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Promise of Deep Learning

Fluid Dynamics?



Deep Learning for Fluid Dynamics

• Physics-Guided DL [Ling et al. 2016, Raissi et al. 2017, Kim and 
Lee 2019, Wu et al. 2019, Jiang et al, 2020]

• no external force, require boundary condition inputs 

• only spatial modeling, no temporal dynamics

• Fluid Animation [Tompson et al. 2017, Chu and Thuerey, 
2017, Thuerey et al. 2019, Sanchez-Gonzalez et al. 2020]

• emphasize simulation realism 

• lack physical interpretation

• Data-Driven DL [Chertkov et al. 2019, Mohan et al. 2020, 
Kochkov et al. 2021]

• use DL as a function approximator

• no explicit physical constraints

Brunton, Steven L., Bernd R. Noack, and Petros Koumoutsakos. "Machine learning for fluid mechanics."  
Annual Review of Fluid Mechanics 52 (2020): 477-508.



Accelerating Turbulence Simulation
Rayleigh-Bénard convection1
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Hybrid Learning Framework

• Large Eddy Simulation (LES)

w̃(x, t) = ∫ G(x |ξ)w(ξ, t)dξ
w(x, t) = w̃(x, t) + w′ (x, t)

• Reynolds Averaging (RANS)

w(x, t) = w̄(x, t) + w′ (x, t)
w̄(x, t) = 1

T ∫
t

t−T
G(s)w(x, s)ds

• Navier-Stokes equations: describe the motion of viscous fluids



Turbulent-Flow Net
• RANS-LES Coupling

Spatial Filter Temporal Filter

w̄(x, t) = 1
T

t

∑
s=t−T

G2(s)w*(x, s)w*(x, t) = ∑
ξ

G1(x |ξ)w(ξ, t)

w = w̄ + w̃ + w′ 



Data Description

• RBC simulation with Prandtl number 0.71 and Reynolds number 
2.5 x e8


• ~10k sequences, spatial resolution 64x64, time length 90 


• 60 time step ahead prediction, results averaged over three runs



• TF-Net consistently outperforms baselines on forward 
prediction RMSE 

Prediction Performance 

• 2X faster than Lattice Boltzmann method (LBM)



Physical Consistency

• TF-net predictions are closest to the target w.r.t. kinetic energy

Under review as a conference paper at ICLR 2020

Figure 4: Root mean square errors of differ-
ent models’ predictions at varying forecast-
ing horizon

Figure 5: Mean absolute divergence of dif-
ferent models’ predictions at varying fore-
casting horizon

Figure 6: Turbulence kinetic energy of all models’ predictions at the leftmost square field in the
original rectangular field with respect to the target.

poorly when tested outside of the training domain. Neither Dropout nor regularization techniques
can improve its performance. Also, the warping scheme of the Emmanuel de Bezenac (2018) relies
on the simplified linear assumption, which was too limiting for our non-linear problem.

Figure 7: The Energy Spectrum of
TF-Net, U-net and ResNet on the
leftmost square sub-region.

Figure 5 shows the averages of absolute divergence over
all pixels at each prediction step. TF-Net has lower di-
vergence than other models even without additional di-
vergence free constraint for varying prediction step. It is
worth mentioning that there is a subtle trade-off between
RMSE and divergence. Even though explicitly constrain-
ing model with the divergence-free regularizer can reduce
the divergence of the model predictions, it also has the
side effect of smoothing out the small scale eddies, which
results in a larger RMSE.

Figure 6 displays the turbulence kinetic energy fields of
all models’ predictions at the leftmost square field in the
original rectangular field. Figure 7 shows the energy
spectrum of our model and two best baseline at the left-
most square sub-field. We also convert square predicted
images back to the big rectangular ones and calculate
the Energy Spectrum on the entire domain, which can be
found in Figure 10 in the appendix. While the turbulence
kinetic energy of TF-Net, U-net and ResNet appear
to be similar in Figure 6, however, from the energy spectrum in Figure 7 and Figure 10, we can
see that TF-Net predictions are in fact much closer to the target. Extra divergence free constraint
does not affect the energy spectrum of predictions. Thus, unlike other models, TF-Net is able to
generate predictions that are physically consistent with the ground truth.

Figure 8 shows the ground truth and the predicted u velocity fields from all models from time
step 0 to 60. We also provide videos of predictions by TF-Net and several best baselines in
https://www.youtube.com/watch?v=sLuVGIuEE9A and https://www.youtube.
com/watch?v=VMeYHID5LL8, respectively. We see that the predictions by our TF-Net model
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• Video forward predictions methods (e.g. Unet, ConvLSTM) 
cannot capture physical properties



Prediction Visualization
Target

TF-Net

ResNet

GAN



Ablation Study

w̄

w̃

w′ 



Incorporating Symmetry for Generalization

Rui Wang
 Robin Walters


Incorporating Symmetry into Deep Dynamics Models for Improved Generalization 
Rui Wang, Robin Walters, and Rose Yu 
International Conference on Learning Representations (ICLR), 2021.



• Noether’s theorem: For every symmetry, there 
is a corresponding conservation law 

• translational  conservation of momentum 


• time invariance conservation of energy 

→
→

Symmetry
• Utilize symmetry to improve generalization


• dynamics change but the laws of physics do not!

• As inductive bias to 


• improve generalization


• encode conservation laws



Group Equivariance
• Group: a set  and a composition map  


•  and 


• SO(2): 2d rotation 

G ∘ : G × G → G
1 ∈ G ∀g ∈ G, ∃g−1 ∈ G

• Invariance, Equivariance: function  and group 


• G-invariant:  


• G-equivariant:  

f G

f(g(x)) = f(x)
f(gx) = gf(x)

f(x, v) = (x,2v)

ρ(Rot(θ)) = (cos(θ) sin(−θ)
sin(θ) cos(θ) )



Equivariant Networks

• If the maps between layers are equivariant, then the entire 
network is equivariant.


• Adding skip connections does not affect its equivariance w.r.t. 
linear actions.

• Use a neural network to learn   that is G-equivariantf

ρin ρoutρ1 ρ1 ρ2 ρ2f



Theorem (Weiler & Cesa 2019): a convolutional layer is G-equivariant if 
and only if the kernel satisfies   for all , 
with action maps  and  .

K(gv) = ρ−1
out(g)K(v)ρin(g) g ∈ G

ρin ρout

Weight Symmetry



Symmetry of Differential Systems

• A system of differential operators 


• if  is a solution of , then for all ,  is also a solution

D = {P1, ⋯, Pr}
ϕ D g ∈ G g(ϕ)

Scaling Law



Symmetry: Scaling

• Standard convolution shares weights across the input by 
translating a kernel across the input. 


• For scale-equivariant convolution, we must translate and 
scale a kernel across the input  



Symmetry: Scaling

• Scale equivariant 


Tλw(x, t) = λw(λx, λ2t)



Ocean Currents Forecast



Conclusion
• Physics-Guided Deep Learning: Integrating first-principles 

into deep neural networks 


• TF-Net: Hybrid CFD-deep learning model for 
accelerating turbulence simulation


• Equ-Net: symmetry-aware neural network for improved 
generalization


• Future work: flow control and optimization



@yuqirose

Open Source Code and Data: roseyu.com
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