Stability and Resonance in the General Three-Body Problem

Rosemary Mardling

School of Mathematical Sciences
Monash University
KITP - February 19, 2009

Some gravitational molecules

Astrophysical Applications

Rosemary
Mardling

Pure three-body

- Decaying triples in young (and old) star clusters
- Planet scattering
- Forming the moon
- MBH + stellar binary
- Binary MBHs + star (or cluster)
- Triple MBHs

Astrophysical Applications

Three-body $+\Phi(\mathbf{r}, t)+$ dissipation

- MBH + stellar binary
- Binary MBHs + star (or cluster)
- Triple MBHs
- Planetesimals and planets in the presence of a disk
- Galaxy triples
- Tidal stability of globular clusters on eccentric galactic orbits
- Four-body hierarchies...

Stability

An unstable system \equiv one body will escape to infinity三 "Lagrange unstable"

Desirable features of a stability criterion

- Clear formulation from first principals
- Works for all initial conditions
- Expressible in terms of orbital parameters
- Simple to use
- Easy to include extra potentials etc

All stability criteria for the general problem have been (semi-)empirical

The General Three-Body Problem

Equations of motion

Rosemary
Mardling
Hierarchical (Jacobi) coordinates

$$
\begin{aligned}
& \mu_{i} \ddot{\mathbf{r}}+\frac{G m_{1} m_{2}}{|\mathbf{r}|^{2}} \hat{\mathbf{r}}=\frac{\partial \Phi}{\partial \mathbf{r}} \\
& \mu_{o} \ddot{\mathbf{R}}+\frac{G m_{12} m_{3}}{|\mathbf{R}|^{2}} \hat{\mathbf{R}}=\frac{\partial \Phi}{\partial \mathbf{R}}
\end{aligned}
$$

The interaction potential (disturbing function):

$$
\begin{aligned}
& \Phi=-\frac{G m_{12} m_{3}}{|\mathbf{R}|}+\frac{G m_{2} m_{3}}{\left|\mathbf{R}-\alpha_{1} \mathbf{r}\right|}+\frac{G m_{1} m_{3}}{\left|\mathbf{R}+\alpha_{2} \mathbf{r}\right|} \\
& \alpha_{i}=m_{i} / m_{12}, m_{12}=m_{1}+m_{2}, m_{123}=m_{1}+m_{2}+m_{3}, \\
& \mu_{i}=m_{1} m_{2} / m_{12}, \mu_{o}=m_{12} m_{3} / m_{123}
\end{aligned}
$$

The General Three-Body Problem

Equations of motion

Rosemary
Mardling
Hierarchical (Jacobi) coordinates

$$
\begin{aligned}
& \mu_{i} \ddot{\mathbf{r}}+\frac{G m_{1} m_{2}}{|\mathbf{r}|^{2}} \hat{\mathbf{r}}=\frac{\partial \Phi}{\partial \mathbf{r}} \\
& \mu_{o} \ddot{\mathbf{R}}+\frac{G m_{12} m_{3}}{|\mathbf{R}|^{2}} \hat{\mathbf{R}}=\frac{\partial \Phi}{\partial \mathbf{R}}
\end{aligned}
$$

Numerical solution
This is a 12 th-order system - need to specify $12+2$ parameters: $\mathbf{r}, \dot{\mathbf{r}}, \mathbf{R}, \dot{\mathbf{R}}$
OR
$2 \times[e, a, \lambda,(\varpi, \Omega, I)]$
+2 mass ratios

The General

A Stable Triple

Rosemary
Mardling
astrophysics
equations
animations

While energy is exchanged during an outer orbit, after one whole orbit the nett exchange is exponentially small.

The General

An Unstable Triple

Rosemary

Mardling

astrophysics

equations
animations
ϕ
resonance
resonance overlap

A finite amount of energy is exchanged each outer orbit, as the outer body random-walks its way out of the system.

