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Formation of Proto-Globular Clusters in 
the First Galaxies: 

  
Impact on Reionization, JWST Observations  

and Near-field Cosmology



What sets the size and morphology of stars in the 
first galaxies? 

Star formation in high-redshift galaxies takes place 
in especially compact molecular clouds, 

potentially leading to formation of GCs progenitors  
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In Galaxies Gas and stars 
roughly trace each other

Kravtsov 2013

The Astrophysical Journal Letters, 764:L31 (5pp), 2013 February 20 Kravtsov

Figure 2. Normalized surface density profiles of stars, Σ∗(R)/Σn,∗ and neutral gas, Σgas(R)/Σn,g (H i + H2) for late-type galaxies. The Σ∗(R) panel includes galaxies
from the sample of Leroy et al. (2008) and the LITTLE THINGS sample of Zhang et al. (2012), while the Σgas(R) panel only includes the surface density profiles
of gas from Leroy et al. (2008). Profiles of individual galaxies are shown by the thin lines colored according to their log10 M∗, as indicated in the legend. Each
individual profile is normalized by the radius rn = 0.015 R200, where R200 is obtained using the abundance matching ansatz from galaxy’s M∗. The thick lines with
error bars show the sample average and the rms dispersion around the mean. The average profiles of both stars and gas are well described by the exponential profile,
but Rd,gas ≈ 2.6Rd,∗.

galaxies are also close to the global linear relation, although
the figure indicates that late-type galaxies of the intermediate
stellar masses have systematically larger half-mass radii than
the early-type galaxies of the same stellar mass (e.g., Bernardi
et al. 2012).

The purple-shaded band around the dot-dashed line in
Figure 1 shows 2σ ≈ 0.3–0.5 dex intrinsic scatter estimated
for all galaxies in the sample of Bernardi et al. (2012; the scatter
shown is for all galaxies in the sample; M. Bernardi, private
communication). The orange error bars show scatter estimated
for the mass-limited sample of massive SDSS galaxies presented
in Szomoru et al. (2013). The scatter estimated for this sample is
in good agreement with the scatter of the Bernardi et al. (2012)
sample. Remarkably, the scatter is also approximately consistent
with the scatter expected from the distribution of halo spins, λ,
in models in which galaxy size is ∝ λR200, shown by the dotted
lines in the figure.

4.2. Stellar and Gas Surface Density Profiles of Galaxies

In this section I show that in addition to r1/2–R200 cor-
relation the surface density profiles of stars and neutral
gas approximately follow universal profiles when scaled by
rn = 0.015 R200, i.e., the mean normalization of the r1/2–R200
correlation.

Two panels in Figure 2 show the surface density profiles
of stars and neutral gas (H i + H2, where H i is corrected for
helium) for late-type galaxies. The radius of each individual
profile was rescaled by rn = 0.015 R200 and surface densities
were scaled by Σn = 0.448 M/r2

n , where M is the total stellar
or gas mass of each galaxy and factor 0.448 = 1.6782/(2π )
assumes exponential profile (r1/2 = 1.678 Rd ). The figure
shows that both the mean stellar and gas profiles are on
average well described by the exponential profile, Σ(R) =
Σ0 exp(−R/Rd ) with Σ0,∗ ≈ 1256 M∗/R

2
200 and the scale length

Rd,∗ ≈ 0.011R200 for stars and Σ0,gas ≈ 199 Mgas/R
2
200 and

Rd,gas ≈ 0.029 R200 for neutral gas. The gas distribution is thus
on average a factor of ≈ 2.6 more extended than the stellar
distribution. Scatter around the mean profiles is rather small and
is only ≈ 30%–50% at R ∼ 1–3rn, even though M∗ of galaxies

shown in the Σ∗(R) figure (top panel) spans over six orders of
magnitude.

The approximate universality of the gas surface density
profiles was recently pointed out by Bigiel & Blitz (2012). These
authors rescaled gas profiles of the THINGS/HERACLES
galaxies using the optical Holmberg radius, R25, and the gas
surface density Σtrans at the radius where ΣH2 = ΣH i. Such
rescaling results in the average exponential profile described
by Σgas = 2.1Σtrans exp(−1.65R/R25) with comparable scatter
around the mean profile to the rescaling described above.
Comparison gives Σtrans = 95 Mgas/R

2
200 and R25 = 0.048 R200.

Thus, the results of Bigiel & Blitz (2012) can be understood if
Σtrans scales with the characteristic surface density Σ0,gas. The
scaling of R25 is implied by the scaling Rd,∗ ∝ R200 because for
exponential disks R25 ≈ 4.5 Rd,∗. Thus, the gas surface density
profiles can be scaled by the surface density ∝ Mgas/R

2
25 instead

of Σtrans. In summary, the results presented here indicate that
the reason scaling employed by Bigiel & Blitz (2012) works
is that surface densities of gas and stars are both exponential
and their scale lengths are correlated: Rd,gas ∝ Rd,∗. The origin
of the universality of Σgas profiles lies in the scaling of half-
mass radius of both gas and stars with the virial radius of
parent halo.

Figure 3 shows stellar surface density profiles of massive
SDSS (z < 0.1) galaxies in the sample presented by Szomoru
et al. (2013) rescaled using rn as above. Note that I plot not the
actual measured profiles but the Sérsic profiles with parameters
derived from the M∗ and Re values in Table 1 of that paper.
The mean profile of late-type galaxies from the top panel of
Figure 2 is shown for comparison. The figure shows that stellar
distribution of early-type galaxies also follows an approximately
universal profile. The mean profile is very close to the de
Vaucouleurs profile with Re = 0.015 R200/1.34, where factor
of 1.34 converts the three-dimensional half-mass radius to the
two-dimensional Re. Remarkably, the mean profiles of late-type
and early-type galaxies are quite similar at R ! rn and are
only significantly different at R " rn. This implies that similar
processes shape stellar distribution at large radii in both late-
and early-type galaxies.
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Simulations of the First Galaxies with 
ART: 

(Ricotti, Parry & Gnedin 2016)

Dwarf galaxies at z=9. 
Their size is a few 100 pc.  
Can be resolved with sub parsec  
resolution in small cosmological  
volumes. ISM density ranges 
between 100-107 atoms/cc



Dense clusters and Ultra-faint dwarfs at 
redshift z~9

Globular  
clusters 

progenitors

Ultra-faint  
dwarfs

Only PopIII 
 stars
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GCs and Ultra-faint dwarfs

• Stars form in very compact dense clusters: 1 pc scale, velocity 
dispersion 20-40 km/s 

• Probably due to gas loss, many become unbound and evolve as 
shown by the red lines  

• Become bound again by dark matter halos with circular velocities: 
5-10 km/s KITP  Globular Clusters 2020 -  5/18/20

Ricotti, Parry & Gnedin 2016
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Figure 10. (Left) Size evolution of star bursts (clusters) identified in the REF simulation before the penultimate output (therefore tracks
of compact clusters formed recently in the simulation do not appear here). (Right) 3D velocity dispersion of the stars as a function of the
stellar half-mass radius for all bound objects with more than five star particles in the REF simulation at z = 9.

cluster is self-gravitating and bound, the stars will not
be able to escape the potential of the dark matter halo.
Instead, if the star cluster becomes unbound as a result
of gas mass loss, its radius will increase and the velocity
dispersion of the stars will decrease.
Next we consider the e↵ect of mass loss on the dy-

namical evolution of a stellar system (Hills 1980). If the
initial mass of the star forming cloud is M ic

gas
and the

final mass after star formation and gas loss is M⇤, we
can define the star formation e�ciency in the proto star
cluster: ✏cl = M⇤/M ic

gas
. There are two limiting cases.

If tloss ⌧ tdyn (impulsive gas loss):

rh
ric
h

=
✏cl

2✏cl � 1
with 0.5 < ✏cl < 1, (4)

�⇤
�ic
⇤

⇡
✓
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ric
h

rh

◆1/2

. (5)

In this case, only if ✏cl > 50% will the cluster remain
bound. The velocity dispersion of the stars decreases

as �⇤ / r�1/2

h
as the cluster expands to the new virial

equilibrium after mass loss6 (for ✏cl = 50%, rh ! 1 and
�⇤ ! 0).
If tloss � tdyn (quasi-adiabatic expansion):

rh
ric
h

=
1

✏gc
with 0 < ✏cl < 1, (6)

�⇤
�ic
⇤

⇡ ric
h

rh
. (7)

In the right panel of Fig. 10 we plot the velocity disper-
sion of stars, �⇤, as a function of the half-mass radius,
rh, for the galaxies in the REF simulation. We observe
a bimodal distribution of �⇤: several galaxies (about 12)
are found to have �⇤ ⇠ 20�40 km s�1 and rh ⇠ 1�20 pc,
while the rest are concentrated in the parameter space

6 To derive the velocity dispersion we have applied the virial
theorem to the final bound configuration, but the equation is nearly
identical to Eq. 26 in Hills (1980) for the expansion velocity of
unbound associations.

