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The tropical atmosphere has strong, coherent variability on
the intraseasonal (30-60 day) time scale

Equatorial outgoing longwave radiation, a measure
of deep, high cloudiness (shading) — annual cycle &
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The “Madden-Julian oscillation” (MJO) propagates eastward
In a belt around the equator

Statistical composite MJO in outgoing longwave radiation and
lower tropospheric wind (Wheeler and Hendon 2004)
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In northern summer, the Asian monsoon active
and break periods also oscillate intraseasonally

Composite life cycle of QMO rainrate (contour) & SST (shading)
Vgt phase 5 Vgt
SON -+ S g ‘

20N 1
TON -

EQ
108 1
2085
30S
SON -
20N 1
TON A

EQ
108
2085 A
30s
SON ¥
20N A
TON -

£Q
105 1
R20S -
S0Ss
SON -
20N A
10N 4

£Q 1
10S 4
20S -
805;

OE B80E BSOE 120E 1S0E 7180 150W 120W S0WSOE 60E BSOE 120E 1S50E 7180 150W 120W 90W

L R I
—0.3 —0.2 —0.17 0.1 0.2 0.3

Wang et al. 2006



Climate models’ simulations of intraseasonal variability
are flawed, but improving

Lin etal. 2006 -

FiG. 9. Variance of the MJO mode along the equator averaged
between (a) 15"N-15°S and (b) 5"N-5°S.

But there is no agreement on the basic mechanisms
despite ~3 72 decades of study



Variance of rainfall on intraseasonal timescales shows
structure on both global and regional scales

Intraseasonal rain variance

30-90 Day TRMM Variance (May-October)
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Climatological patterns resemble variance, except
that the mean doesn’t have localized minima over land

Intraseasonal OLR variance (may-oct)
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Climatological patterns resemble variance, except
that the mean doesn’t have localized minima over land

Intraseasonal OLR variance, nov-apr




Emanuel (87) and Neelin et al (87) proposed that the MJO
Is a Kelvin wave driven by wind-induced surface fluxes
(“WISHE")

Enhanced

Perturbation flow g SifCA flux ) Mean flow

)

Wave propagation



This idea has been somewhat abandoned because the
real MJO does not look quite like the original WISHE theory

Observed cloudiness and wind from TOGA COARE
(Chen, Houze and Mapes 1996)
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Strongest winds and fluxes are in phase with or
lag precipitation, and lie in westerlies



Wheeler and Kiladis (1999) used spectral analysis to show
that the MJO is not a Kelvin wave
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But the real MJO does have significant net surface heat
flux variations, roughly in phase with convection

8000 km 10,000 km
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Over land, there can be no significant net flux variations
on intraseasonal time scales - so if net flux were important
to 1SO, the observed variance maps should look as they do!
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The flux variations over ocean are roughly half radiative,
half turbulent. Both are nonconservative with
respect to moist static energy or moist entropy.
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The simplest intraseasonal
variability is seen in a local
analysis (Waliser 1996)

Time-varying composites
of “hot spots” - SST>29.5C
for a period > 1 month

Highly
reflective
cloudiness

168 JOURNAL OF CLIMATE Vovuse 9

a, Month = —1 SST N =30

¢
i)
o7¢

Vs

F6. 5. () Compostie anomalous SST forall the months: (1) just poios 1o (morth = 13 (b} durng
(month = (1) and (0) et after (marth = 1) the acenrmrmcs of sn acear hiot ol in the welndioe
regron. Costowr antervals sre 0 1°C, and positive anomalies ase shaded, Swown s 1he apper nght of
each map is tie number of monthly chservations in each comgosite’s average. The rectangalar

seieuron egomn’’ s plutsec on el compossie o feclises cospa o boowoon difcicm van
postios (see Fig. 3 and secticn 3b).

