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which grows at first order, We may thus write (3) to sufficient
accuracy as

Ki) = poa’ L(! — P kd’q 4+ poa’L g —q) x ¥bVg-dS ,
‘where to first order
#)= 4 J. gV - dS .
L

Making this substitution, using our result {11) and retaining
only second-order terms,

)= %,,,,,-J; ixVo VelVo-dS. (12)
-
This result can be writien more suggestively as

lr)a—gnL:x{--ﬂp--dS.

where the integral is now taken over the surface of the Eulerian
sphere. This shows that the Eulerian sphere gains angular
momentum purely as a result of convective transport across its
boundary and not as a result of torques acting on the matter
interior to it. The connection with Peebles's analysis can be
made by converting equation (12) into a volume integral

A= - pya'bb L{w*w x (Vg - Vg)
+q % (Vo - VIVg]ld*q.

The second term in the integrand can be converted back to a
surface integral which vanishes on L . This leaves

(k)]

AN = ~pya’dh | Vipgx (Vo - Veu’q.  (14)
Using &(g) = bV’ und converting from Lagrangian back to
Eulenan variables, this is equal at second order to

Ay = pya® L-i(.:h- % (& — £)d’x , (5]
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which is the Eulerian expression which Peebles used to calcu-
late J.

V. EXPERIMENTAL VERIFICATION

1 have attempted (o verify the results of § 11 in two 32,768
particle N-body experiments which are part of an ongoing
collaborative program to study clustering in an expanding uni-
verse (Frenk, White, and Davis 1983; White, Frenk, and Davis
1983; Efstathiou et al. 1984). Both simulations used a particle-
mesh method on a 64° grid to calculate forces and advance the
parti One i was designed to study a neutnino-
dominated universe (White, Frenk, and Davis 1983), lts density
field began with an rms § of 22% and a large coherence length.
It was allowed to expand by a factor of 20. The other experi-
ment began with a Poisson distribution of particles within the
compultational volume and was allowed to expand by a factor
of 32. The evolution of these models can be taken 1o represent
the formation of structure in the * pancake™ and hierarchical

1 ing pi , respectively. In both, the background uni-
verse was taken to be flat and initial velocities were sel so that
only the growing mode was present. In the last time frame of
each experiment | identified clusters by linking particles with
separations smaller than 0.4 of the mean interparticle spacing,
and then joining all “friends of friends™ This procedure
resulted in clusters with mean & values in the range S0-400,
Finally I cal d the angul al earlier times of
those particles which ended up in each of these dusters.

Figure 1 illustrates the growth of angular momentum in
these models. For the members of each cluster, T took J(1) and
divided it by a*2J(1), where 1, is the initial time, If growth
obeys the theory of § 11 this quantity should remain equal to
unity. For each simulation the figure shows the average of its
logarithm as a function of time for clusters with more than 100
members, (The largest clusters in each simulation had
2-3 x 10* bers) In additi the evolution of four
" typical " clusters is shown for each simulation, The theoretical
prediction is followed closely at small expansion factors.
However, as o increases, the densily conirast of clusters
by large and | fransfer to them ceases

log (J70>2 Jg)

wlite 3¢

o as [ 5 0 [-X) o .
log o lag a
Fia. |.—Angular ired to the value prodi d by linear thenry is shown as a function of cxpansion factor for the particles which end up in
groups af move than 100 members in two N-body Fig lalsasi of a neutrin, i universe, while in Fig. 1 the particies wese initially

distributed nwlyulm.hidihnmme-—nlnulridimhﬂm‘dlvlmdnhellhaubow&-behviwnf'iypiul‘mﬁdudpv‘
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