Dynamical Models of the Globular Clusters M4 and NGC 6397

Douglas Heggie University of Edinburgh d.c.heggie@ed.ac.uk

in collaboration with Mirek Giersz CAMK, Warsaw, Poland

Outline

Introduction:

- M4 and NGC 6397
- modelling globular clusters
- surface brightness profiles

What shapes the surface brightness profile?

- core collapse
- binaries
- intermediate-mass black holes
- stellar-mass black holes
- accidents

Two nearby galactic globular clusters

M4

NGC 6397

Modelling globular clusters

- 1. Static (non-evolving) models
 - Example: King's model [something like a generalized isothermal model of a star]
- 2. Dynamic (evolutionary) models
 - Example A: *N*-body models but globular clusters are/were too big
 - Example B: Monte Carlo models (this talk)
 - (i) Similar level of detail as N-body models
 - (ii) More assumptions than N-body models, e.g. spherical symmetry.

King models

Surface brightness

Ivan King

Projected radius
1-parameter sequence of shapes
+ 2 scale parameters (core radius;
total luminosity)

The Surface Brightness Profiles

King profile Resolvable core radius Dimmer central SB

NGC 6397

Non-King profile Unresolvable core Brighter central SB

Modelling of M4 and NGC 6397

M4: H & Giersz, 2008, MNRAS, 389, 1858 NGC 6397: G&H, 2009, arXiv:0901.1085v1

Constructed models which approximately fit

- surface brightness profile (example shortly)
- velocity dispersion profile
- luminosity function at two radii
- observed binary fraction

Technique:

- Monte Carlo dynamics
- Synthetic stellar and binary evolution

Example: surface brightness profile of NGC 6397 and our model

Comparison of M4 and NGC 6397

	M4	N6397
Distance from sun (kpc)	1.72	2.6
Distance to Galactic Centre (kpc)	5.9	6.0
Log Mass (M _o)	4.8	5.0
Half-light radius (pc)	2.2	2.2
Tidal radius (pc)	16	12
Central binary fraction	0.02 ^a	0.05^{a}
Metallicity [Fe/H]	-1.20	-1.95

These two clusters are very similar, *except* for the surface brightness profile

What determines the surface brightness profile?

- 1. Core collapse
- 2. Tidal effects
- 3. Primordial binaries
- 4. Stellar-mass black holes
- 5. Intermediate-mass black holes

Hypothesis I: Core Collapse (standard explanation)

Time scale \propto relaxation time.

But relaxation times are

0.22Myr (M4) 0.29Myr (NGC 6397)

M4 is evolving faster, but has the "pre-collapse" profile

Conclusion: core collapse is not the explanation

This conclusion is confirmed by the core evolution of our Monte Carlo models:

Core evolution of the MC models

According to our models, both M4 and N6397 are post-core-collapse clusters, with King- and non-King

profiles, respectively.

Time

Hypothesis II: Tidal Effects

A galactic orbit for M4

From Dinescu et al 1999

Cluster	Apo	Peri
M4 (N6121)	5.9	0.6
NGC6397	$6.3(7.0^{a})$	$3.1(2.6^{a})$

^aKalirai et al 2007

M4 has the stronger tidal effects and should evolve faster to core collapse (other things being equal), but it has the "uncollapsed" profile.

Hypothesis III: Primordial Binaries

More binaries would expand the core.

Does this explain the difference between M4 and N6397?

No: M4 appears to have the smaller binary fraction (Richer et al 2004, Davis et al 2008)

	M4	NGC6397
Centre	$\sim 2\%$	5.1%
Off-centre	$\sim 1\%$	1.2%

Hypothesis IV: stellar-mass black holes

Can cause core expansion: Merritt et al 2004, Mackey et al 2007

Inoperative in M4 and NGC6397 for last few Gyr

Number of BH

Time (Myr)

Hypothesis V: Intermediate-Mass Black Holes

IMBH form a cusp, and may expand the core

NGC6397 M/M < [390,1290] (De Rijcke et al 2006)

M4 No literature

Remark: our models account completely for the velocity dispersion of M4 and NGC6397

So why do M4 and NGC6397 have different surface brightness profiles?

Hypothesis VI: Fluctuations

Basic model Earlier times (11, 11.5Gyr)

Different seed

M4 model

Surface brightness profiles of

- our model of NGC6397 at 11,11.5,12 Gyr;
- a model of NGC6397 with different seed;
- our model of M4

Conclusion: sometimes NGC6397 has a non-King profile, sometimes it resembles M4

Fluctuations in the core

We constructed an N-body model from our Monte Carlo model at 12Gyr, with active binaries, but no further stellar evolution. N = 112169, NBODY6/GPU

1% Lagrangian radius

(Dynamical) core radius

0.1% Lagrangian radius

Myr since 12Gyr

Conclusion

The difference between the surface brightness profiles of M4 and NGC6397 is a fluctuation

Remarks

- 1. These fluctuations are collective, akin to gravothermal oscillations
- 2. Studying the dynamical evolution of globular clusters is not deterministic