Cluster evaporation
in a tidal field

and the related tqle of the GCMF
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Definitions

ri= King tidal/truncation radius (where density goes to zero)
r1= Jacobi radius (of the zero velocity surface)

Roche-lobe under-filling = 7?7?77 (rn/ry< 0.1)




Assumptions

Escape time = O (but see Fukushige & Heggie 2000; Baumgardt 2001)

tih < MY2rp? i.e. Coulomb logarithm is constant

| personally do not care what the initial mass function of the
globular clusters was ....




Ee = escape fraction
Ambartsumian (1938); Spitzer (1940); Henon (1961); Spitzer (1987)




Assume 7 & 1]




Jacobi density is set only by the galaxy

Mg (Rg) =
0C —— =
R3, R

W




Jacobi density is set only by the galaxy
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ABSTRACT

The lifetime for total mass loss is
found to be, aside from a slowly varying logarithmic term, proportional to the initial number of stars times
the tidal time scale [~ 1/(Gp,)*/?], where p, is the tidal density (i.c., mean density within the tidal radius).
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Eccentric orbits: f4is (€)=tais (0) x(1
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Figured4. Lifetimes of clusters moving on orbits with different eccentricities
€ but the same apogalactic distances. Lifetimes are divided by the lifetime
of a cluster moving on a circular orbit with radius equal to the apogalactic
radius of the clusters on the eccentric orbits. The solid line shows the relation
(1 — €), which provides a satisfactory fit for all eccentricities.
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McLaughlin & Fall (2008)
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Density dependency of GCMF: Mro « pi?
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Ce = constant?




E,.e = constant?

or, do clusters with smaller radii live shorter?




Do we need to consider
small 7/ry values?

Parameters for a “typical’ globular cluster:

2 x 10° Mg 3 Gyr
D pc 100 pc
10 kpc 0.05




Do we need to consider
small 7/ry values?

Sl L 3.6
log M,/M, = 5.33
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tidal radius: ry < R3?3
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Difference = 0.0 % 0 Myr

N = 4096 ro/ri=0.15 | ¥ = 4096 rn/ri=0.075




Difference = 0.0 % 0 Myr

N = 4096 N = 4096




isolated




tidal radius: r;




tidal radius: r;
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Ee = escape fraction
Ambartsumian (1938); Spitzer (1940); Henon (1961); Spitzer (1987)
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All clusters in the tidal regime (r1/r;>0.05)
have the same mass loss rate which is set

Gieles & Baumgardt (2008)
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All clusters in the hdal regime (rn/ry>0.05)
have the same mass loss rate which is set

by pi”2, Rg',
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Thus within a wide range of central concentrations the
escape rate of stars from a cluster depends only on the
number of stars and the tidal field in which the cluster
finds itself. There is no obvious physical reason for this
simplicity ; it seems to arise from a fortuitous compen-
sation of opposing effects.




Density dependency of GCMF
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GCs: Harris (2003)
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» Galactic GCs
« M51 young clusters
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dN/dlogM
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Vesperini et al. (2003)
see also Jorddn et al. (2007)




dN/dlogM
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How to get a constant Mro

MTO x A t/t()
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How to get a constant Mro

MTO x A t/t()

16/2
th/

B 175

T W

= constant

To get the turn-over at the same place everywhere, dll
clusters in the Universe need to pass through a universal

phase of tidal evolution with the product 7w constant




Conclusions

' Mass loss rate scales with pl’?, not with p./?

? In the tidal regime (ri/ry> 0.05) the moss loss rate is

independent of how the stars are distributed within the Jacobi
surface
! To evolve a power-law initial cluster mass function to a peaked

GCMF with constant Mo by only 2-body relaxation in a tidal
field you need a constant A for all clusters

? The similarity of between young and old clusters in the ry, vs.

M plane suggests that 71 is (largely) imprinted by formation,
not evolution




