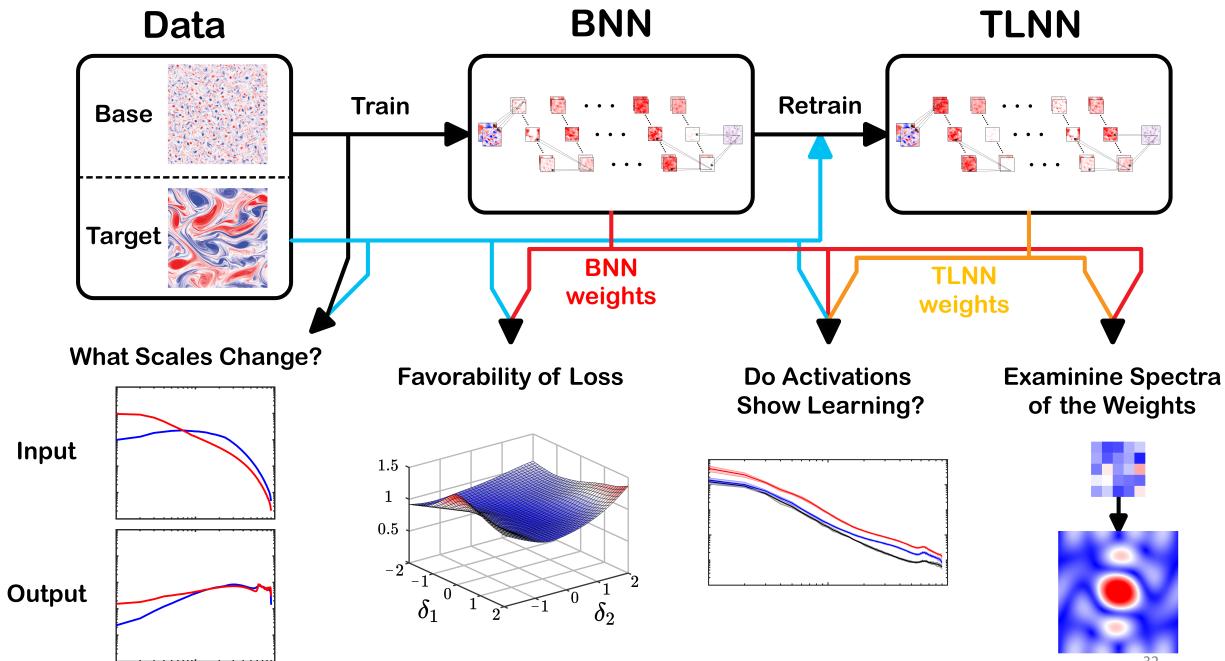
2) For a given BNN and new system, what are the optimal layer(s) to retrain?- Shallowest layers, because the main difference between *base* and *new* data is in large scales

Other Applications & architectures?

- Applications so far: SGS modeling & fully data-driven forecasting
 - Changing parameters or blending a *large* training dataset with a *smaller, higher-fidelity* dataset
- (1) Still, likely a number of new spectral filters
- (2) Would depend on base/new data differences, may depend on NN architecture

Ultimate goals:

- A framework to guide TL
- Build more accurate TLNNs with fewer retraining samples



Questions & answers (for this application & this NN architecture):

- 1) What is learnt during transfer learning?
 - A number of new spectral filters (mostly low-pass filters)

2) For a given BNN and new system, what are the optimal layer(s) to retrain?- Shallowest layers, because the main difference between *base* and *new* data is in large scales

Other Applications & architectures?

- Applications so far: SGS modeling & fully data-driven forecasting
 - Changing parameters or blending large, low-fidelity data with small, high-fidelity data
- (1) Still, likely a number of new spectral filters
- (2) Would depend on base/new data differences, may depend on NN architecture

Ultimate goals:

A framework to guide TL

Build more accurate TLNNs with fewer retraining samples