The General Three-Body

Problem
Rosemary Mardling
equal masses, $e_{i}(0)=0$

The General Three-Body

Problem

Rosemary
Mardling
astrophysics
equations animations
equal masses, $e_{j}(0)=0$

The General Three-Body Problem

Rosemary Mardling

Spherical harmonic expansion

$$
\begin{aligned}
\Phi & =-\frac{G m_{12} m_{3}}{|\mathbf{R}|}+\frac{G m_{2} m_{3}}{\left|\mathbf{R}-\alpha_{1} \mathbf{r}\right|}+\frac{G m_{1} m_{3}}{\left|\mathbf{R}+\alpha_{2} \mathbf{r}\right|} \\
& =G \mu_{i} m_{3} \sum_{l=2}^{\infty} \sum_{m=-1}^{I} \frac{4 \pi}{2 I+1} \mathcal{M}_{I}\left(\frac{r^{\prime}}{R^{I+1}}\right) Y_{l m}(\theta, \varphi) Y_{l m}^{*}(\Theta, \psi)
\end{aligned}
$$

$$
\mathcal{M}_{I}=\frac{m_{1}^{I-1}+(-1)^{\prime} m_{2}^{I-1}}{m_{12}^{\prime}}
$$

$$
\mathcal{M}_{2}=1
$$

$$
\mathcal{M}_{3}=0 \text { if } m_{1}=m_{2}
$$

The General Three-Body Problem

Rosemary Mardling

The interaction potential

Coplanar systems: $\quad \theta=\Theta=\pi / 2$

$$
\Phi=G \mu_{i} m_{3} \sum_{l=2}^{\infty} \sum_{m=-l}^{l} \frac{4 \pi}{2 l+1} \mathcal{M}_{l}\left(\frac{r^{l}}{R^{I+1}}\right) Y_{l m}(\pi / 2, \varphi) Y_{l m}^{*}(\pi / 2, \psi)
$$

$$
\begin{aligned}
& \varphi=f_{i}+\varpi_{i} \\
& \psi=f_{o}+\varpi_{0} \\
& \varpi_{i}=\omega_{i}+\Omega_{i} \\
& \varpi_{0}=\omega_{0}+\Omega_{0}
\end{aligned}
$$

The General Three-Body Problem

Rosemary
Mardling

The interaction potential

$$
\text { Coplanar systems: } \quad \theta=\Theta=\pi / 2
$$

$$
\Phi=G \mu_{i} m_{3} \sum_{l=2}^{\infty} \sum_{m=-1}^{\prime} \frac{4 \pi}{2 l+1} \mathcal{M}_{l}\left(\frac{r^{\prime}}{R^{I+1}}\right) Y_{l m}(\pi / 2, \varphi) Y_{l m}^{*}(\pi / 2, \psi)
$$

$$
\begin{aligned}
& \varphi=f_{i}+\varpi_{i}, \quad \psi=f_{0}+\varpi_{0} \\
& \Phi=G \mu_{i} m_{3} \sum_{l=2}^{\infty} \sum_{m=-l, 2}^{l} c_{l m}^{2} \mathcal{M}_{l} e^{i m\left(\varpi_{i}-\varpi_{0}\right)}\left(\begin{array}{rl}
\left(r^{\prime} e^{i m f_{i}}\right) & \left(\frac{e^{-i m f_{0}}}{R^{l+1}}\right) \\
\sim \text { periodic: } & \sim \text { periodic: } \\
\text { freq } \nu_{i} & \text { freq } \nu_{0}
\end{array}\right. \\
& c_{l m}^{2}=\frac{4 \pi}{2 l+1}\left[Y_{l m}(\pi / 2,0)\right]^{2} . \text { Eg. } c_{22}^{2}=3 / 8, c_{21}^{2}=0
\end{aligned}
$$

The General Three-Body Problem

The interaction potential

Rosemary
Mardling

Coplanar systems

$$
\begin{aligned}
\Phi & =G \mu_{i} m_{3} \sum_{l=2}^{\infty} \sum_{m=-l, 2}^{l} c_{l m}^{2} \mathcal{M}_{l} e^{i m\left(\varpi_{i}-\varpi_{0}\right)}\left(r^{l} e^{i m f_{i}}\right)\left(\frac{e^{-i m f_{o}}}{R^{I+1}}\right) \\
& =2 G \mu_{i} m_{3} \sum_{l m n n^{\prime}} c_{l m}^{2} \mathcal{M}_{l}\left(\frac{a_{i}^{l}}{a_{o}^{I+1}}\right) s_{n^{\prime}}^{(l m)}\left(e_{i}\right) F_{n}^{(l m)}\left(e_{o}\right) \cos \phi_{m n n^{\prime}}
\end{aligned}
$$

where
$\phi_{m n n^{\prime}}=n^{\prime} \lambda_{i}-n \lambda_{o}+\left(m-n^{\prime}\right) \varpi_{i}-(m-n) \varpi_{0}$
is a resonance angle.

