Kaluza-Klein Dark Matter

Jonathan Feng UC Irvine

KITP, Santa Barbara 5 December 2002

Dark Matter

- Our best evidence for new particle physics
- We live in interesting times
 - we know how much there is ($\Omega_{\rm DM} \sim 0.3$)
 - but not what it is (non-baryonic, cold)
- WIMPs are attractive
 - predicted in many particle theories (EWSB)
 - naturally give thermal relic density $\Omega_{DM} \sim O(1)$
 - $\Omega_{DM} < 1 \rightarrow \chi\chi \rightarrow ff$ not small $\rightarrow \chi f \rightarrow \chi f$ not small, so testable: promising for direct, indirect detection

Candidates from Particle Physics

- Supersymmetry
 - Neutralinos partners of γ , Z, W, h
 - Requirements:
 - high supersymmetry-breaking scale (supergravity) *R*-parity conservation
- Extra Dimensions
 - Kaluza-Klein particles partners of γ , Z, W, h, $G_{\mu\nu}$,...
 - Requirements:

universal extra dimensions

Cheng, Feng, Matchev (2002) Feng, Rajaraman, Takayama

Universal Extra Dimensions

 Kaluza (1921) and Klein (1926) considered D=5, with 5th dimension compactified on circle S¹ of radius R:

D=5 gravity → D=4 gravity + EM + scalar $G_{MN} \rightarrow G_{\mu\nu} + G_{\mu5} + G_{55}$

• Kaluza: "virtually unsurpassed formal unity...which could not amount to the mere alluring play of a capricious accident."

- Problem: gravity is weak
- Solution: introduce extra 5D fields: G_{MN} , V_M , etc.
- New problem: many extra 4D fields; some with mass *n/R*, but some are massless! E.g., 5D gauge field:

$$V_{\mu}(x^{\mu}, y) = \underbrace{V_{\mu}(x^{\mu})}_{\text{good}} + \sum_{n} V_{\mu}^{n}(x^{\mu})\cos(ny/R) + \sum_{m} V_{\mu}^{m}(x^{\mu})\sin(my/R)$$
$$V_{5}(x^{\mu}, y) = \underbrace{V_{5}(x^{\mu})}_{\text{bad}} + \sum_{n} V_{5}^{n}(x^{\mu})\cos(ny/R) + \sum_{m} V_{5}^{m}(x^{\mu})\sin(my/R)$$

• A new solution...

• Compactify on S^1/Z_2 instead (orbifold); require

y
ightarrow -y : $V_{\mu}
ightarrow V_{\mu}
ightarrow V_{5}
ightarrow -V_{5}$

• Unwanted scalar is projected out:

$$V_{\mu}(x^{\mu}, y) = \underbrace{V_{\mu}(x^{\mu})}_{\text{good}} + \sum_{n} V_{\mu}^{n}(x^{\mu})\cos(ny/R) + \underbrace{\sum_{m} V_{\mu}^{m}(x^{\mu})\sin(my/R)}_{m}$$
$$V_{5}(x^{\mu}, y) = \underbrace{V_{5}(x^{\mu})}_{\text{bad}} + \sum_{n} V_{5}^{n}(x^{\mu})\cos(ny/R) + \sum_{m} V_{5}^{m}(x^{\mu})\sin(my/R)$$

- Similar projection on fermions \rightarrow 4D chiral theory, ...
- Very simple (requires UV completion at $\Lambda >> R^{-1}$)

Appelquist, Cheng, Dobrescu (2001)

KK-Parity

- An immediate consequence: conserved KK-parity $(-1)^{KK}$ Interactions require an even number of odd KK modes
- 1st KK modes must be pair-produced at colliders

Macesanu, McMullen, Nandi (2002)

• weak bounds: $R^{-1} > 200 \text{ GeV}$

Appelquist, Yee (2002)

• LKP (lightest KK particle) is stable – dark matter

Kolb, Slansky (1984) Saito (1987)

