

Jean P. Brodie, Jacob Arnold (UCO/Lick),
Jay Strader, John Huchra (CfA),
Duncan A. Forbes, Caroline Foster,
Robert N. Proctor, Lee R. Spitler (Swinburne)

Aaron J. Romanowsky
Univ. California Observatories

SAGES Legacy Unifying Globulars and Galaxies Survey

- 25 representative early-type galaxies:
 - spread of luminosities, environments, photometric and kinematical properties

- Global properties, with focus on halo tracers:
 - field stars, planetary nebulae, globular clusters
 - photometry, kinematics, metallicities
 - Subaru/Suprime-Cam, Keck/DEIMOS

(high-quality, deep wide-field imaging + spectroscopy)

SLUGGS

SLUGGS survey

- Dark matter content of galaxies
- Angular momenta of galaxies
- Total numbers and spatial distributions of GCs
- Orbits of stars and GCs
- Chemical properties of stars and GCs
- ⇒ Use GCs to trace galaxy properties and assembly
- ⇒ Constrain formation and destruction of GCs

GCS orbital anisotropy: diagnostic #1

$$v_c^2 = \frac{GM(r)}{r} = -\sigma_r^2 \left(\frac{d \ln \nu}{d \ln r} + \frac{d \ln \sigma_r^2}{d \ln r} + 2\beta \right)$$

 h_4 , $\kappa_{\rm p}$ measure shape of line-of-sight velocity distribution (LOSVD)

$$h_4$$
, $\kappa_p = 0$: Gaussian; isotropic orbits

$$h_4$$
, $\kappa_p > 0$: "peaked"; radial orbits

$$h_4$$
, $\kappa_p < 0$: "flat-topped"; tangential orbits

GCS orbital anisotropy: diagnostic #2

Orbit anisotropy results in massive ellipticals

Schwarzschild orbit model fit of stellar + GC kinematics in M87 (fr. Cohen & Ryzhov 1997, etc.)

Unbinned LOSVD fitting, shown in radial bins:

- model
- data
- simulated from data

GCS roughly isotropic overall, possibly tangential toward center

Romanowsky & Kochanek (2001); cf. Côté et al. (2001); Wu & Tremaine (2006); Chanamé et al. (2008)

Orbit anisotropy results in massive ellipticals

metal-rich GCs: β ~ 0 (isotropic)

metal-poor GCs: $\beta \sim -4$ (tangential)

Romanowsky et al. (2009)

overall GCs: tangential PNe: isotropic?

Coccato et al. (2009); Kumar et al. (in prep)

GCS orbit anisotropy in massive ellipticals

GCS orbit anisotropy in massive ellipticals

Beyond GCLF problems: how did GCs get these orbits??

Generic expectation for halo particles on radial orbits (infall) (e.g. van Albada 1982;

Diemand et al. 2005; Abadi et al. 2006)

- → confirmed in stellar/PN halos
- → GCs either deposited on tangential orbits (subhalo accretion?), or:
- → GCs on radial orbits were eroded or circularized after last major merger (to ~50 kpc!)

Orbit clues from luminosity dependence

NGC 1407:
Bright GCs on more tangential orbits (increasing with color), and slightly steeper dispersion profile with radius

Orbit clues from luminosity dependence

M84:
Bright GCs on more tangential orbits

Bright GC velocities in massive Es

~100-400 GC velocities per galaxy: Côté et al. (2001, 2003); Richtler et al. (2004); Schuberth et al. (2006); Woodley et al. (2007); Hwang et al. (2008); Romanowsky et al. (2009); Kumar et al. (2009)

Bright GC LOSVDs in massive Es

- Bright GCs show flat-tops / double-peaks in almost all cases! (significant in ~3 cases)
- · No metallicity dependence in general
- Boundary: $M_R \sim -10.5 \pm 0.5$ $M_{GC} \sim 2 \times 10^6 M_{sun}$
 - \triangleright where M/L and r_e change! (e.g. Rejkuba et al. 2007; Mieske et al. 2008)

Explaining GC orbits

Preferential erosion of GCs on radial orbits, or circularization, after last major merger, to ~50 kpc?

- NB Bright GCs don't have to be preferentially destroyed, since massindependent depletion would leave only "lucky" GCs at bright end
- GCs eroded <u>during</u> major merger?

dynamical friction operates to ~ 1 kpc, evaporation to ~ 5 kpc? (e.g. Vesperini et al. 2003)

- ⇒ DM around bright GCs?
- ⇒ revised treatments of shocks or triaxiality?

(Dehnen et al. 2004; Capuzzo-Dolcetta & Vicari 2005)

GCs deposited on tangential orbits?

accretion from satellite galaxies? (e.g. Prieto & Gnedin 2008)

- $\Rightarrow M_{GC}$ dependence?
- ⇒ most GCs arrive after galaxy assembly, unless group-central ellipticals have distinct formation mode

Third GC population in NGC 1407

Spectroscopically-confirmed GCs in NGC 1407 (Romanowsky et al. 2009)

Third GC population in NGC 1407

Intermediate pop shows up as distinct luminosity function

Number density and velocity dispersion profiles intermediate to metal-poor, metal-rich

Third GC subpopulation in M84

Old, intermediate-Z, bright, centrally concentrated (< 20 kpc) (Kumar et al. in prep; Hempel et al. in prep)

Third GC subpopulation in M84

Other third peaks known but peculiar GCLF is important: not simply another SF episode!

Origin of third GC populations

Faint extension of UCDs/DGTOs?

⇒ tidally harrassed dwarf galaxies?
should have radial orbits??

- SLUGGS survey of halo properties (incl. GCs) of nearby early-type galaxies
- Non-radial GC orbits difficult to explain
- Bright GCs ($M_V < -10$) show strongly tangential orbits
- Intermediate-Z subpops: extension of DGTOs?