Turbulent suspensions of
heavy particles

Jérémie Bec
CNRS, Observatoire de la Cote d’Azur, Université de Nice

in collaboration with
L. Biferale, M. Cencini, A. Lanotte, F. Toschi (Rome),
R. Chétrite (Lyon), R. Hillerbrand (Oxford),
S. Musacchio (Turin), and K. Turitsyn (Chicago)

Physics of Climate Change, May-July 2008, KITP, Santa Barbara




Particle laden flows

> Finite-size and mass impurities transported by turbulent flow




Dispersed particles

» Passive suspensions: no feedback of the
transported particles onto the fluid flow.

7 Rigid spherical particles that are assumed
* much smaller than the smallest active
scale of the flow (Kolmogorov 7 )
* associated with a very small Reynolds 4
number Mmp = 5TPpa

= Surrounding flow = Stokes flow
Maxey & Riley (1983)
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Very heavy particles

» Spherical particles much smaller than the Kolmogorov

scale 77, much heavier than the fluid, feeling no gravity,
evolving with moderate velocities: one of the simplest model

K= (X -ux.n)

- 2 parameters

| {81:7'/7'77

Prescribed velocity field
(random or solution to NS) Re=UL/v

7 Dissipative dynamics (even if u(x,t) is incompressible)

Lagrangian averages correspond to an SRB measure that depends
on the realization of the fluid velocity field.




Clustering of inertial particles

7 Important for
* the rates at which particles interact (collisions, chemical
reactions, gravitation...)
* the fluctuations in the concentration of a pollutant
* the possible feedback of the particles on the fluid

S F Multifractal distribution
Inertial-range clusters and voids ~ at dissipative scales




Phenomenology of clustering

7 Different mechanisms:
. Ejection from eddies by
centrifugal forces

Dissipative dynamics
=> attractor =

¢

X1

» Theory: requires elaborating models to disentangle these two
effects. For instance:
> flows with no structures (uncorrelated in time) to isolate the
effects of a dissipative dynamics
> coarse-grained closures to understand ejection from eddies

» Numerics show that these effects act at different scales




Summary of DNS
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Pseudo-spectral code, normal viscosity, parallel code (MPI+FFTW)
Spatial resolutions 1283, 2563, 5123

Ry Umms € % n L Tg 1, T Tyr Az N° N, N, Niot

185 1.4 0.94 0.00205 0.010 = 2.2 0.047 14 4 0.012 512% 5-10° 7.5-10° 12-107
105 1.4 0.93 0.00520 0.020 7« 2.2 0.073 20 4 0.024 2562 2.5-10° 2-10° 3210
65 1.4 0.85 0.01 0.034 7« 2.2 0.110 29 6 0.048 1283 3.1.10* 2.5-10° 4-10°

Particle positions, velocities, fluid velocity at particle positions,
fluid gradient, stored at two different rates

\

» every 0.1 Ty for 5 10° particles / Stokes time
> every 10 T, for 7.5 10° particles / Stokes time

Data available on the iCFDdatabase (http://cfd.cineca.it)




Small-scale clustering
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Analytic attempts

7 Two-point motion: carrier flow = smooth Kraichnan
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St
P Only solved case = 1D (Derevyanko, Falkovich, Turitsyn & Turitsyn 2007)

7 Small-Stokes number asymptotics
WKB (Wilkinson & Mehlig 2004)
Stochastic averaging techniques (B, Cencini, Hillerbrand & Turitsyn 2007)
Dy =d —2(d + 1)(d + 2) St + O(St?)

Problem = non relevant limit + diverging series (singular limit)




Reduced dynamics

7 Two-point motion can be written as a system of SDE with
additive noise (Piterbarg, Wilkinson et al.)
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Inertial-range clustering ?

7 Case of non-differentiable Kraichnan: particle dynamics at
scale £ depends on a local (scale-dependent) Stokes number

_ _1/3 2/3 Falkovich, Fouxon, Stepanov 2003
St(f) — T/Tf — ¢ / T/f / JB, Cencini, Hillerbrand 2007

Both the scale-invariance
of the fluid flow and that

of the particle distribution
are broken

¢ — oo St(f) —0
inertia becomes negligible
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Particles in turbulent flow

Real flow have structure and particle distribution correlates with
the acceleration field

Modulus of St = 0.16
acceleration
.'-".
Ry = 185
St = 3.3 St = 0.8




Coarse-grained density
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Time scales of clustering

The local Stokes number St(£) = /37 /¢%/3 is not relevant

Non dimensional contraction rate
When inertia is very weak: Maxey’s approximation
X ~v(X,t) =u(X,t) —7[0u+ u - Vu]
Rate at which a particle blob with size r is contracted
1 T
Frﬂ- = 3 Vv de ~ —2(Srp
T x| <7 T
The question of pressure scaling has (at least) two answers
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Scalable deviations from uniformity

» Mass distribution depends only on
7Ly ~ Re'/4St(r/n)?/? ~ Re™! St(r/L)%/3
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? Find models belonging to the same universality class

? Discreteness in time and space

cells eject a fraction of their mass to their neighbors

» Parameter = 77 ejection rate

Mass transport model

» At each time step some (randomly chosen with probability p)
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Tails

7 Right tail = algebraic p(m) me(Y)
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Relation with RWRE

? Ejection rate depends on space
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7 Clustering

* Of two kinds, depending on the observation scale: multifractal in
the dissipative range, dependent only on a rescaled contraction
rate in the inertial range. Some attempts to get analytical forms
for the mass distribution.

* Use of more refined cluster analysis tools to study the dynamics
of particle clusters: how do they form, how long do they live?

* Correlation of particle positions with the flow structures requires
to understand the inertial-range distribution of acceleration.

7 Collisions / Velocity statistics
* Clean-up the scaling properties of particle velocity differences
* Understand the limit of validity of the ghost-collision approach




