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HEAT Antimatter Measurements
has a dark matter signature been observed?
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Galactic Cosmic Rays

Primary p, e produced at CR acceleration
sites (e.g. supernova shocks);

Secondary CRs produced in the ISM

Secondary component includes antimatter
particles

“unusual” sources of pbars, e* ?

» Annihilating dark matter WIMPs (e.g.
neutralinos);

*y - e* near pulsar magnetic poles;
* CR nuclei + Giant Molecular Cloud - e* +
reacceleration;

» Evaporating primordial black holes.

[for a recent review see: Tarlé & Schubnell, Space Science Reviews, v. 99, p. 95-104 (2001).]
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p+p - p+p+p+p

= Progenitors are mainly protons & production threshold relatively high
- probe the primary nucleon component and CR propagation.

= Measurements are difficult (pbar/p < 10-4 and p/e” ~ 10-3 @ few GeV)
- excellent particle ID for background discrimination required

= Good understanding of galactic secondary antiproton spectrum
required to detect possible signatures for antiprotons from WIMP

annihilation.
_ _ 1073
= E,, = 7 GeV, few antiprotons with
kinetic energies < 1 GeV. 10~4| 3
» Solar modulation smoothes kinematic & _5
cutoff (inside heliosphere) 1077 ]
10~

IF antiprotons are produced purely as
secondaries, antiproton/proton ratio
should decrease at high energies.
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Primary Antiprotons

Are there primary sources of antiprotons in our Galaxy?
(astrophysical sources, dark matter annihilation, Primordial
black hole evaporation ... )

10~
Possible primary
component due to
o4l J annihilation of
supersymmetric
& / particles (60 GeV B)
i i a yd | [Jungman & Kamionkowski
Pogglele prisny 5 | Phys. Rev. D 49 2316 (1994)]
component due 10 20—~/ =
. o
to evaporating / N |
small PBHs A \ |
[Maki, Mitsui & Orito _8 [ \\ §
Phys. Rev. Let. 76 3474 10 ‘ ! ‘
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Antiproton Results [before 2000]

Most observations below 5 GeV.

E < 5 GeV: BESS measures
pbar/p consistent with purely
sec. production through
repeated balloon flights.

E > 5 GeV: Low statistics;
Measurements inconclusive.

Difficult to detect WIMP signal
due to uncertainty in interstellar
reference spectra and solar
modulation.

Does pbar/p continue to rise at
high energy (CAPRICE)?

High statistics measurements
needed in the region 5-50 GeV.

[for a recent review see: Tarlé & Schubnell, Space Science Reviews, v. 99, p. 95-104 (2001).]
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Positrons and antiprotons probe the structure of the
ISM and the primary nucleon component.

Diffuse y-ray flux of inner
Galaxy measured by EGRET.
[Strong & Mattox A&A 308, 1996]
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338, 1998]
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Balloon borne HEAT-pbar experiment utilizes multiple energy loss
measurements vs. rigidity for CR particle identification in the 4-50

GV range.

140 Multi-wire
Proportional Chambers
measure energy loss
to identify particle
species. 3

Time-of-Flight
Scintillators
trigger data acquisition,
measure particle charge
and determine direction
of travel.
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Lower ToF

1 METER

Superconducting Magnet
Spectrometer with Drift
Tube Hodoscope
(continuous tracking)

[ measures rigidity.

|_ This determines the
particle’s charge sign
and momentum.

t = 10 kG field

E = MDR extends to
~350 GV

= 65 g tracking
accuracy
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GV range.

140 Multi-wire
Proportional Chambers
measure energy loss

to identify particle "\
species.

Time-of-Flight
Scintillators

trigger data acquisition,
measure particle charge
and determine direction
of travel.
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1 METER

Balloon borne HEAT-pbar experiment utilizes multiple energy loss
measurements vs. rigidity for CR particle identification in the 4-50

Superconducting Magnet
Spectrometer with Drift
Tube Hodoscope
(continuous tracking)
measures rigidity.