�⇤ ⇠ 10±5 km/s and rh ⇠ 100±80 pc. In the plot we also
show lines with �⇤ / r�1

h
, consistent with quasi-adiabatic

expansion of the cluster, as given by Equation (7).
Thus, combining the results illustrated in both panels

of Fig. 10, a picture emerges in which the low-surface
brightness dwarfs with rh ⇠ 100 pc and �⇤ ⇠ 10 km s�1

are the (young) descendants of dwarfs galaxies that form
their stars in compact clusters with high stellar velocity
dispersions. A fraction of these clusters with the high-
est star formation e�ciencies remain bound and resem-
ble today’s GCs, ultra-compact dwarfs or dwarf-globular
transition objects, while the others expand in the dark
matter halo potential until the stellar velocity dispersion
(that decreases as �⇤ / r�↵

h
, with ↵ ⇠ 0.5� 1) becomes

comparable to the halo circular velocity vcir at the radius
rh:

�⇤(rh) = vcir(rh). (8)

At this point, the cluster is dark matter dominated and
bound by the gravitational potential of the dark matter
halo. Thus, in this model a range of stellar half-mass
radii are possible, depending on the initial �ic

⇤ and e�-
ciency of star formation in the cluster ✏cl. However, rh
cannot exceed rmax of the halo (where the circular veloc-
ity reaches its maximum value). If this happens, most of
the stars will be lost from the dwarf into the IGM.
Assuming the cluster becomes unbound and evolves

quasi-adiabatically, and integrating drh/dt = �⇤(rh), ob-
tained from dimensional analysis, we get

rh(t)

ric
h

=

✓
t

tdyn

◆1/2

(9)

where tdyn ⌘ ric
h
/�ic

⇤ ⇠ 0.1 Myr. Comparing rh(t) in
Equation (9) as a function of time with the evolutionary
tracks in the left panel of Fig. 10 we find good agreement
between our toy model and the simulated clusters.

4.1. Comparison to Present-day Compact Clusters and
Nearby Dwarf Galaxies

In Figure 11 we show a comparison between the prop-
erties of luminous objects in our REF simulation (blue
circles) in comparison to Milky Way globular clusters
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Compact cluster

Dark matter dominated 
Ultra-faint dwarf

Toy model following Hills 1980:

Expansion stops when  
grav. potential is dominated  
by the dark matter halo:
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Compact clusters and Ultra-faint dwarfs

Globular 
Cluster/UCD

Ultra-faint 
dwarf 

(dark matter dominated)

if remains bound 
after formation

if becomes unbound 
or M*<104 Msun



Comparison to Nearby Dwarfs and MW GCs



Proto-GCs as 
nuclear star 

clusters in atomic 
cooling halos

threshold ( ⩾T 10 Kvir
4 ). After such time, we no longer

consider a GC as the outcome of a major minihalo merger.
Furthermore, we define the minimum mass ratio between
progenitor halos as >M M 1 42 1 .

Finally, we save IDs for all particles involved in GC
formation to track halo membership, check for subsequent
mergers, and characterize their spatial distribution at z = 0
through ID re-mapping into the lower-resolution run.

Our simplified gas treatment from DM-only simulations
ignores the relative velocity difference between baryons and
cold dark matter imprinted at recombination time, which can
significantly impact formation of high-z halos with

1 1T10 K 10 K3
vir

4 , suppressing the halo mass function
(Tseliakhovich & Hirata 2010; Naoz et al. 2011) and the gas
fraction (Naoz et al. 2013). Quantifying the impact of stream
velocity for GC formation is difficult without a hydrodynamic
simulation because of competing effects. Gas-rich minihalo

mergers require progenitors where Population III star formation
is suppressed. In our framework, this happens because of H2
photodissociation, but stream velocity works as well. In
addition, the halo bias would be higher (Tseliakhovich &
Hirata 2010), enhancing the merger probability. Overall, the
number of gas-rich minihalo mergers may be only moderately
suppressed, or possibly even enhanced, in contrast to the~50%
suppression of star formation inferred for the general popula-
tion of minihalos (Bovy & Dvorkin 2013). We expect our
estimate on the GC birth rate to be accurate within a factor two
or better compared to a full treatment of stream velocity.

3.1. Merger Rate and Age Probability Distribution

Figure 3 shows predictions for the GC formation rate in the
most massive simulated halo ( = ´ :M M4.9 10h

12 , selected
for best statistics). At >z 5.5 (universe age<1 Gyr), there are

Figure 2. Qualitative illustration of GC formation at high z through a minihalo–minihalo merger (Section 2).
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The Astrophysical Journal Letters, 808:L35 (7pp), 2015 August 1 Trenti, Padoan, & Jimenez

Michele Trenti , Paolo Padoan, 

and Raul Jimenez  2015

 zform = 9 ± 2
tform = (13 ± 0.2) Gyr



Proto-GCs from colliding 
substructures (satellites)

Figure 4. Frequency distribution of redshifts (top left panel), peak masses (top right panel), relative velocities (middle left panel), impact parameters (middle right
panel), impact angles (bottom left panel), and first pericenter distances (bottom right panel) for all unbound interpenetrating collisions between atomic-cooling
subhalos in the Via Lactea simulation (see text for details). The top right panel shows the peak mass frequency histograms for both the lighter (dashed line) and heavier
(solid line) members of all colliding pairs, while the bottom right panel depics the first pericenter distance for all colliding subhalos that reach pericenter before
disruption. The dashed histogram in the left top panel delineates the redshifts of formation for a sample of Milky Way GCs. The age determinations by VandenBerg
et al. (2013), Sarajedini et al. (2007), Dotter et al. (2010), Valcheva et al. (2015), and Weisz et al. (2016) have been converted to redshift using a Planck Collaboration
et al. (2018) cosmology. The distribution is poorly known at z4 as the typical uncertainty on the absolute age of GCs exceeds 1–1.5 Gyr.
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Piero Madau, A. Lupi J. Diemand, A. Burkert, and D. N. C. Lin 2020
(ii) The GC system–DM connection: an analysis of the

scaling behavior of the encounter frequency within the kinetic
theory approximation points to a GC number–halo mass
relation that is the result of both encounter probability
calculations—the subhalo collision rate per unit volume being
the usual density2×cross section×velocity factor—and of
hierarchical assembly—globular clusters being brought in by
the accretion of smaller satellites. With the addition of ex situ
globular clusters, the scaling of the total number of GCs with
host virial mass is very close to linear, µN MGC vir

0.98, in
agreement with the trend observed over five orders of
magnitude in galaxy mass. This uniform GC production rate
per unit host halo mass is predicted to break down on dwarf
galaxy scales, perhaps below a critical mass of ∼109.6 :M .

(iii) The ages of GCs: our model differs from much previous
work as it does not assume an arbitrary value for the redshift
when metal-poor GC formation is shut off. The details of the
redshift distribution in top left panel of Figure 4 reflect the mass
assembly history of the simulated MW-sized host system, but it
is again noteworthy that a scenario in which GCs are the result
of colliding substructures would produce a population of old
clusters with typical ages > 10 Gyr, a median age of 12 Gyr
(corresponding in the adopted cosmology to a median redshift
of 3.5), and an age spread that is similar to the one observed. In
contrast to many pregalactic scenarios (e.g., Katz &
Ricotti 2013; Kimm et al. 2016; Boylan-Kolchin 2017), in
our model GCs have extended formation histories and typically
form after the epoch of reionization: only about 38% of all
close encounters occur at redshifts greater than 4. Seven
collision events in our sample take place at z< 2. Four of these
“late” impacts have relative velocities in excess of 350 -km s 1,
a situation that may not be conducive to the cooling and
fragmention of the splash remnant (see Section 3.1). The others
may give origin to a population of young metal-poor globular
clusters like Crater (Weisz et al. 2016). The dotted–dashed
histogram on the same panel shows the relative frequency
histogram of the redshift of formation for 55 MW GCs with
Hubble Space Telescope photometry (VandenBerg et al. 2013),
augmented by the age determinations for the young globular
clusters Crater, Pal 1, Terzan 7, and Whiting 1 (Sarajedini et al.
2007; Dotter et al. 2010; Valcheva et al. 2015; Weisz et al. 2016).