Other Extra Dimension Models

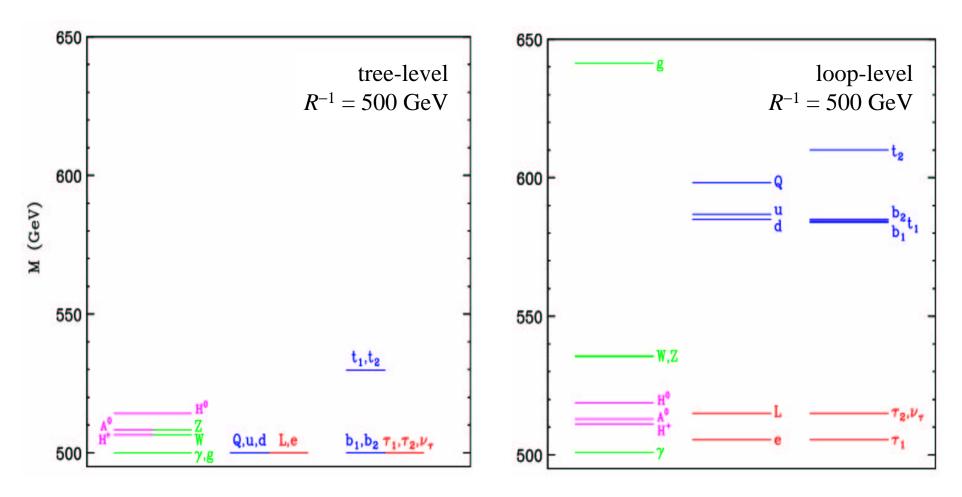
- SM on brane; gravity in bulk (brane world)
 - Requires localization mechanism
 - No concrete dark matter candidate
- fermions on brane; bosons and gravity in bulk
 - Requires localization mechanism
 - $R^{-1} > \text{few TeV from } f\bar{f} \rightarrow V_{\mu}{}^{1} \rightarrow f\bar{f}$
 - No concrete dark matter candidate
- everything in bulk (UED)
 - No localization mechanism required
 - Natural dark matter candidate LKP

UED and SUSY

Similarities:

- Superpartners \rightarrow KK partners
- R-parity \rightarrow KK-parity
- LSP \rightarrow LKP

. . .

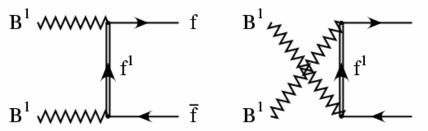

• Bino dark matter $\rightarrow B^1$ dark matter Sneutrino dark matter $\rightarrow v^1$ dark matter

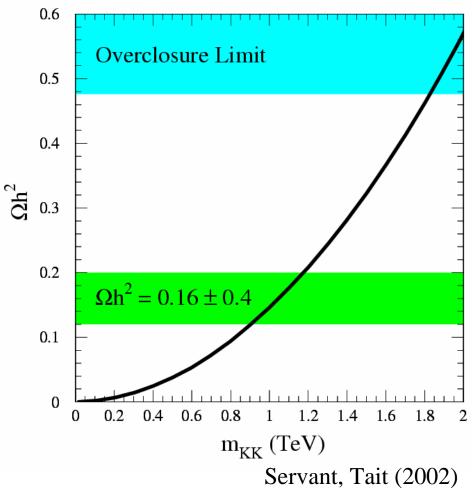
Not surprising: SUSY is also an extra (fermionic) dimension theory

Differences:

- KK modes highly degenerate, split by EWSB and loops
- Fermions \rightarrow Bosons

Minimal UED KK Spectrum

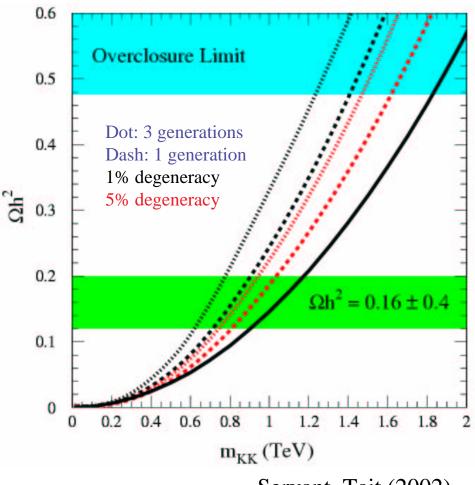



Cheng, Matchev, Schmaltz (2002)

