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Climate, Weather Extremes & Turbulence: 
spatio-temporal, multi-scale, multi-physics, high-dimensional & chaotic …
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X: large/slow-scale variables
The main variables of interest

Y: small/fast-scale variables
Influence the spatio-temporal variability of X

Microphysics



Large-scale processes

"̇ = $(", ' " )

solved numerically at O(10)-O(100)km resolutions

https://admg.engin.umich.edu/
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Traditional approach:
Coarse-resolution numerical solver + physics-based subgrid-scale (SGS) model

Closure for SGS processes (parameterization)

) = '(")

https://admg.engin.umich.edu/
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Data-driven closure for SGS processes
(data-driven parameterization, DD-P)

! = ##(%)

ML-based approach:
Coarse-resolution numerical solver + data-driven subgrid-scale (SGS) model

Main focus of this talk:
Non-parametric DD-P

https://admg.engin.umich.edu/

Large-scale processes

%̇ = ((%,##(%))

solved numerically at O(10)-O(100)km resolutions

https://admg.engin.umich.edu/
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Using ML for modeling weather/climate/turbulence: 
Questions, challenges & opportunities

• How to use ML?

• How to choose the ML method?

• Dealing with poor (high-quality) data regimes

• Incorporating physics/PDEs’ properties

• Interpretability

• Generalization (i.e., extrapolation: to different forcing ….)

• Instability: blow-up in coupled (ML+numerical solver) models

Non-parametric DD-P
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Test case: 2D Turbulence

Direct numerical simulation (DNS) 
Re=32000; grid=2048 x 2048

!"
!# + % ",' = 1

*+ ∇
-" + .

∇-' = −"

": Vorticity 
': Streamfunction
% ", ' : Jacobian
*+:Reynold number 
.: Forcing

0
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Large-Eddy Simulation (LES)

Re=32000
DNS grid = 2048 x 2048 , time step = ∆"
LES grid =    256 x 256   , time step = 10∆"

#$
#" + & $,( = 1

Re∇
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physics-based parameterization: Smagorinsky’s model (1963) Π = >?∇. /$

data-driven, non-parametric parameterization (DD-P): Π = @@(/$, 0()

Guan, Chattopadhyay, Subel &
Hassanzadeh, Stable a posteriori LES of
2D turbulence with convolutional neural
networks: backscattering analysis and
generalization to higher Re via transfer
learning, in revision arXiv: 2102.11400

Gaussian filter + coarse graining



Major shortcoming of many physics-based models:
Only diffusive, not accounting for backscattering

! = Π ∇% &'
!()*+, = -. ∇% &' ∇% &' ≥ 0
(Dynamic Smagorinsky, Germano et al. 1991)

&' !1(2) !(*)+,

+10

-10

Forward transfer
(form resolved to 
unresolved scales)

Backscattering
(form unresolved to 
resolved scales)

!: subgrid-scale transfer
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10 layers (64 filters, 5 x 5) + ReLU + no pooling/upsampling

Training: find ! that minimizes

ℒ = 1
%&'()

*
Π' − -%% ./', 12', !

3

Offline testing:
Π(5, 6) = -%% ./, 12, !

- Physics agnostic neural network architecture
- Physics agnostic loss function

- Deterministic parameterization
- Memoryless parameterization
- No uncertainty quantification (UQ)
- Use clean (noise-free) DSN data for training 

Spatially non-local, non-parametric DD-P using CNNs
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10 layers (64 filters, 5 x 5) + ReLU + no pooling/upsampling

Training dataset:

From 7 DNS runs 
started from random 

initial conditions

Validation dataset:

From 3 DNS runs 
started from random 

initial conditions

Testing dataset:

From 5 DNS runs 
started from random 

initial conditions

ℒ = 1
$%&'(

)
Π& − ,$$ -.&, 01&, 2

3

Spatially non-local, non-parametric DD-P using CNNs
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A priori (offline) test of DD-P

Forward transfer
(form large to small scales)