The General Three-Body Problem

Rosemary Mardling

Coplanar "moderate-mass ratio" systems:
$n: 1$ "quadrupole" resonances $\left(I=m=2\right.$ and $\left.n^{\prime}=1\right)$
$n=\left[\nu_{i} / \nu_{o}\right]$
$\Phi_{n}=\frac{3}{4} \frac{G \mu_{i} m_{3}}{a_{i}}\left(\frac{a_{i}}{a_{o}}\right)^{3} s_{1}^{(22)}\left(e_{i}\right) F_{n}^{(22)}\left(e_{o}\right) \cos \phi_{2 n 1}$
$\phi_{2 n 1} \equiv \phi_{n}=\lambda_{i}-n \lambda_{o}+\varpi_{i}-(2-n) \varpi_{o}$

Moderate-mass ratio systems: both $m_{2} / m_{1} \gtrsim 0.01$ and $m_{3} / m_{1} \gtrsim 0.01$
$O R$ at least one of $m_{2} / m_{1} \gtrsim 0.05$ or $m_{3} / m_{1} \gtrsim 0.05$

The General Three-Body Problem

Rosemary
Mardling

Eccentricity functions

$$
\begin{aligned}
& s_{1}^{(22)}\left(e_{i}\right)=-3 e_{i}+\frac{13}{8} e_{i}^{3}+\frac{5}{192} e_{i}^{5}-\frac{227}{3072} e_{i}^{7}+\mathcal{O}\left(e_{i}^{9}\right), \\
& F_{n}^{(22)}\left(e_{o}\right) \simeq \frac{4}{3 \sqrt{2 \pi}} \frac{\left(1-e_{o}^{2}\right)^{3 / 4}}{e_{o}^{2}} n^{3 / 2} e^{-n \xi\left(e_{o}\right)}
\end{aligned}
$$

The interaction potential

Energy exchange

The interaction potential governs energy transfer between orbits:

$$
\frac{\dot{E}_{i}}{E_{i}}=\frac{2}{3} \frac{\dot{\nu}_{i}}{\nu_{i}}=-\frac{\dot{a}_{i}}{a_{i}}=-\frac{2}{\mu_{i} \nu_{i} a_{i}^{2}} \frac{\partial \Phi}{\partial \lambda_{i}}
$$

Can show that energy exchanged during one outer orbit is

$$
\Delta E_{o} \simeq-\Delta E_{i} \sim e_{i} \sigma^{5 / 2} e^{-\sigma \xi\left(e_{o}\right)}
$$

Asymptotic expression for "overlap integral"
$\sigma=\nu_{i} / \nu_{o}, \xi=\operatorname{Cosh}^{-1}\left(1 / e_{o}\right)-\sqrt{1-e_{o}^{2}}$
On average "no" energy is exchanged in a non-resonant triple

The General Three-Body Problem

Rosemary
Mardling

The interaction potential

Energy exchange
Significant energy is exchanged in a resonant triple
eg. GJ 876: a 2:1 resonant planetary system

The General Three-Body Problem

Rosemary Mardling

The interaction potential

Energy exchange

Significantly more energy is exchanged in a unstable triple
eg. $R_{p} / a_{i}=3.6, e_{i}=0, e_{o}=0.5$
unstable triple

The General Three-Body Problem

Rosemary Mardling

Resonance

Nonlinear resonance in weakly interacting systems

$$
\begin{aligned}
& H=H_{1}\left[\nu_{1}, \nu_{2}, \ldots\right]+H_{2}\left[\omega_{1}, \omega_{2}, \ldots\right]+\Phi\left[\nu_{1}, \nu_{2}, \ldots, \omega_{1}, \omega_{2}, \ldots\right] \\
& \Phi=\sum_{n_{i}^{\prime} n_{i}} \Phi_{n_{i}^{\prime} n_{j}}\left(c_{1}, c_{2}, \ldots\right) \cos \left(n_{1}^{\prime} \theta_{1}+n_{2}^{\prime} \theta_{2}+\ldots-n_{1} \varphi_{1}-n_{2} \varphi_{2}-\ldots\right), \\
& \dot{\theta}_{i}=\nu_{i}, \dot{\varphi}_{j}=\omega_{j}
\end{aligned}
$$

resonance angle

$$
\phi_{n_{1}^{\prime} n_{2}^{\prime} \ldots n_{1} n_{2} \ldots}=n_{1}^{\prime} \theta_{1}+n_{2}^{\prime} \theta_{2}+\ldots-n_{1} \varphi_{1}-n_{2} \varphi_{2}-\ldots
$$

$$
\ddot{\phi} \simeq-\Omega^{2} \sin \phi
$$

Resonance

Rosemary
Mardling

$$
H=H_{i}\left[\nu_{i}, \varpi_{i}, \Omega_{i}\right]+H_{o}\left[\nu_{o}, \varpi_{0}, \Omega_{o}\right]+\sum_{n} \Phi_{n}\left(m_{j}, e_{j}, \iota_{j}, \sigma\right) \cos \phi_{n}
$$