The distribution is poorly known at z> 4 as the typical
uncertainty on the absolute age of GCs exceeds 1–1.5 Gyr.
(iv) The metallicity of GCs: the GC population in the MW is

observed to be clearly bimodal, with a low-metallicity
component peaking at [Fe/H];−1.55, and a high-metallicity
tail at ;−0.55 (Harris et al. 2016). Only 30% of MW
globular cluster have [Fe/H]> −1, but many massive galaxies
possess strongly bimodal GC systems, with nearly equal
numbers of metal-rich and metal-poor clusters (Peng et al.
2006). Since stars within most GCs do not show an internal
spread in iron-peak elements, there must exist a mechanism that
chemically homogenizes the gas within a protocluster before
the onset of star formation. The dominant mode of chemical
mixing is thought to be turbulent diffusion (Murray &
Lin 1990), which has been shown to produce a stellar
abundance scatter that is much smaller than that of the star-
forming gas (Feng & Krumholz 2014). In our model, GCs will
inherit the gas-phase metallicity of the interacting subhalo pair
that triggers their formation, and a useful perspective can be
obtained by assigning a stellar mass to each subhalo at infall
following the median stellar-to-halo mass relation from
Behroozi et al. (2013). This redshift-dependent prescription,
extrapolated to the small scales of interest here, leads to a broad
range of stellar masses, 102.6< m*/ :M < 108.6 for our
sample of colliding substructures, a distribution that extends
over nearly 6 decades in mass with a median value equal to
104.4 :M (see Figure 5).
A general tendency of decreasing metallicity toward lower

stellar masses is commonly accepted, but the exact form of the
stellar mass (m*) versus gas-phase metallicity (Z) relation
(hereafter MZR) and its evolution with redshift are currently
poorly known as a result of the presence of strong systematic
uncertainties affecting metallicity diagnostics. A few studies,
mostly at z∼0, have tried to extend the MZR to the low-mass
dwarf galaxy regime, deriving power-law relations ( µ aZ m* )
with slopes α= 0.29± 0.03 (Berg et al. 2012), ;0.5
(Andrews & Martini 2013), 0.44± 0.1 (Jimmy et al. 2015,
high star formation rate bin), and 0.14± 0.08 (Blanc et al.
2019). Here, we adopt the intermediate-range value of
α= 0.37 (Blanc et al. 2019; Ma et al. 2015) with Y-intercept

Figure 5. Stellar mass (left panel) and gas-phase mean metallicity distribution (right panel) in our sample of colliding subhalo pairs (see text for details). The dashed
histogram shows the observed distribution of stellar metallicities in Galactic globular clusters.
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Sites of clusters 
formation:

Globular clusters

UCD or nuclear  
star cluster

Satellite minihalos: 
Globular clusters?

Ricotti, Parry & Gnedin 2016



Ultra-faint dwarfs and GCs today clearly look very 
different, but the origin (of a fraction of them) may 
have been similar: 

1. Stars in ultra-faint 
dwarfs traced back to 
few dense clusters? 

2. Hard to distinguish 
between UCDs nuclei 
and GCs based on 
morphology without 
detailed metallicity DFs.

Ricotti, Parry & Gnedin 2016



• GC progenitors can be dominant sources for 
reionization (see Ricotti 2002, Schraerer & Charbonnel 2011, 
Katz & Ricotti 2013,2014, Hartley & Ricotti 2016, Boylan-Kolchin 
2018) 

What are the implications of star formation in 
compact star clusters on reionization?
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see Ricotti 2002



Nearby dwarfs with GC systems as seen 
by JWST and HST if their GCs formed at 

redshifts z=1 to 8
z=8 candidate for comparison (Bouwens et al. 2011)

Katz & Ricotti (2013)



Constrain how many GCs can form at any 
given redshift using LF and colors in HDF

3258 H. Katz and M. Ricotti

Figure 5. The top and the bottom panels are analogous to the ones in Fig. 4 but for systems of proto-GCs allowed to form in haloes with virial temperature
Tvir > 5 × 104 K. The long dashed lines show the difference between the observed LFs and the proto-GCs LFs.

ages of Milky Way GCs from Forbes & Bridges (2010). The lines
in Fig. 6 (left-hand panel) correspond to different assumptions on
the minimum mass of the haloes in which proto-GC systems form:
Tvir > 5 × 104 K (dashed line); Tvir > 8 × 104 K (dotted line) and

Tvir > 1.5 × 105 K (solid line). The limits on the GCs formation
rate are independent of the assumed fiducial value for ρgc, while the
redshift distribution and cumulative redshift distribution of GC are
normalized to ρgc (that is somewhat uncertain as it depends on fdi).
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Fixed fraction of present day GCs forming at given z

Katz & Ricotti (2013)



Upper limits on GC  
formation rate and fraction  
of present day population

Upper limits on ionizing photons   
from forming GCs

Two formation
epochs

Needed to reionize (fesc~1)

Katz & Ricotti (2013)



High-z luminosity functions
Globular clusters and high-z luminosity functions 335

Figure 3. The intrinsic luminosity function of globular clusters (grey-scale, with line colours identical to those in the left-hand panel of Fig. 1) during their
epoch of formation. The plot assumes birth masses are equal to present-day masses (ξ = 1) and formation uniformly distributed in time over a period of
"t = 1 Gyr, approximately the time from z = 10 to z= 4. Also plotted are observed UV LFs (coloured lines) from z = 10 (dark purple) to z = 4 (light orange)
as compiled in Finkelstein (2016). Horizontal arrows indicate the effects of assuming ξ = 10 (dark grey) or 100 (black), while the vertical arrow shows the
shift in the globular cluster luminosity function if the formation period is 250 Myr. This would also be the shift required if fsurv = 0.25 as opposed to 1.

bution for very bright magnitudes (because GCs have a maximum
initial stellar mass) and very faint magnitudes (because the observed
high-z UVLFs have very steep faint-end slopes) at most redshifts.

The inferred contribution of GCs to the global UVLF changes
dramatically if we consider alternate scenarios, however, the birth
masses of GCs (ξ ), GC disruption (fsurv), and the duration of the GC
formation epoch ("t) all have significant effects on the contribution
of GCs to the global UVLF. The horizontal location of the GC UVLF
depends on ξ , while its normalization is proportional to (fsurv "t)−1.
These effects are noted with arrows in Fig. 3 and indicate that
ξ = 100 is extremely difficult to reconcile with observed luminosity
functions.

Having established the unobscured GC UVLF, the obvious next
question is: Do GCs contribute significantly to the global UVLF
at high redshifts? To address this question, I need to convert from
intrinsic to observed UV fluxes, i.e. to account only for UV (rest-
frame 1500 Å) radiation that escapes the GC. A related quantity –
the fraction of ionizing radiation that escapes the galaxy, fesc – is
perhaps the most fraught aspect of reionization modelling. Many
global models of reionization assume a constant escape fraction of
fesc ≈ 0.1–0.2 (e.g. Robertson et al. 2013; Finkelstein et al. 2015;
Ishigaki et al. 2017). No such consensus exists in simulations, with
results ranging from fairly high to virtually negligible values of
fesc (e.g. Wise et al. 2014; Ma et al. 2015; Paardekooper, Khochfar
& Dalla Vecchia 2015; Gnedin 2016; Xu et al. 2016; Anderson
et al. 2017; Howard et al. 2017; Kimm et al. 2017; Trebitsch et al.
2017; Zackrisson et al. 2017). However, the escape fraction of UV
radiation (hereafter f1500) will certainly be higher than fesc, the escape
fraction of hydrogen-ionizing radiation.

Observations of young massive clusters reveal that they are
gas-free within ∼5–10 Myr of their birth (Bastian, Hollyhead &
Cabrera-Ziri 2014; Hollyhead et al. 2015), indicating that a combi-
nation of stellar winds, radiation pressure, and type II supernovae
is highly efficient at completely removing gas from nascent GCs.

It is therefore likely that fesc for GCs depends on the time rela-
tive to tgas-free, where tgas-free= 10 Myr is the assumed timescale for
the evacuation gas from a newly-formed GC; this value is a con-
servative upper limit. Furthermore, the distribution of GCs within
their host haloes is significantly more extended than the size of the
central galaxy (Forbes 2017; Hudson & Robison 2017), indicating
that GCs typically form in regions that, while locally very dense,
are globally embedded in a relatively tenuous medium from which
photons can easily escape.

I will therefore consider two possibilities: f1500 = 1 at all times,
or f1500(t < tgas-free) = 0 and f1500(t > tgas-free) = 1 (corresponding to
no 1500 Å UV escape prior to gas evacuation and full escape after-
ward). Lower values of f1500 can be modelled by shifting M1500 →
M1500 − 2.5 log10(f1500). I consider both ξ = 1 and 10 for each f1500

scenario. While the f1500 = 0 scenario is unrealistic, it provides a
firm lower limit and therefore serves a useful role in demonstrating
the lowest possible contribution of GCs to UVLFs.