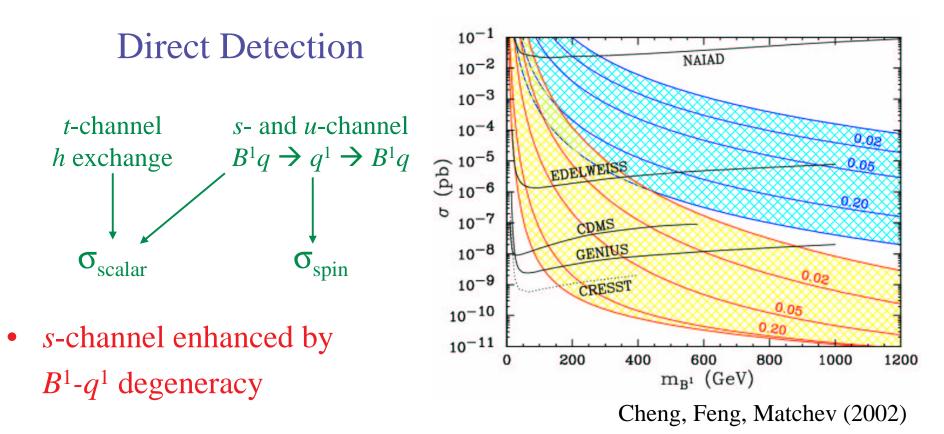
KITP, Santa Barbara

B^1 Dark Matter

- LKP is nearly pure B¹ in minimal model (more generally, a B¹-W¹ mixture)
- Relic density:



Co-annihilation


- But degeneracy → coannihilations important
- Co-annihilation processes:

• Preferred m_{B^1} : l^1 lowers it, q^1 raises it; 100s of GeV to few TeV possible

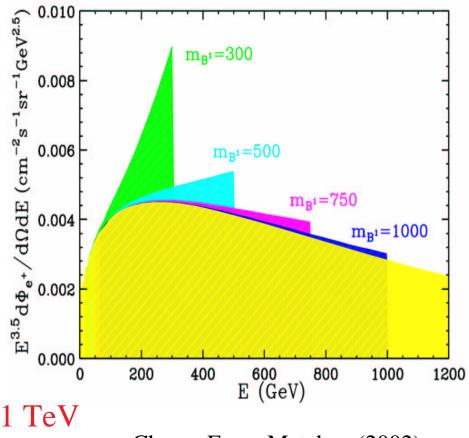
Servant, Tait (2002)

B^1 Dark Matter Detection

• Constructive interference: lower bound on both σ_{scalar} and σ_{spin}

*B*¹ Dark Matter Detection

- Indirect Detection:
 - Positrons from the galactic halo
 - Muons from neutrinos from the Sun and Earth
 - Gamma rays from the galactic center
- All rely on annihilation, very different from SUSY
 - For neutralinos (Majorana fermions), $\chi \chi \rightarrow ff$ is chirality suppressed
 - $-B^{1}B^{1} \rightarrow ff$ isn't; generically true for bosons


Positrons

 $\frac{d\Phi_{e^+}}{d\Omega dE} = \frac{\rho^2}{m_{B^1}^2} \sum_i \langle \sigma_i v \rangle B_{e^+}^i \int dE_0 f_i(E_0) G(E_0, E)$ where

 $\langle \sigma_i v \rangle$ = the annihilation σ to channel *i* $B_{e^+}^i = e^+$ branching fraction in channel *i* $f_i(E_0)$ = injection spectrum $G = e^+$ propagator in the galaxy

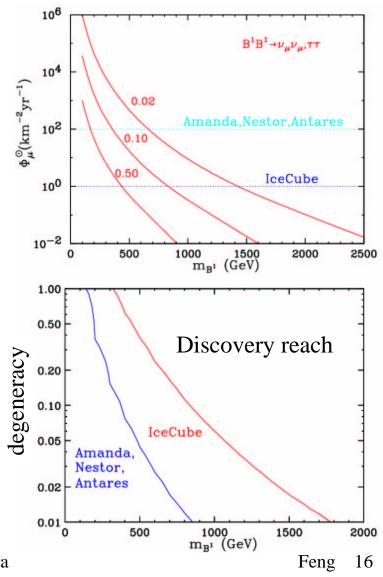
Moskalenko, Strong (1999)

- Here $f_i(E_0) \sim \delta(E_0 m_{B^1})$, and the peak is not erased by propagation (cf. $\chi \chi \rightarrow W^+ W^- \rightarrow e^+ \nu e^- \nu$)
- AMS will have e⁺/e⁻ separation at 1 TeV and see ~1000 e⁺ above 500 GeV

Cheng, Feng, Matchev (2002)