Coplanar resonance angle

$$
\begin{aligned}
\phi_{n} & =\lambda_{i}-n \lambda_{o}+\varpi_{i}-(2-n) \varpi_{o} \\
\dot{\phi}_{n} & =\nu_{i}-n \nu_{o}+\dot{\varpi}_{i}-(2-n) \dot{\varpi}_{o} \\
& \simeq \nu_{i}-n \nu_{o} \text { for moderate-mass systems } \\
\ddot{\phi}_{n} & \simeq-\Omega_{n}^{2} \sin \phi_{n}
\end{aligned}
$$

The General Three-Body Problem

Rosemary Mardling

Resonance overlap

1892 Poincaré: Les méthodes nouvelles de la méchanique céleste

1954 Kolmogorov, 1963 Arnol'd, 1966 Moser

1955 Fermi, Pasta, Ulam

- 1969 Walker and Ford:

Amplitude instability and ergodic behaviour for conservative nonlinear oscillator systems

- 1979 Chirikov:

A universal instability of many-dimensional oscillator systems

- 1980 Wisdom:

The resonance overlap criterion and the onset of stochastic behavior in the restricted three-body problem
equations
animations
resonance

The General Three-Body Problem

Rosemary Mardling overlap results

Resonance overlap

Resonance angles

$$
\begin{aligned}
& \phi_{n}=\lambda_{i}-n \lambda_{0}+\varpi_{i}-(2-n) \varpi_{0} \\
& \dot{\phi}_{n}=\nu_{i}-n \nu_{o} \\
& \ddot{\phi}_{n}=\dot{\nu}_{i}-n \dot{\nu}_{o} \\
& \frac{\dot{\nu}_{i}}{\nu_{i}}=-\frac{3 \dot{a}_{i}}{2} \frac{3}{a_{i}}=-\frac{3}{\mu_{i} \nu_{i} a_{i}^{2}} \frac{\partial \phi}{\partial \lambda_{i}}, \quad \frac{\dot{\nu}_{0}}{\nu_{0}}=-\frac{3}{\mu_{0} \nu_{0} a_{0}^{2}} \frac{\partial \phi}{\partial \lambda_{0}} \\
& \phi \simeq \frac{3}{4} \frac{G \mu_{i} m_{3}}{a_{i}}\left(\frac{a_{i}}{a_{0}}\right)^{3} s_{1}^{(22)}\left(e_{i}\right) F_{n}^{(22)}\left(e_{0}\right) \cos \phi_{n}
\end{aligned}
$$

The General Three-Body Problem

Resonance overlap

Rosemary
Mardling

Resonance angles

$$
\begin{aligned}
& \phi_{n}=\lambda_{i}-n \lambda_{o}+\varpi_{i}-(2-n) \varpi_{0} \\
& \dot{\phi}_{n}=\nu_{i}-n \nu_{o} \\
& \ddot{\phi}_{n}=\dot{\nu}_{i}-n \dot{\nu}_{o} \\
& \frac{\dot{\nu}_{i}}{\nu_{i}}=-\frac{3}{2} \frac{\dot{a}_{i}}{a_{i}}=-\frac{3}{\mu_{i} \nu_{i} a_{i}^{2}} \frac{\partial \Phi}{\partial \lambda_{i}}, \quad \frac{\dot{\nu}_{o}}{\nu_{o}}=-\frac{3}{\mu_{o} \nu_{o} a_{o}^{2}} \frac{\partial \Phi}{\partial \lambda_{o}} \\
& \Phi \simeq \frac{3}{4} \frac{G \mu_{i} m_{3}}{a_{i}}\left(\frac{a_{i}}{a_{0}}\right)^{3} s_{1}^{(22)}\left(e_{i}\right) F_{n}^{(22)}\left(e_{o}\right) \cos \phi_{n}, \quad n \simeq \nu_{i} / \nu_{o}
\end{aligned}
$$