Fig. 4 compares the GC UVLFs computed using these parameters
to the same galaxy UVLFs from Fig. 3. Black curves assume ξ = 10
and grey curves assume ξ = 1; solid and dashed lines correspond
to f1500(t < tgas-free) = 1 and 0, respectively. The models with ξ = 1
fall below observations, while both models with ξ = 10 exceed
observed UVLFs at magnitudes accessible to HST in blank fields
(M1500 !−17; McLure et al. 2013; Schenker et al. 2013). However,
I continue to consider these models with ξ = 10 for a number of
reasons. First, f1500 and ξ can be combined into a single parameter,
ξeff ≡ξ f1500; this is the quantity that is constrained by observations
and the grey (black) lines in Fig. 4 are best thought of as lines with
ξ eff = 1 (10). Second, ξ " 10 is routinely invoked as a necessity in
literature models of light element anticorrelations in GCs. Finally,
high values of ξ provide a firm upper limit to the number of GCs
that should be detectable in the high-redshift Universe. In both cases
(ξ = 1 and 10), the faint-end slope of the GC UVLF is very similar
to the z= 4 UVLF (α ≈ −1.7). A clear prediction, independent of ξ ,

MNRAS 479, 332–340 (2018)
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Joint Modeling of GC systems 
in Milky Way and nearby dwarfs
We have developed a model 

which attempts to recreate 
the Milky Way’s system of 
old GCs

Utilizing the Via Lactea II 
simulation halo catalog, we 
distribute GCs to the dwarf 
halos and model the 
dynamical effects and stellar 
of evolution GCs as we 
numerically integrate their 
orbits.

We determine when they are 
accreted, where they end 
up, if they are destroyed as 
well as many other 
interesting phenomena
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Joint Modeling of GC systems 
in Milky Way and nearby dwarfs
• Via Lactea II merger tree 

• Populate dark matter halos 
with GCs to reproduce 
observations of nearby 
dwarfs (Georgiev et al 2010) 

• Follow orbits of accreted 
GCs from satellites including 
dynamical processes 

• In situ GCs formation of 
higher metallicity GCs

• Georgiev et al 2010



Two epochs of formation as in 
Katz & Ricotti 2013 reproduce 
best radial distribution of GCs 
and metallicity distribution

Observed Galactocentric  
distribution of GCs 

 in Milky Way

Katz & Ricotti 2014

…results of modeling also favor the 
existence of a pre-reionization population 

formed in the first galaxies



2388 H. Katz and M. Ricotti

Figure 11. Metallicities of GCs in our simulations (thin line) are compared to what is observed for the Milky Way (thick line). The GCs which formed in situ
are shown in blue and the GCs which were accreted are shown in red. ∼30 per cent (∼60 per cent) of Milky Way GCs have [Fe/H] > −1 (−1.5).

bution of the Milky Way’s GCs. Our simplistic model is used to
demonstrate that the bimodal metallicity distribution of the Milky
Way can be, in principle reproduced from a hierarchical merging
scenario for the assumptions we have made on the intrinsic metallic-
ity distribution. We refer the reader to Tonini (2013) where a much
more in depth treatment of GC metallicities is presented within the
context of the assembly of a large galaxy; however, the basic idea of
an ‘assembly scenario’ is along the lines of the methodology used
in this work which has been shown to reproduce the bimodal prop-
erties of large galaxies. Tonini (2013) conclude that the distribution
of the metallicities is dependent on the assembly and star formation
history of the host galaxy. It is unlikely that the assembly history of
the main halo in the Via Lactea simulation exactly mimics that of
the Milky Way. The present calculation is used to demonstrate that
a bimodal population can be reproduced in our present framework
and that it is likely also sensitive to the masses of the haloes which
contribute GCs since the metallicity of the stars in a halo is partially
dependent on the mass of the halo.

It is clear that this model produces significantly fewer low metal-
licity GCs than expected and it is unlikely that those GCs formed
in situ can account for the deficit at low metallicities. While we
have successfully reproduced the radial distribution of GCs as well
as multiple other characteristics of the Milky Way GC population,
this model fails to reproduce the metallicity distribution seen in the
Milky Way which has a surviving population likely dominated by
very old accreted GCs.

Since we have a two peaked model for the formation efficien-
cies, one might expect that the age distribution of the GCs in our
simulation also shows this bimodal characteristic. In the top panel
of Fig. 12, we plot a histogram of the ages of the GCs in our simu-
lation (solid line) and compare to those known for the Milky Way
GC population (dashed line). The ages of most Milky Way GCs are
only known to a precision of ±1 Gyr (but see Katz & Ricotti 2013)
and any underlying bimodality in the age distribution is smoothed
out by these large uncertainties. Furthermore, our model assumes
that all GCs in an individual galaxy form synchronized in an instan-
taneous burst, neglecting any intrinsic age spread. This simplifying

Figure 12. Formation epoch of GCs versus the circular velocity of the host
halo for the KR13 model. The radius of the circle is proportional to the
logarithm of the number of surviving GCs each halo contributed to the final
population of the main halo. The top panel is a histogram of the ages of the
GCs in the simulation (dashed line) compared to the ages of 93 of the Milky
Way GCs (solid line) compiled by Forbes & Bridges (2010). The right-hand
panel is a histogram of the number of haloes of a given VC which contributed
surviving GCs. The large bubble at the top left represents the main halo in
the simulation.

assumption is reasonably realistic for dwarf galaxies (because of
their short dynamical time-scale) but is likely less realistic for GCs
formed in situ in the Milky Way.

In order to test whether the ages of GCs in our simulations agree
with those of the Milky Way GC population, we convolve the ages of
GCs in our simulation with a Gaussian distribution with a standard
deviation of 1 Gyr. Fig. 13 compares the results with the observed
ages of GCs in the Milky Way. We can see that simulated GCs from
the KR13 model is not double peaked and appears as a continuous
formation scenario consistent with what is seen for the 93 Milky
Way GCs with age estimates (Forbes & Bridges 2010). There is still
an overabundance of GCs forming at the time of virialization of the
Milky Way, but as mentioned before, one should convolve the GCs

MNRAS 444, 2377–2395 (2014)
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Origin of globular clusters in Milky Way          
(best model)

From dwarfs (before reionisation)
30%

From dwarfs (after reionisation)
30%

Formed in Milky Way
40%

Formed in Milky Way
From dwarfs (after reionisation)
From dwarfs (before reionisation)
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What is the ionizing escape fraction from proto-GCs? 

He, Ricotti & Geen 2019 
He, Ricotti & Geen 2020

Chongchong He 
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4 C.-C. He, M. Ricotti, S. Geen

Table 1. Initial conditions of our 16 simulations.

M/M� d 1.0 ⇥ 103 3.2 ⇥ 103 1.0 ⇥ 104 3.2 ⇥ 104 1.0 ⇥ 105 3.2 ⇥ 105

Cloud Name d XS-F S-F M-F L-F XL-F
nca = 9.4 ⇥ 102 cm�3 rini/pc e 5 7 11 16 23

�xmin/AU f 500 730 1100 1600 2300
t�

b = 4.4 Myr nsink/cm�3 g 1.2 ⇥ 107 5.6 ⇥ 106 2.6 ⇥ 106 1.2 ⇥ 106 5.6 ⇥ 105

lmaxc = 15 MJ/M� h 0.3 0.4 0.6 0.9 1.3
M i 4.6 6.8 10 15 22

tcr / Myr j 0.59 0.87 1.3 1.9 2.8
Z/Z� k 1 1 1 1 1

Cloud Name XS-C S-C M-C L-C, L-C-lm, L-C-xlm l

nc = 9.4 ⇥ 103 cm�3 rini/pc 2.3 3.4 5.0 7.3
�xmin/AU 460 680 1000 1500

t� = 1.4 Myr nsink/cm�3 1.4 ⇥ 107 6.5 ⇥ 106 3.0 ⇥ 106 1.4 ⇥ 106

lmax = 14 MJ/M� 0.3 0.4 0.6 0.8
M 6.8 10 15 22

tcr/Myr 0.28 0.41 0.59 0.87
Z/Z� 1 1 1 1, 1/10, 1/40

Cloud Name XXS-VC XS-VC S-VC M-VC L-VC
nc = 9.4 ⇥ 104 cm�3 rini/pc 0.7 1.1 1.6 2.3 3.4

�xmin/AU 150 220 320 460 680
t� = 0.44 Myr nsink/cm�3 1.4 ⇥ 108 6.5 ⇥ 107 3.0 ⇥ 107 1.4 ⇥ 107 6.5 ⇥ 106

lmax = 14 MJ/M� 0.08 0.12 0.17 0.26 0.37
M 7 10 15 22 32

tcr/Myr 0.087 0.13 0.19 0.28 0.41
Z/Z� 1 1 1 1 1

(a) Core density of the cloud, which is ⇠9 times the mean density of the cloud including the envelope. (b) The global free-fall time of
the cloud (t� = 3

q
3⇡

32G⇢c
⇡
q

3⇡
32G⇢ ). (c) Maximum level of refinement. (d) The name of each cloud used throughout the paper. See

Sec. 2.1 on how they are defined. (d) Initial cloud mass, including the envelope. The mass of the envelope is ⇠ 78% of the total mass.
(e) Initial cloud radius, excluding the envelope. (f) Maximum spatial resolution. (g) Density threshold for sink formation. (h) Jeans mass
at the sink density threshold. (i) Turbulence Mach number. (j) Sound crossing time rini/cs for cs = 10 km/s. (k) Metallicity of the gas
that decides the cooling function, Z=[Fe/H], in units of solar metallicity. (k) This setup has 2 extra simulations with lower metallicities
besides one with same metallicity as all other ones. See Sec. 3.4.

refinement level, our requirement of resolving the Jeans length
with at least Nref cells can be violated. We therefore set ⇢sink =
⇢J(�x = �xmin, N = Nsink) as critical density threshold to form
sink particles. Sink particles are created on the fly using a peak
detection algorithm (see Bleuler & Teyssier 2014, for details
on sink particle formation in RAMSES). We first detect density
clumps above a density threshold fc⇢sink, with fc = 0.1. Then,
the algorithm performs a peak density check, a collapsing check
(r · v = 0), and virial check before forming a sink particle.

