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Pytorch Fortran bindings
Simplify usage of modern DL in HPC applications

Define flexible and 
complex models in Python

Train the model in Python

Export trained model Train the model directly in 
Fortran (limited support)

Export untrained model

Use native Fortran arrays 
to run inference



Machine learning for radiation has a 20+ year history

The first uses of machine learning in weather forecasting were by Chevallier and 
colleagues (ECMWF,1998-2000) and Krasnoplosky and colleagues (NCEP, 
2004-2010). 

Both aimed to replace radiation calculations with artificial neural networks to 
increase computational speed. ANNs were trained on parameterizations and 
succeeded in reproducing fluxes, which were could be used in stable simulations.  



People are still doing this (with important wrinkles)

Largerquist et al. 2021, doi:10.1175/JTECH-D-21-0007.1 
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No need for speed (alone)…

Computational efficiency is (IMHO) a poor motivation to “learn radiation”

removing the (current) cost isn’t transformative 
existing compromises work reasonably well 
computational alternatives abound

Machine learning of parameterized radiation inherits errors and simplifications. It 
abandons equation we know to be true - “a terrible idea” 

But! Lagerquist trained on fast-ish calculations - slower than routine, but not 
necessarily heroic

Computational cost is the data-limiting factor  

A hybrid approach might learn the correction to a low-resolution calculation

One might even want to build a forward model but never use it directly (at least for 
NWP)… 



ML to enable 4Dvar data assimilation

Figure: ECMWF
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ML to enable 4Dvar data assimilation

Hatfield et al. 2021, doi:10.1029/2021MS002521



Building a radiation parameterization: theory…

From the equations describing radiation in the atmosphere

 

parameterizations make three approximations

plane-parallel, homogeneous ansatz: 

analytic angular integration i.e. two-stream: 

spectral integration: 

F±(x) = ∫
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… and a healthy dose of empiricism



Empiricism is catnip for ML 
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Empiricism is catnip for ML 
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Learning our way towards benchmarks in the presence of empiricism

The main source of non-random errors in radiation parameterizations is the  
one-dimensional ansatz

This is actually several approximations

a. net horizontal transport of radiation between columns (see: advection)

b. homogeneity within columns



Treating inhomogeneity: tricks plus empiricism

The equations can be solved independently for each element of the one-point 
distribution of the vertical distribution of opacity, directly or with tricks

Determining this distribution requires information about 

the distribution of opacity in each layer

how the distributions are related in the vertical  

at scales smaller than the spatial discretization but larger than a radiative smoothing 
scale (O(100) m or larger) 

The distribution of opacity might be available from other sub-models. Vertical 
relationships are prescribed and/or diagnosed empirically

There are opportunities to learn the characteristics of sub-grid homogeneity from 
empirical data



Learning our way towards benchmarks in the presence of empiricism

The main source of non-random errors in radiation parameterizations is the  
one-dimensional ansatz

This is actually several approximations

a. net horizontal transport of radiation between columns (see: advection)

b. homogeneity within columns

c. net horizontal transport of radiation within columns (coupled with b)

Relaxing assumption c is both computationally and conceptually hard. 

The degree to which approximations b and c impact fluxes is directly tied to the 
small-scale spatial distribution of the properties of the medium (most likely clouds)

Lacking a theory for this distribution we are back to empiricism 
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Fast-ish treatments of 3D sub-grid effects

Robin Hogan’s SPARTACUS is an ambitious extension of the two-stream/adding 
paradigm to account for net horizontal transport between subgrid-scale cloud 
elements. 

SPARTACUS treats biases, especially long wave radiation from cloud sides, and 
conditional errors that depend on solar zenith angle and cloud distributions.  

Unaffordable in routine applications, but the 3D-1D difference is quite learnable

Hogan et al 2016, 10.1002/2016JD024875 



Meyer et al 2021, almost-accepted in JAMES
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Learning corrections

This solves the affordable approximate equations and corrects for unaffordable 
terms

Data for the correction was generated by a fast-ish low-order model including 
O(10%) 3D impacts

To two parameters describing horizontal and vertical structure, SPARTACUS adds a 
single parameter to characterize 3D impacts… more empiricism, but quasi-
accessible in data or high-resolution simulations



Calibration and structural error

Calibration using cloud structure from LES simulations of shallow clouds, using 
relatively sparse benchmark calculations with variable solar zenith angles

Emulation of SPARTACUS predictions of as a function of SPARTACUS parameters

Sampling to identify the parameter values that minimize SPARTACUS errors with 
respect to the benchmark

Process-BasedClimateModel Development Harnessing
Machine Learning: III. TheRepresentationofCumulus
GeometryandTheir 3DRadiative Effects
NajdaVillefranque1 , StéphaneBlanco2, Fleur Couvreux1 , Richard Fournier2,
JacquesGautrais3,Robin J. Hogan4,Frédéric Hourdin5 , Victoria Volodina6,and
DanielWilliamson6,7

10.1029/2020MS002423
RESEARCH ARTICLE



Calibration and structural error

Parameters FSD z0(m) Cs (m)

Mean LES-derived 0.705 187 247

Best global 1.079 436 155

BestTOA up 1.646 493 119

Best absorption 0.102 294 821

Best surface down 1.469 374 113

Table 3
Parameter Values forthe“Best” Configurations of ecRad

Villefranque et al 2020, 10.1029/2020MS002423 



Calibration and structural error

Calibration for LES simulations of shallow clouds, using relatively sparse benchmark 
calculations with variable solar zenith angles

Emulation of SPARTACUS predictions of as a function of SPARTACUS parameters

Sampling to identify the parameter values that minimize SPARTACUS errors with 
respect to the benchmark

Assessment against out-of-sample data

Process-BasedClimateModel Development Harnessing
Machine Learning: III. TheRepresentationofCumulus
GeometryandTheir 3DRadiative Effects
NajdaVillefranque1 , StéphaneBlanco2, Fleur Couvreux1 , Richard Fournier2,
JacquesGautrais3,Robin J. Hogan4,Frédéric Hourdin5 , Victoria Volodina6,and
DanielWilliamson6,7

10.1029/2020MS002423
RESEARCH ARTICLE



Calibration and structural error

Villefranque et al 2020, 10.1029/2020MS002423 



Learning when data is hard to come by

There’s no obvious shortcut to understanding 3D effects in place

Data needed to learn the those effects directly is likely to remain sparse 

expensive high-resolution clouds scenes x expensive radiative transfer 
simulations 

Feature identification (which aspects of the scenes control the magnitude of the 3D 
impact?) could refine data generation strategy

But a large scale model can’t know the small-scale state; predicting features 
controlling 3D impacts is a separate problem



Learning the problem and the solution

Zhu et al. 2019, doi:10.1029/2018JD029223



Machine learning for radiation

The opportunities for machine learning to inform the modeling of radiation include

representing empirical knowledge 

providing corrections to approximations 

The most challenging problem is data limited; it’s not yet clear how best to frame 
the problem to generalize well 

(For local participants: come talk to me about dimension reduction and equation 
discovery problems) 