The General Three-Body Problem

Resonance overlap

Rosemary
Mardling

Resonance angles

$$
\begin{aligned}
& \phi_{n}=\lambda_{i}-n \lambda_{o}+\varpi_{i}-(2-n) \varpi_{0} \\
& \dot{\phi}_{n}=\nu_{i}-n \nu_{o} \\
& \ddot{\phi}_{n}=\dot{\nu}_{i}-n \dot{\nu}_{o} \\
& \frac{\dot{\nu}_{i}}{\nu_{i}}=-\frac{3}{2} \frac{\dot{a}_{i}}{a_{i}}=-\frac{3}{\mu_{i} \nu_{i} a_{i}^{2}} \frac{\partial \Phi}{\partial \lambda_{i}}, \quad \frac{\dot{\nu}_{o}}{\nu_{o}}=-\frac{3}{\mu_{o} \nu_{o} a_{o}^{2}} \frac{\partial \Phi}{\partial \lambda_{o}} \\
& \Phi \simeq \frac{3}{4} \frac{G \mu_{i} m_{3}}{a_{i}}\left(\frac{a_{i}}{a_{o}}\right)^{3} s_{1}^{(22)}\left(e_{i}\right) F_{n}^{(22)}\left(e_{o}\right) \cos \phi_{n}, \quad n \simeq \nu_{i} / \nu_{o} \\
& \ddot{\phi}_{n} \simeq-\Omega_{n}^{2} \sin \phi_{n}, \quad \Omega_{n}^{2}=-\frac{9}{4} \nu_{o}^{2} s_{1}^{(22)}\left(e_{i}\right) F_{n}^{(22)}\left(e_{o}\right)\left[M_{i}^{(2)}+n^{2 / 3} M_{o}^{(2)}\right]
\end{aligned}
$$

The General Three-Body Problem

Rosemary Mardling

Resonance overlap

Pendulums and resonance

Separatrix: $\dot{\phi}= \pm 2 \Omega \cos (\phi / 2)$

A system is defined to be in $n: 1$ resonance if ϕ_{n} librates.

Resonance width: $\Delta \dot{\phi}_{n}=2 \Omega_{n}$

The General Three-Body

Problem

Rosemary
Mardling

$$
\Delta \dot{\phi}=\nu_{o}(\sigma-n)
$$

astrophysics

equations
animations

resonance

resonance overlap
results

Resonance overlap

the $[10: 1](2)$ resonance

resonance overlap

An equal-mass system with $e_{i}(0)=0.01$.

The General Three-Body

Problem

Resonance overlap

Rosemary
Mardling

Induced eccentricity

$$
e_{i}=e_{i}(0)=0.01
$$

Red dots from direct three-body integrations: dot=unstable system

The General Three-Body

Problem

Rosemary
Mardling

The General
Three-Body
Problem
Rosemary
Mardling
astrophysics
equations
animations

Results

$$
\text { (a): } m_{2}=m_{3}=0.01, e_{i}(0)=0.5
$$

The General Three-Body

Results

Rosemary
Mardling

$$
\text { (b): } m_{2}=0.1, m_{3}=1, e_{i}(0)=0
$$

The General Three-Body

Problem

Rosemary
Mardling
astrophysics
equations animations

Results

$$
\text { (c): } m_{2}=1, m_{3}=0.001, e_{i}(0)=0.1
$$

The General Three-Body

Problem

Rosemary
Mardling
astrophysics

```
equations
```

animations

Results

$$
(d): m_{2}=1, m_{3}=10, e_{i}(0)=0
$$

The General Three-Body

Problem

Rosemary
Mardling

$$
\text { (e): } m_{i}=1, e_{i}(0)=0.2, \eta=0
$$

(f): $m_{i}=1, e_{i}(0)=0.2, \eta=\pi / 2$

$$
\eta=\varpi_{i}-\varpi_{0}
$$

Stability Algorithm

(1) Determine which $\mathrm{n}: 1$ resonance the system is near:

$$
n=\left\lfloor\nu_{i} / \nu_{o}\right\rfloor
$$

(2) Calculate distance from exact resonance: $(\delta \sigma)_{n}=\nu_{i} / \nu_{o}-n$
(3) Calculate "pendulum energies" \mathcal{E}_{n} and \mathcal{E}_{n+1} with $\phi_{n}=0$: $\mathcal{E}_{n}=\frac{1}{2}(\delta \sigma)_{n}^{2}-\left(\Omega / \nu_{o}\right)^{2}\left(1+\cos \phi_{n}\right)$

If both \mathcal{E}_{n} and \mathcal{E}_{n+1} are negative, system is unstable