In order to avoid numerical fragmentation it is usually sug-
gested that Nsink > 4 (Truelove et al. 1997). In our simulations
we adopt Nsink = 5 for reasons detailed Appendix A. With an
initial sound speed cs = 0.25 km/s the Jeans mass at the sink
density threshold is

MJ =
4⇡
3
⇢J

✓
�J
2

◆3
= 0.58M�

✓
�xmin

1000 AU

◆
, (4)

which results in MJ ⇠ 0.08M�–0.8M� for the compact and very
compact clouds and ⇠ 0.3M�–1.3M� for the fiducial clouds.

The sink particles are then treated like point masses and
accrete gas based on the mechanism described as ‘threshold ac-
cretion’ in Bleuler & Teyssier (2014). The dynamics of the sink
particles takes into account gravitational force from gas and stars
and it is evolved using a leap-frog integration scheme. The e�ect
of gas dynamical friction is not included.

2.3 Feedback and Properties of UV source

In our simulations, ionising UV photons are emitted from sink
particles from the time they form to the end of the simulation.
Massive stars have lifetime of few Myrs, shorter than the duration
of some of our simulations, and they may explode as supernovae
(SNe) during the simulation. Since we are not implementing SNe
feedback, we keep the stars emitting radiation after their death
to compensate for the lack of SNe in the attempt of avoiding
underestimating feedback e�ects.

While SN explosions produce a significant amount of me-
chanical energy (typically 1052 egs), the energy associated with

ionising radiation from massive stars integrated through their
main-sequence lifetime is comparable and this feedback starts
acting earlier than SN feedback. For an O-star, more than half
of the radiation is emitted in hydrogen ionising photons. Stars
typically contain⇠ 10% burnable hydrogen which have a energy-
conversion e�ciency of ⇠ 0.7% (nuclear fusion). Thus the
amount of energy radiated away during the life time of a massive
star is ⇠ 10�3M⇤, or ⇠ 2 ⇥ 1052 ergs for a 10 M� star.

For each simulation we estimate the total hydrogen-ionising
photon emission rate at a given time as Scl(mcl) = 8.96 ⇥
1046 s�1 (mcl/M�) (see Geen et al. 2017), where mcl is the total
mass of the sink particles. This is calculated by Monte Carlo
sampling a stellar population as described in Geen et al. (2016).
add See Sec. appendix

The fraction of the total hydrogen ionising photon emission
rate attributed to each sink particle is based on the following
relation

q(mi) = V(0.3mi)
✓

Scl(⌃imi)
⌃iV(0.3mi)

◆
, (5)

where V(m) is the hydrogen-ionising photon emission rate from
a star with mass m, using the fits from Vacca et al. (1996). The
justification for the 0.3 factor will be explained in Sec 3.1, but
it is basically and empirical factor to account for the scaling
between the masses of sink particles and those of massive stars1.
The correction factor X ⌘ Scl(⌃imi)/⌃iV(0.3mi) is very close to
unity in most simulation in which we resolve massive stars and
it is introduced only to prevent overproducing ionising radiation
in case massive stars are poorly resolved. In all simulations we
also impose X 6 1.

For the fiducial clouds we also include He0 and He+ ion-
ising photons with total emission rates being SHe0 = (1.178 ⇥
1046 s�1)(M⇤/M�) and SHe+ = (2.422 ⇥ 1043 s�1)(M⇤/M�).
They are calculated using similar method as above but using

1 This factor is necessary because the resolution of our simulations is
insu�cient to fully resolve the fragmentation of sink particles into proto-
stars.

MNRAS 000, 1–?? (2018)
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• MHD+RT simulations with ~100 to 
1000 AU resolution 

• Turbulent MCs with range of cloud 
masses and densities (virial ratio 
0.4) 

• Resolve formation of massive stars 
and self-consistently include UV 
radiation feedback (no SN 
explosions) 

• Empirical presecription: mass of 
massive stars ~1/3 of sink 
particles mass 
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Star clusters across cosmic time 1893

Figure 10. Top : Stellar mass of the cluster mcl as a function of the initial
mass of the gas cloud (mgas) for the set of simulations with different
initial cloud densities (see legend). The grey dot–dashed line is plotted
as a reference for 100 per cent SFE. Excluding the three fiducial cloud
simulations with the lower masses, we observe a clear power-law relation
between mcl and mgas. We speculate that the minimum cluster mass floor
observed for the fiducial clouds data points is due to inefficiency UV stellar
feedback due to lack of realistic implementation of low-mass stars feedback
in our simulations. Indeed, the simulations by Jones & Bate (2018), shown
as magenta stars, are in excellent agreement with the extrapolation of out
power-law fits as shown by the brown diamonds, assuming equations (8)
and (9) fits with mf = 10 M⊙ (see the brown dashed line for our fit to the
smallest density of the three Jones18 data points). Bottom: Same as the top
panel but showing the total SFE (TSFE), i.e. the SFE once star formation
ends and the cloud is dispersed. The solid horizontal line at f∗ = 15 per cent
roughly separates clouds that form GC progenitors from open star clusters.

radiation feedback or protostellar jets feedback should be included
in the simulation. In all the other simulations UV feedback by
massive stars is likely the dominant feedback at play; therefore,
these simulations incorporate the relevant physics for the formation
of realistic star clusters.

3.3 Star formation law in molecular clouds

Next, we ask the question of what is the physical interpretation of
the empirical relationship we derived for the SFE as a function of
cloud mass and compactness. To answer this question, we first fit
the SFE f∗(τ ) with an analytic function, where τ ≡ t/tff, in order
to minimize the stochastic noise of the simulations. The f∗(τ ) has a

shape that can be fit by an arctan function or the Fermi function:

fF(τ ) = f0

e− (τ− τ0)/"τ + 1
. (10)

Both fits give similar results for the purpose of interpreting f∗(τ ).
In Fig. 11, we show the fit to f∗(τ ) using the Fermi function fF

(orange solid curves) and its time derivative (blue curves), or the
dimensionless SFR per free-fall time, SFRff ≡ df∗/dτ ≈ dfF/dτ .
The fits are a good approximations to the data points from the
simulations (solid points), except for a few clouds where f∗(τ ) has
a pit near the end of the star formation process.

The value of the peak of SFRff has a weak dependence on the
cloud mass (see the top panel in Fig. 12) and a stronger dependence
on the cloud mean density. We fit the SFRff|max with a power law
similar to equation (9):

SFRff |max ≈ 1.1 per cent
(

mgas

104M⊙

)0.36 (
1 + ngas

ncri

)αf

, (11)

where αf ≈ 1.0 and n cri is the same critical density as in equation (8).2

The duration of the star formation burst in units of tff, "τ SF, is
proportional to the width of the SFRff shown as the blue lines in
Fig. 11. The function dfF/dτ has a peak value f0/4"τ and a full-width
half-maximum 3.526"τ . We define "τ SF ≡ 4"τ so that

f∗,tot ≈ f0 = dfF

dτ
|max × "τSF. (12)

Inspecting Fig. 11 we see that "τ SF increases with the cloud mass
and appears to be proportional to the dimensionless sound crossing
time of the cloud. Here, we define the sound crossing time, tcr, as
the ratio of the time it takes for a sound wave with cs = 10 km s− 1

to cross the cloud radius. Similarly to the dimensionless "τ SF, we
define τ cr ≡ tcr/tff, where the free-fall time is defined at the cloud’s
mean density. We find that "τ SF/τ cr = "tSF/tcr ≈ 6 (the horizontal
line in the bottom panel of Fig. 12). This results makes physical
sense because the feedback mechanism stops star formation by
creating overpressured H II regions that require a constant number
of crossing times to expel the gas.

Since tcr ∝ rgas ∝ (mgas/n)1/3, we have "τSF ∝ tcr/tff ∝
m1/3

gas n
1/6. From equation (12), we derive f∗,tot ∝ m 0.69

gas n 0.17
gas (1 +

ngas/ncri)1.0, which is in good agreement with equation (9) for
n > ncri. The agreement can be improved further by considering
a more accurate fit to τ SF/τ cr rather than assuming a constant value
∼6. Namely, considering the weak dependence of the star formation
time-scale on the cloud mass and density: "τSF/τcr ∝ m − 0.3

gas n − 0.2
gas .