There ae Guee aspects e above conpusites tat
are particelarly interestng to consider. First, the HRC
anomalies appear to be organized oo o very large scale,

Indian Ocen during the munth = £ 1 somiposites aie
also associated with ranfall anomalies of  about
30 mm mo .

a) Montk = -1

——————p—

Fic. 6. Same & kg, $ except for HRC; contow intervals are 0.2 days mo 1



This has the appearance of a local recharge-discharge
oscillation; the storage is in the ocean mixed layer

Destobilization
/

SST
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Stephens et al. 2004



We can make a very simple model — no
horizontal structure, very simple vertical
structure - that has such a recharge-

discharge oscillation
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We can model regional-scale intraseasonal variability by
considering single columns forced by a planetary-scale
traveling 1SO disturbance, taken to be external.

Precipitation amplitude as function of mid
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Some GCMs behave similarly to simple model as
surface thermal inertia is varied (no inertia = no surface

flux) SST Precip
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Wet land is like a mixed layer of zero depth (swamp).
Thus if MJO is dependent on surface energy fluxes

(turbulent, radiative, or both) it should weaken over
land... as observed.

Intraseasonal OLR variance, nov-apr




The GCM-simulated dependence on surface turbulent
flux feedback is very dependent on convective scheme.
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There Is a definite suggestion that better MJO simulation

corresponds to larger role for surface fluxes

Lag Regression 850 hPa U: Nov-Apr (Tokioka) Lag Regresslon 850 hPa U: Nov=-Apr (Control)
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We can imagine a model intercomparison project that
might help us to get useful information about
mechanisms out of flawed models
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The surface flux argument is attractive because it
appears likely to work in both hemispheres and seasons

latitude —

Nanjundiah et al. 1992



We have a “simple” axisymmetric model which produces
an intraseasonal northward-propagating oscillation,
robustly to parameters
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Wind-induced sfc fluxes are crucial to the model
instability. No oscillation for small surface thermal

Inertia.

Period & growth e-folding time (1/growth rate)

from linear model
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If this model were relevant to reality, it would imply
damping of intraseasonal variability over land in NH

summer, as observed
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Summary

Simple models of several types have intraseasonal
oscillations that depend on surface flux feedbacks.

At least two GCMs work similarly (though at least
one other doesn’t).

Observed ISO (at least in SH summer) has
substantial net surface energy flux anomalies in
more or less correct phase to drive the oscillation.

Observed variance of ISO Is maximum over ocean,
minimum over land, in both seasons and
hemispheres — this is evidence that surface fluxes
are important.



Concluding remarks

We argue that surface fluxes (turbulent and
radiative) are important to the energetics of
Intraseasonal variability.

This iIs testable in models.

Even if true, it would neither mean we deeply
understand the ISO, nor that we could necessarily
simulate or predict it better.

Still, if we could decide conclusively on this it would
be a step forward.






The patterns are robust across different data products

30-90 Day OLR Varlance (May=October)
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The growth rate in this model is sensitive to
parameters, period isn’t -

r (cloud-rad/sfc flux feedback)
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We can make a very simple model that has such a
recharge-discharge oscillation (Sobel and Gildor 2003)
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Results: two limit cycles

Mean states

— Limit Cycle 1
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Climatological rainfall patterns resemble variance, except
that the mean rainfall doesn’t have localized minima
over land
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To model northern summer northward mode, we use the
"QTCMZ2” (Sobel and Neelin 2006, building on Neelin
and Zeng 2000)

Vertical structure:

P:

Py

0 .o

........

A

..................

P:

Py

0 ceee

(0(ty,2) = v, (LYV,(2) + v, LYV, (z) + v, (EY)V,(2)
Ttty,z)=T,
(9tY,2) = 4,.A2) + q,(L,y)b,(2) + q, (1, y)b,(2)

z) +T,(t,y)a,(z) + s, (t,y)a,(z)

A

.......

Mass conservation: (p,-p,) 9 ,v,(t,y) =-p, 9 ,v,(ty)



Model is axisymmetric and run over an idealized SST
field loosely based on the Bay of Bengal in monsoon
season

Parameterizations :
Convection: Betts-Miller (a quasi-equilibrium scheme);
Radiation: newtonian cooling towards a uniform temperature.

Aquaplanet, axisymmetric, on the B-plane;

SST
Forcing : 204
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