Muons from Neutrinos

• Muon flux is

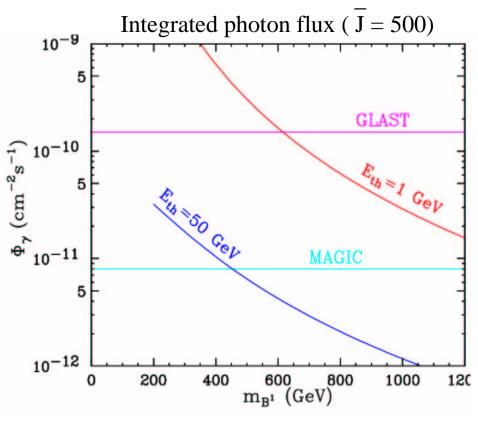

$$\Phi_{\mu} \propto \sum_{F,i} B_F \langle N z^2 \rangle_{F,i}$$

where $i = \nu, \bar{\nu}, F$ labels final states, and $z \equiv E_{\nu}/E_{\text{in}}$.

Ritz, Seckel (1988) Jungman, Kamionkowski, Griest (1995)

• $B^1B^1 \rightarrow v v$ is also unsuppressed, gives hard neutrinos, enhanced μ flux

> Cheng, Feng, Matchev (2002) Hooper, Kribs (2002) Bertone, Servant, Sigl (2002)

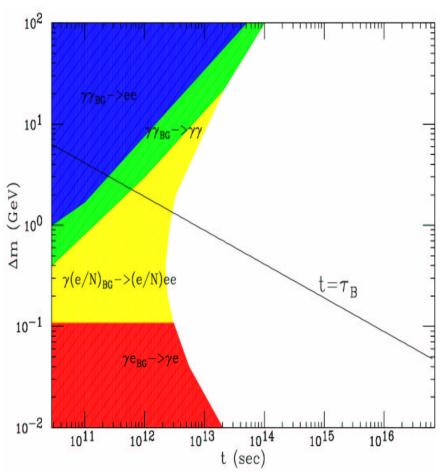

5 December 2002

KITP, Santa Barbara

Gamma Rays

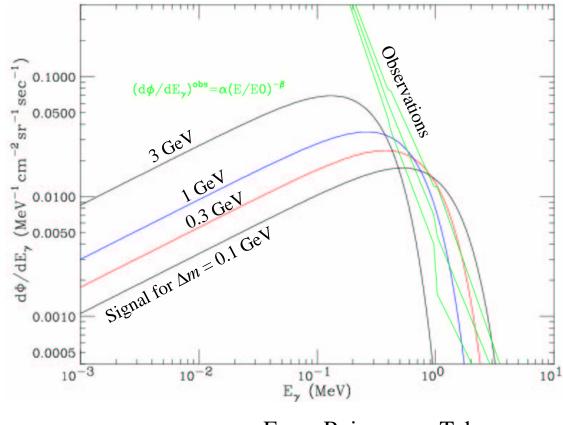
- $B^1B^1 \rightarrow \gamma \gamma$ is loopsuppressed, but light quark fragmentation gives hardest photons, so absence of chirality suppression helps again
- Results sensitive to halo clumpiness; choose moderate value

Bergstrom, Ullio, Buckley (1998)



Cheng, Feng, Matchev (2002)

Graviton Dark Matter


- LKP may be 1^{st} KK graviton G^1
- If NLKP is B^1 , B^1 freezes out, then decays via $B^1 \rightarrow \gamma G^1$ with lifetime ~ $10^{12} \sec [1 \text{ GeV} / \Delta m]^3$; get very late, very soft decays
- Evades BBN constraints for small Δm (or if NLKP is v^1)
- *G*¹ DM retains WIMP virtues, but is undetectable by all conventional dark matter searches

Diffuse Photon Flux

- Late $B^1 \rightarrow \gamma G^1$ implies a novel WIMP signal: diffuse photon flux
- Large ∆m implies larger initial energy, but also more red shifting; latter dominates
- Present flux peaks ~ 1 MeV, yields observable signal

Feng, Rajaraman, Takayama

Conclusions

- Extra Dimensions yield natural dark matter candidates
- Much work to be done: h^1 , W^1 , G^1 , non-minimal models, ..., but already several novel features:
 - *s*-channel enhancements from degeneracy
 - Annihilation not chirality suppressed
 - Graviton dark matter naturally desired thermal relic density, but inaccessible to all conventional searches
- Direct detection, μ from ν, e⁺, γ rays, may all push sensitivity beyond collider reach
- KKDM escape from the tyranny of neutralino dark matter!