From the analysis and interpretation of these results, we can thus
derive a star formation law in molecular clouds that can be used
as a more accurate sub-grid recipe in cosmological simulations
that resolve the molecular cloud phase. Assuming a constant mean
volume for the cloud we have f∗ ≡ m∗/mgas ≈ ρ∗/ρgas. Therefore,
assuming ρgas = const (i.e. assuming f∗ ≪ 1) during the episode
of star formation, which has a duration "tSF, we have SFRff|max ≡
df∗/dτ |max ≈ dρ∗/dt|max(tff/ρgas), which implies

dρ∗

dt
= ϵ

(
mgas

104M⊙

)0.36 (
1 +

ρgas

ρcri

)1.0 ρgas

tff
∝ (ρgas)

2.5,

if ngas > ncri ≈ 103 cm− 3 (13)

2The value of αf is somewhat correlated with n cri. We sample a sequence
of n cri for which we obtain a good fit and find that for n cri in the range
∼400–1600 cm− 3, the corresponding αf is in the range of 0.85− 1.1.
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limit below ∼1000 M⊙ (the maximum sink mass in all simulations).
Since our simulations have the same initial turbulence field and
we have only one random realization for each set of parameters
(mass, and density of the cloud), we are not able to address the
question of whether the maximum stellar mass in a cluster is
determined by physical (Kroupa & Weidner 2003) or statistical
effects (e.g. Fumagalli, da Silva & Krumholz 2011). In addition,
we use an empirical relationship between sinks mass and massive
stars, rather than resolving the fragmentation of sinks into massive
stars using a physical model. This also prevents us from drawing
robust conclusions about this open question.

3.2 Star formation efficiency

We define SFE (SFE, or f∗) in our simulated clouds as the fraction of
the initial gas mass that is converted into sink particles. Fig. 9 shows
the SFE as a function of time in units of the free-fall time tff (shown
at the top-right of each panel), for the simulations in Table 2. The top
panel refers to the fiducial clouds, the middle panel to the compact
clouds, and the bottom panel to the very compact clouds. Lines
in each panel refer to different cloud masses as explained by the
simulation IDs in the legend. The vertical lines mark the time of the
explosion of the first two SNe in the simulation, where the lifetimes
of stars are given by Schaller et al. (1992) fitting functions. As
discussed before we do not include mechanical feedback from SNe,
but star formation has already stopped or it is mostly terminated
before the explosion of the first SN in all simulation but XL-F, i.e.
the fiducial run with mass mgas = 3.2 × 105 M⊙.

When time is measured in units of the free-fall time, the shape of
the SFE curves are qualitatively similar: the SFE increases rapidly
with time and peaks at t ≈ 2–3tff. Generally, the total SFE at the
end of the simulations increases with increasing cloud mass and
with increasing cloud compactness. This is shown more clearly in
Fig. 10. The top panel in Fig. 10 shows the stellar mass of the
cluster mcl, as a function of the cloud gas mass for the three set of
simulations with different compactness (as shown in the legend).
The smaller open circle with the label Z = 1/40 Z⊙ shows a compact
cloud simulation but with lower gas metallicity (see Section 3.4).
The dot–dashed line shows SFE= 100 per cent, while the dashed
lines are fits to the simulation results with the following function:

mcl = 200 M⊙ ×
(

mgas

104 M⊙

)1.4 (
1 + ngas

ncri

)0.91

+ mfl , (8)

where n cri ≈ 103 cm−3 is the critical density and mfl is the mass
floor. The dashed lines show the fit assuming mfl = 0, while the
dotted line has mfl = 10 M⊙. Equation (8) is a good fit to the
points when excluding the three lowest mass simulations for the
fiducial run (shown as smaller sized open squares). The motivation
for excluding these three simulations from the fits is explained
below.

The open symbols show star cluster that become dynamically
unbound (i.e. open star clusters), while the solid symbols show star
cluster that at the end of the simulations, after most of the gas has
been used up for star formation or expelled, remain gravitationally
bound (i.e. GC progenitors).

The star symbols show the results of simulations by Jones & Bate
(2018) for clouds with mass mgas = 500 M⊙ and for mean densities
ngas = 3 × 102, 3 × 103, and 3 × 104 cm−3, from bottom to top,
respectively. These densities are slightly different from the mean
densities in our fiducial, compact and very compact simulations,
thus we show as diamonds the corresponding points obtained using
our fitting formula in equation (8) with mfl = 10 M⊙. These

Figure 9. Dimensionless SFE f∗ as a function of the dimensionless time
t/tff for all the simulations shown in Table 1. The top, middle, and bottom
panels show the fiducial, compact, and very compact clouds, respectively.
The black vertical lines indicate the time of the first two SN explosions,
if they exist, for each simulation, where the lifetimes of stars are given by
Schaller et al. (1992) fit. The duration of the star formation episode is roughly
proportional to the sound crossing time of the cloud (see Section 3.3).

simulations do not include feedback by massive stars being very
small mass clouds in which the most massive star that forms has is
< 10 M⊙. However, the resolution of these simulations is higher than
our simulations and, contrary to our simulations, feedback by IR
radiation is included. In addition, these simulation are run using an
SPH code. It is interesting to note that despite the different codes and
physics included, the results are consistent with the extrapolation of
our fitting formulae to low-mass clouds if we assume a minimum
mass floor for the star cluster mass of ∼10 M⊙.

The bottom panel in Fig. 10 is the same as the top panel but shows
the total SFE f∗ , tot ≡ mcl/mgas and the best fit:

f∗,tot = 2.0 per cent
(

mgas

104 M⊙

)0.4 (
1 + ngas

ncri

)0.91

. (9)
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limit below ∼1000 M⊙ (the maximum sink mass in all simulations).
Since our simulations have the same initial turbulence field and
we have only one random realization for each set of parameters
(mass, and density of the cloud), we are not able to address the
question of whether the maximum stellar mass in a cluster is
determined by physical (Kroupa & Weidner 2003) or statistical
effects (e.g. Fumagalli, da Silva & Krumholz 2011). In addition,
we use an empirical relationship between sinks mass and massive
stars, rather than resolving the fragmentation of sinks into massive
stars using a physical model. This also prevents us from drawing
robust conclusions about this open question.

3.2 Star formation efficiency

We define SFE (SFE, or f∗) in our simulated clouds as the fraction of
the initial gas mass that is converted into sink particles. Fig. 9 shows
the SFE as a function of time in units of the free-fall time tff (shown
at the top-right of each panel), for the simulations in Table 2. The top
panel refers to the fiducial clouds, the middle panel to the compact
clouds, and the bottom panel to the very compact clouds. Lines
in each panel refer to different cloud masses as explained by the
simulation IDs in the legend. The vertical lines mark the time of the
explosion of the first two SNe in the simulation, where the lifetimes
of stars are given by Schaller et al. (1992) fitting functions. As
discussed before we do not include mechanical feedback from SNe,
but star formation has already stopped or it is mostly terminated
before the explosion of the first SN in all simulation but XL-F, i.e.
the fiducial run with mass mgas = 3.2 × 105 M⊙.

When time is measured in units of the free-fall time, the shape of
the SFE curves are qualitatively similar: the SFE increases rapidly
with time and peaks at t ≈ 2–3tff. Generally, the total SFE at the
end of the simulations increases with increasing cloud mass and
with increasing cloud compactness. This is shown more clearly in
Fig. 10. The top panel in Fig. 10 shows the stellar mass of the
cluster mcl, as a function of the cloud gas mass for the three set of
simulations with different compactness (as shown in the legend).
The smaller open circle with the label Z = 1/40 Z⊙ shows a compact
cloud simulation but with lower gas metallicity (see Section 3.4).
The dot–dashed line shows SFE= 100 per cent, while the dashed
lines are fits to the simulation results with the following function:

mcl = 200 M⊙ ×
(

mgas

104 M⊙

)1.4 (
1 + ngas

ncri

)0.91

+ mfl , (8)

where n cri ≈ 103 cm−3 is the critical density and mfl is the mass
floor. The dashed lines show the fit assuming mfl = 0, while the
dotted line has mfl = 10 M⊙. Equation (8) is a good fit to the
points when excluding the three lowest mass simulations for the
fiducial run (shown as smaller sized open squares). The motivation
for excluding these three simulations from the fits is explained
below.

The open symbols show star cluster that become dynamically
unbound (i.e. open star clusters), while the solid symbols show star
cluster that at the end of the simulations, after most of the gas has
been used up for star formation or expelled, remain gravitationally
bound (i.e. GC progenitors).