Backscattering
(form small to large scales)

+10

-10

!"#$% !#&%'(!)$$ !'$$

Maulik et al. 
2019 JFM

SMAG DSMAG ANN CNN
Correlation 
coefficient *

0.55 0.55 0.86 0.93

+Π ! > 0
0 ! ≤ 0

* = corr Π4567, Π9:;<= averaged over 100 samples



13

! 500 1000 10000 30000 50000
" 0.78 0.83 0.90 0.92 0.93

"#$%: diffusion 0.84 0.89 0.93 0.93 0.96
"#&%: backscatter 0.56 0.71 0.82 0.85 0.90
Fate Unstable Unstable Unstable Stable Stable

Stability of a posteriori (coupled) LES model?

A priori accuracy of the CNN-based DD-P & the fate of coupled LES run
as a function of the numer of training samples, !

• Backscattering is harder to learn data drivenly when the 
training set is small

• Speculation: Disproportionally low accuracy for backscattering 
is the reason for instabilities 
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Accuracy of a posteriori (online) LES with DD-P
FDNS

LES-CNN LES-SMAG
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Accuracy of a posteriori (online) LES with DD-P
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Using ML for modeling weather/climate/turbulence: 
Questions, challenges & opportunities

• Best ways to use ML?

• How to choose the ML method?

• Dealing with poor (high-quality) data regimes

• Incorporating physics/PDEs’ properties

• Interpretability

• Generalization (i.e., extrapolation: to different forcing ….)

• Instability: blow-up in coupled (ML+numerical solver) models

Non-parametric DD-P

Instabilities could 
be due to 

inaccuracies
resulting from 

small training set



Physics-agnostic CNNs: Some of the shortcomings in the small-data regime
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Small- vs big-data regimes: not just the number of samples, but also inter-sample correlations 

Subel, Chattopadhyay, Guan & Hassanzadeh, Data-driven subgrid-scale modeling of forced Burgers turbulence using deep learning 
with generalization to higher Reynolds numbers via transfer learning, Physics of Fluids (2021)

Guan, Subel, Chattopadhyay, & Hassanzadeh, Learning physics-constrained data-driven subgrid-scale closures in the small-data 
regime for stable large-eddy simulations, to be submitted soon

Physics-constrained learning:
Same performance with 

50 and 2000 samples 

!"Π $%&' = !"Π )&&

- Data augmentation: build symmetries into the input samples

- Equivariant CNNs: physics built into the architecture

- Physics-constrained loss functions:
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Using ML for modeling weather/climate/turbulence: 
Questions, challenges & opportunities

• Best ways to use ML?

• How to choose the ML method?

• Dealing with poor (high-quality) data regimes
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• Generalization (i.e., extrapolation)

• Instability: blow-up in coupled (ML+numerical solver) models

transfer learning



DD-P does not extrapolate to higher Re
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Generalization to higher Re via transfer learning

!"#$%& '(): +,-$.
(0%",1$. 2,03 4 &"567$& 8%95 :$)

:$(0%",1 2,03
<.<'4

&"567$& 8%95 3,>3$% :$

Chattopadhyay, Subel &
Hassanzadeh, Data-driven
super-parameterization
using deep learning:
Experimentation with multi-
scale Lorenz 96 systems
and transfer learning. J.
Advances in Modeling
Earth Systems (2020)

Re-train some layers



Generalization to higher Re via transfer learning

Guan, Chattopadhyay, Subel & Hassanzadeh, Stable a posteriori LES of 2D turbulence with convolutional neural networks:
backscattering analysis and generalization to higher Re via transfer learning, in revision arXiv: 2102.11400
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!"
!# + % ",' = 1

Re∇
-" − /" + 0

0 = 12 cos 126 + 72 cos 728

Case 1
Decaying à Forced

Case 2
100x higher Re

Case 3
Change in forcing scale

9 9 9 9 9 9

NLES=128 



Case 1
Decaying à Forced

Case 2
100x higher Re

Case 3
Change in forcing scale

!"
!# + % ",' = 1

Re∇
-" − /" + 0

0 = 12 cos 126 + 72 cos 728

BNN: Base CNN trained with N samples from the base or 
target system

TLNN: Retrained BNN with N/10 samples from the target 
system

L: 2, 5 L: 2 L: 2

NLES=128 



Case 1
Decaying à Forced

Case 2
100x higher Re

Case 3
Change in forcing scale

!"
!# + % ",' = 1

Re∇
-" − /" + 0

0 = 12 cos 126 + 72 cos 728

Questions: 

- What is learnt during transfer learning?