The star symbols show the results of simulations by Jones & Bate
(2018) for clouds with mass mgas = 500 M⊙ and for mean densities
ngas = 3 × 102, 3 × 103, and 3 × 104 cm−3, from bottom to top,
respectively. These densities are slightly different from the mean
densities in our fiducial, compact and very compact simulations,
thus we show as diamonds the corresponding points obtained using
our fitting formula in equation (8) with mfl = 10 M⊙. These

Figure 9. Dimensionless SFE f∗ as a function of the dimensionless time
t/tff for all the simulations shown in Table 1. The top, middle, and bottom
panels show the fiducial, compact, and very compact clouds, respectively.
The black vertical lines indicate the time of the first two SN explosions,
if they exist, for each simulation, where the lifetimes of stars are given by
Schaller et al. (1992) fit. The duration of the star formation episode is roughly
proportional to the sound crossing time of the cloud (see Section 3.3).

simulations do not include feedback by massive stars being very
small mass clouds in which the most massive star that forms has is
< 10 M⊙. However, the resolution of these simulations is higher than
our simulations and, contrary to our simulations, feedback by IR
radiation is included. In addition, these simulation are run using an
SPH code. It is interesting to note that despite the different codes and
physics included, the results are consistent with the extrapolation of
our fitting formulae to low-mass clouds if we assume a minimum
mass floor for the star cluster mass of ∼10 M⊙.

The bottom panel in Fig. 10 is the same as the top panel but shows
the total SFE f∗ , tot ≡ mcl/mgas and the best fit:

f∗,tot = 2.0 per cent
(

mgas

104 M⊙

)0.4 (
1 + ngas

ncri

)0.91

. (9)
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Figure 10. Top : Stellar mass of the cluster mcl as a function of the initial
mass of the gas cloud (mgas) for the set of simulations with different
initial cloud densities (see legend). The grey dot–dashed line is plotted
as a reference for 100 per cent SFE. Excluding the three fiducial cloud
simulations with the lower masses, we observe a clear power-law relation
between mcl and mgas. We speculate that the minimum cluster mass floor
observed for the fiducial clouds data points is due to inefficiency UV stellar
feedback due to lack of realistic implementation of low-mass stars feedback
in our simulations. Indeed, the simulations by Jones & Bate (2018), shown
as magenta stars, are in excellent agreement with the extrapolation of out
power-law fits as shown by the brown diamonds, assuming equations (8)
and (9) fits with mf = 10 M⊙ (see the brown dashed line for our fit to the
smallest density of the three Jones18 data points). Bottom: Same as the top
panel but showing the total SFE (TSFE), i.e. the SFE once star formation
ends and the cloud is dispersed. The solid horizontal line at f∗ = 15 per cent
roughly separates clouds that form GC progenitors from open star clusters.

radiation feedback or protostellar jets feedback should be included
in the simulation. In all the other simulations UV feedback by
massive stars is likely the dominant feedback at play; therefore,
these simulations incorporate the relevant physics for the formation
of realistic star clusters.

3.3 Star formation law in molecular clouds

Next, we ask the question of what is the physical interpretation of
the empirical relationship we derived for the SFE as a function of
cloud mass and compactness. To answer this question, we first fit
the SFE f∗(τ ) with an analytic function, where τ ≡ t/tff, in order
to minimize the stochastic noise of the simulations. The f∗(τ ) has a

shape that can be fit by an arctan function or the Fermi function:

fF(τ ) = f0

e− (τ− τ0)/"τ + 1
. (10)

Both fits give similar results for the purpose of interpreting f∗(τ ).
In Fig. 11, we show the fit to f∗(τ ) using the Fermi function fF

(orange solid curves) and its time derivative (blue curves), or the
dimensionless SFR per free-fall time, SFRff ≡ df∗/dτ ≈ dfF/dτ .
The fits are a good approximations to the data points from the
simulations (solid points), except for a few clouds where f∗(τ ) has
a pit near the end of the star formation process.

The value of the peak of SFRff has a weak dependence on the
cloud mass (see the top panel in Fig. 12) and a stronger dependence
on the cloud mean density. We fit the SFRff|max with a power law
similar to equation (9):

SFRff |max ≈ 1.1 per cent
(

mgas

104M⊙

)0.36 (
1 + ngas

ncri

)αf

, (11)

where αf ≈ 1.0 and n cri is the same critical density as in equation (8).2

The duration of the star formation burst in units of tff, "τ SF, is
proportional to the width of the SFRff shown as the blue lines in
Fig. 11. The function dfF/dτ has a peak value f0/4"τ and a full-width
half-maximum 3.526"τ . We define "τ SF ≡ 4"τ so that

f∗,tot ≈ f0 = dfF

dτ
|max × "τSF. (12)

Inspecting Fig. 11 we see that "τ SF increases with the cloud mass
and appears to be proportional to the dimensionless sound crossing
time of the cloud. Here, we define the sound crossing time, tcr, as
the ratio of the time it takes for a sound wave with cs = 10 km s− 1

to cross the cloud radius. Similarly to the dimensionless "τ SF, we
define τ cr ≡ tcr/tff, where the free-fall time is defined at the cloud’s
mean density. We find that "τ SF/τ cr = "tSF/tcr ≈ 6 (the horizontal
line in the bottom panel of Fig. 12). This results makes physical
sense because the feedback mechanism stops star formation by
creating overpressured H II regions that require a constant number
of crossing times to expel the gas.

Since tcr ∝ rgas ∝ (mgas/n)1/3, we have "τSF ∝ tcr/tff ∝
m1/3

gas n
1/6. From equation (12), we derive f∗,tot ∝ m 0.69

gas n 0.17
gas (1 +

ngas/ncri)1.0, which is in good agreement with equation (9) for
n > ncri. The agreement can be improved further by considering
a more accurate fit to τ SF/τ cr rather than assuming a constant value
∼6. Namely, considering the weak dependence of the star formation
time-scale on the cloud mass and density: "τSF/τcr ∝ m − 0.3

gas n − 0.2
gas .

From the analysis and interpretation of these results, we can thus
derive a star formation law in molecular clouds that can be used
as a more accurate sub-grid recipe in cosmological simulations
that resolve the molecular cloud phase. Assuming a constant mean
volume for the cloud we have f∗ ≡ m∗/mgas ≈ ρ∗/ρgas. Therefore,
assuming ρgas = const (i.e. assuming f∗ ≪ 1) during the episode
of star formation, which has a duration "tSF, we have SFRff|max ≡
df∗/dτ |max ≈ dρ∗/dt|max(tff/ρgas), which implies

dρ∗

dt
= ϵ

(
mgas

104M⊙

)0.36 (
1 +

ρgas

ρcri

)1.0 ρgas

tff
∝ (ρgas)

2.5,

if ngas > ncri ≈ 103 cm− 3 (13)

2The value of αf is somewhat correlated with n cri. We sample a sequence
of n cri for which we obtain a good fit and find that for n cri in the range
∼400–1600 cm− 3, the corresponding αf is in the range of 0.85− 1.1.
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Figure 11. Ratio of tMS(Mmax) to the measured tuv. The tuv is measured as
the full width at half-maximum of the Q(t) curve.

Figure 12. Comparing model ⟨f MC
esc ⟩ (dashed lines) with ⟨f MC

esc ⟩ from
simulations (shapes). The models have tesc (top) or tin and tesc (bottom) as
parameters. Both models work equally well on the Compact and Very com-
pact clouds while only the latter model works well on the Fiducial clouds.
Bottom: The modelled ⟨f MC

esc ⟩ using pure cloud parameters; equations (14)
and (18) are used.

data with a one-parameter model by setting tin = 0 (hence ⟨f MC
esc ⟩ =

1 − 0.5tesc/tuv when tesc < tuv and 0.5tuv/tesc otherwise). The best-
fitting parameter in this model is tesc = 21tcr ≈ 3.5tSF, where we have
used tSF = 6tcr, found for simulations with gas at solar metallicity
(see Paper I). This model works well for the Very compact clouds
and slightly underestimates ⟨f MC

esc ⟩ for massive Compact clouds by
a factor of !2. It also overestimates ⟨f MC

esc ⟩ for the Fiducial clouds
where the lifetime of the most massive star (∼ 3 Myr) is shorter than

Figure 13. Conversion from the R parameter to ⟨f MC
esc ⟩ , following equa-

tion (15).

several free-fall times and UV radiation is shut down before the gas
is expelled, resulting in ⟨f MC

esc ⟩ below 10 per cent.
The bottom panel of Fig. 12 shows the two-parameter model in

equation (14). This model resolves the discrepancy between the
model-predicted ⟨f MC

esc ⟩ and the simulation results from the massive
fiducial clouds. This model, similar to the one-parameter model,
slightly underestimates ⟨f MC

esc ⟩ from the massive Compact clouds.
We believe that part of the discrepancy is due to second-order effects
from weighting ⟨f MC

esc ⟩ over the stellar spectra of different mass stars.
As shown in Table 2, ⟨f MC

esc ⟩ at the Lyman edge from these clouds,
being significantly smaller, is closer to the model predictions. For
this model the best-fitting parameters are tin = 0.5tcr ≈ 0.08tSF and
tesc = 18tcr ≈ 3tSF. In both models, we find that at the end of the
star formation episode (at t = tSF) the value of the escape fraction
is fesc(t= tSF) ∼ 30 per cent (see equation 12), and this value
keeps increasing approximately linearly as a function of time after
that.

Hence, if we define R ≡ tuv/tSF, using the best-fitting parameters
for the two-parameters model, we can rewrite equation (14) as

⟨f MC
esc ⟩ =

{
1 − 1.58

R if R > 3.1,

0.167 (R− 0.08)2

R if 0.08 ≤ R ≤ 3.1.
(15)

Equation (15) is shown in Fig. 13. Due to the non-linear term (R −
0.08)2/R, when R ! 1, ⟨f MC

esc ⟩ becomes very small and approaches
zero as R → 0.08. This is the limit when tuv = tin and all massive
stars have died by the time fesc(t) > 0. In this limit, our model
assumption fails and we need to consider longer lived (less massive)
stars. But for these cases we expect ⟨f MC

esc ⟩≪ 1 per cent. When R !
3 (or ⟨f MC

esc ⟩ < 50 per cent), ⟨f MC
esc ⟩ is roughly proportional to R:

⟨f MC
esc ⟩ ∼ 0.17R.
This equation can help us interpret the results on ⟨f MC

esc ⟩ for
simulations with gas at sub-solar metallicity. In Paper I, we found
that for gas metallicities <1/10 Z⊙, the duration of the star formation
in the cloud was reduced by roughly 1/2 (i.e. tSF = 3tcr). Hence, for
a given molecular cloud mass and compactness, we expect that R
is roughly twice the value found for solar metallicity, and ⟨f MC

esc ⟩ is
also roughly twice as large if ⟨f MC

esc ⟩ < 50 per cent. We also note that
lowering the metallicity reduces the SFE of the cloud, hence for a
given molecular cloud mass, the mass of the star cluster is reduced
and ⟨f MC

esc ⟩ increases with respect to the solar metallicity case. The
overall effect is a strong sensitivity of ⟨f MC

esc ⟩ on the gas metallicity
for two clusters of equal stellar mass.

Using the results in Paper I for a cloud at solar metallicity
we can write R as a function of the cloud’s parameters. For star
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Summary
• Formation of compact star cluster is dominant mode of star 

formation in high-redshift dwarf galaxies. 

• It’s important for a number of reasons: 

1. Can be dominant sources of reionization. May be 
necessary to have escape fractions from MC >10%.  

2. Channel to produce seed SMBHs. 

3. Useful constraints from Near Field Cosmology (# of 
ultra-faint dwarfs and globular clusters) and nearby 
dwarfs. 
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“Extra Slides” 



If the “formation of compact star clusters” was 
indeed the dominant mode star formation in the first  

galaxies: 
• Interesting implications for the origin of GCs and 

UFDs observed around the Milky Way and 
Andromeda 

• Reionization of the IGM can be achieved with 
fesc~4% 

Can this idea be tested observationally?



Other implications: HST and JWST 
observations at high redshift

Bursty SF

Continuous SF

For a given halo mass: 
more luminous galaxy

For a given luminosity: 
smaller mass halos

Hartley & Ricotti 2016



Similar to X-ray ionization: 
due to relic HII regions

fixed fesc=12.5%



Escape fraction of ionizing photons
f esc = 1.8e�03
logQem = 42.0
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Fragmentation 
of Sink Particles

• Each sink particle fragments 
with a power-law slope 0.8 
(flatter than Salpeter ~1.35) in 
mass range Msink - 0.01 Msun 
—>reproduces shape and 
normalization of Chabrier IMF 

• Turbulence (lognormal PDF) 
makes Saltpeter-like mass 
function of sinks 

• Self-gravity (power-law PDF) 
produces flatter slope of sink 
fragments (see Lee & 
Hennebelle 2018)
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Figure 3. Time evolution of the LyC emission rate (Q), escaping rate (Qesc), and escaping fraction (fesc ≡ Qesc/Q) for our grid of simulations with varying
masses (columns) and compactness (rows). We notice that in most clouds fesc(t) becomes significant at 3–5tff, when most of the volume in the simulation box
is ionized. At this time, the Fiducial clouds have a much lower emission rate of ionizing photons (Q(t)) with respect to the peak value because the most massive
stars in cluster have died, resulting in a low ⟨f MC

esc ⟩ . The very compact clouds, on the other hand, have a high Q after 3tff, resulting in relatively high ⟨f MC
esc ⟩ . The

free-fall times for the clouds in the top (Fiducial), middle (Compact), and bottom panels (Very compact) are 4.4, 1.4, and 0.44 Myr, respectively. The purple
stars mark the time when the first SN explosion occurs. Except for the two most massive Fiducial clouds, the first SN explosion happens when fesc is already
close to unity and/or when Q has dropped by over an order of magnitude from the maximum, hence in most simulations SN explosions would have little effect
on the escape of LyC photons from the cloud.

both the star formation time-scale and feedback time-scale (related
to the sound crossing time) are shorter than the first SN explosion
time (∼ 3 Myr). Therefore, we may have underestimated ⟨f MC

esc ⟩ in
the two most massive fiducial clouds, although enrichment from
SN may also reduce ⟨f MC

esc ⟩ if dust is produced on sufficiently short
time-scale.

3.2.1 Effects of gas metallicity

Fig. 4 compares two simulations of the L-C cloud, with the only
difference being the gas metallicity which affects the cooling of the
gas. For a given cloud mass and density, lowering the gas metallicity
increases ⟨f MC

esc ⟩ , even though here we do not consider dust opacity.
In Paper I, we found that for gas metallicity Z < 0.1 Z⊙, the SFE is
reduced by a factor of ∼ 5 due to more efficient UV feedback caused
by the higher temperature and pressure inside H II regions, but we
do not observe a dependence of the IMF on the metallicity. From
Fig. 4, we can see that the peak value of Q(t) for the lower metallicity
simulation is reduced with respect to the solar metallicity case by
a factor of 4 due to the lower SFE. However, the time-scale over
which fesc increases from 0 to some value of order unity is shorter
with decreasing metallicity, suggesting a faster destruction of the
cloud due to a more efficient feedback, in agreement with what we
found in Paper I. We will investigate quantitatively the dependence
of ⟨f MC

esc ⟩ on feedback time-scale in Section 4.1 with an analytic
model.

3.3 Time-averaged escape fraction ⟨ f MC
esc ⟩

Fig. 5 summarizes the final result for the escape fraction for all
our simulations, showing ⟨f MC

esc ⟩ ≡ Sesc/S as a function of the mass
of the star cluster, mcl, for different molecular cloud compactness
(as shown in the legend). The two least massive fiducial clouds
are removed from the analysis because we believe that the SFE
of these simulations is overestimated due to missing physics (i.e.
IR feedback, which is not included in these simulations, becomes
significant in this regime. See Paper I for more explanation). We
find that ⟨f MC

esc ⟩ increases with decreasing mass of the cluster and
with increasing compactness. We also find a strong dependence of
⟨f MC

esc ⟩ on the gas metallicity.
As we decrease the gas metallicity, the typical pressure inside

H II regions increases. Therefore, the feedback becomes stronger,
leading to an increases of ⟨f MC

esc ⟩ , but also a reduction of the SFE.
Therefore, the total number of escaped LyC photons decreases with
decreasing metallicity, because of the reduced SFE.

Fig. 6 shows ⟨f MC
esc ⟩ as a function of the SFE for 12 out of our

16 simulations. For comparison, results from Kimm et al. (2019)
are plotted as purple squares. The methodology in the simulations
by Kimm et al. (2019) is rather different from ours because star
formation is not modelled self-consistently but rather a fixed SFE (of
1 per cent or 10 per cent) is assumed and stars placed at the centre
of the cloud inject energy and radiation according to a pre-computed
stellar population. They assume gas clouds of fixed density, similar
to our fiducial case, and explore masses of 105 and 106 M⊙ and
metallicities of 0.1 and 1 solar metallicities.
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An infrared map of our Milky Way galaxy, showing 9 new objects – dwarf galaxies and/or globular clusters – marked in red. Image via S. Koposov, V. Belokurov 
(IoA, Cambridge) and 2MASS survey.

Newly discovered Milky Way satellite Horologium-1. 
Image via V. Belokurov, S. Koposov (IoA, 
Cambridge).

M14 - Globular cluster
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Summary
1. Perhaps we captured the formation of the first GCs/UCDs in cosmological 

simulations of the dwarf galaxies at z=9.  

2. Low surface brightness spheroidal galaxies similar to the ultra-faint dwarfs 
are produced by a few “failed” or “dissolved” compact star clusters.  

3. HST deep field observations of galaxies and modeling of the Milky Way 
GCs suggest that ~20%-30% of MW’s GCs formed in the first galaxies. 
Depending on their fesc they may dominate the reionization process. 

4. Bursts of star formation from compact star clusters have similar effect on 
IGM as ionization by X-rays.  

5. Escaping ionizing radiation needed to produce observed optical depth to 
Thompson scattering is about 4%. Agrees better with limits from 
observations.