- For a given BNN and new system, what are 
the optimal layer(s) to retrain?

Ultimate goals:

- A framework to guide TL

- Build more accurate TLNNs with fewer
retraining samples

L: 2, 5 L: 2 L: 2
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Best layers to re-train? The shallowest ones
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!ℓ# Activation of $%h channel of layer ℓ (128x128 matrix)  

&ℓ',# 5x5 matrix of weights of (*, $)th filter of layer ℓ

-ℓ# Bias of $%h channel of layer ℓ
. ReLU activation function

* = 1…64
$ = 1…64



!ℓ
#
= % &

'

(ℓ
',#
⊛ !ℓ+,

'
+ .ℓ

# ℎℓ
#
=&

'

(ℓ
',#
⊛ !ℓ+,

'
+ .ℓ

#

0!ℓ
#
=&

1

2+3 4567849:7 ⊛ ;ℎℓ
#
(=, >)

Re-training deeper layers leads to small/no changes in the output, 
particularly at large scales

(@1, A1) ∈ (@, A) ℎℓ
#
@, A > 0

(ℓ
',#

E(ℓ
',#

64−64 0
I6

64

0I:

Fourier 
transform
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What are the filters?

Spectra of BNN filters 

!"ℓ
$,&

' = 1, 2 …64
. = 1, 2 …64
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How do filters 
change during 
transfer learning?

Isolated the 4 filters that 
have changed the most 
after transfer learning 
(based on Frobenius norm)
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How can we determine a priori what layers can change the most for new data?
Calculate the loss landscape of the BNN layers for new data 

Layer 2

Layer 10

Li et al.  (2018) arXiv: 1712.09913
Krishnapriyan et al. (2021) arXiv:2109.01050

!ℓ = $ℓ%,', (ℓ

Pick layer(s): )

(Θ,, Θ-): two random, normalized matrices

Perturb !/: 
0!/ = !/ + 2,Θ, + 2-Θ-

Compute ℒ 4567, !ℓ8/, 0!/
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Questions & answers (for this application & this NN architecture): 

1) What is learnt during transfer learning?
- A number of new spectral filters (mostly low-pass filters) 

2) For a given BNN and new system, what are the optimal layer(s) to retrain?
- Shallowest layers, because the main difference between base and new data is in large scales

Ultimate goals: 

• A framework to guide TL

• Build more accurate TLNNs with fewer retraining samples

Other Applications & architectures? 

• Applications so far: SGS modeling & fully data-driven forecasting
- Changing parameters or blending a large training dataset with a smaller, higher-fidelity dataset

• (1) Still, likely a number of new spectral filters 
• (2) Would depend on base/new data differences, may depend on NN architecture
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BNN 
weights

TLNN 
weights
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Questions & answers (for this application & this NN architecture): 

1) What is learnt during transfer learning?
- A number of new spectral filters (mostly low-pass filters) 

2) For a given BNN and new system, what are the optimal layer(s) to retrain?
- Shallowest layers, because the main difference between base and new data is in large scales

Ultimate goals: 

• A framework to guide TL

• Build more accurate TLNNs with fewer retraining samples

Other Applications & architectures? 

• Applications so far: SGS modeling & fully data-driven forecasting
- Changing parameters or blending large, low-fidelity data with small, high-fidelity data

• (1) Still, likely a number of new spectral filters 
• (2) Would depend on base/new data differences, may depend on NN architecture