This determines the
particle’s charge sign
and momentum.

= 10 kG field

= MDR extends to
~350 GV

= 65 P tracking
accuracy

Michael Schubnell, University of Michigan

Michael Schubnell, Univ. Michigan (KITP New Cosmology Conference 8/21/02)




HEAT

Particle ID using dE/dx vs. Rigidity

= To provide mass discrimination HEAT-pbar measures multiple
samples of the ionization loss.

= Technique exploits the logarithmic rise in the mean rate of
energy loss.
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Identifying Particle Mass with HEAT-pbar

Select Rigidity bands and fit restricted average dE/dx distributions

- before event selection
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Highly Gaussian shape allows for good particle separation/count.

August 21, 2002

Michael Schubnell, University of Michigan

Michael Schubnell, Univ. Michigan (KITP New Cosmology Conference 8/21/02)




HEAT

New Antiproton Results

Results from HEAT-pbar 2000
flight: Beach et. al. Phys. Rev.
Lett. 87, 271101 (2001).
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No support for *hard
nucleon injection
spectrum” models

HEAT Measurements are
consistent with purely
secondary production of
antiprotons.

BESS, IMAX, MASS, CAPRICE
and HEAT data in agreement
with ‘standard spectrum’
vl calculated by Moskalenko et al.
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Prospects for primary pbar
detection (e.g. from WIMP
annihilation) not good.
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Positrons
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e*in Cosmic Rays
= Secondary et produced in equal numbers in the ISM:
CR nuclei + ISMO 1 - pt - et ;
= e*funique-lose energy rapidly O E2. High energy electrons are “local.”
= et/(e* + e-) fraction is small (about 10%) - substantial primary e component.
= New balloon instruments with powerful particle ID resulted in improved hadron
rejection (= 105).
= Trend consistent with secondary production [Moskalenko & Strong ApJ 493,
694 (1998)] (but high energy data lies above the curve.)
= Solar modulation only affects low energy.
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= Two flights of the HEAT-e* instrument had shown

hint of additional structure in the energy Is this structure a
spectrum of the cosmic ray positron fraction primary positron
e+/(et+e’). \ component from
= Difficult to explain with purely secondary Darl_< I_Vlat_ter?
production. annihilation?
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HEAT Positron Fraction '94 & ‘95

HEAT-e* Instrument ———y

- Ft. Sumner, NM
(May 1994)
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(August 1995)

MS (no reacceleration) i
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Identifying Particle Mass with HEAT-pbar

Select Rigidity bands and fit restricted average dE/dx distributions

: ——— before event selection
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HEAT
Positron
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(3 flights)
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Location of peaks
in CMB power
spectrum

Flat Universe

Qu= 0.40 £ 0.15
Q,=0.60£0.15

(cosmological

mass density
August 21, 2002

Qror = 1.00 £ 0.04 ¢

Cold Dark Matter Exists

DASI - Boomerang - MAXIMA

Non-baryonic DM
= Some Galactic DM may be in
MACHOs but insufficient to
account for entire amount
= Hot Dark Matter (HDM), e.g.
\ light neutrinos, does not

Baryon Densit
Qg = 0.04 = 0.

o<

300

1)G, /20 [k

I

account for small-scale

o d structure.

= Cold Dark Matter (CDM),
e.g. WIMPs or Axions,
preferred non-baryonic
candidate.

W 2o R

M w0 s 60 700
Multipole |

Supernova
Cosmolo = Neutralino (Lightest

: gy Supersymmetric Particle)
Project: prime candidate for CDM

Q,=0.72
New Standard Cosmology:

~ 2/3 Dark Energy

~ 1/3 Dark Matter

0.5% Bright Stars
Matter: 29% CDM, 4% Baryons, 0.3% Vs
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Primary Positrons?

—— 0 GV WIMP, 1,

. |
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s ———— NN

Energy (GeV)

[Kamionkowski &Turner,
Phys. Rev. D 43, 1774 (1991)]

e Heavy X O resonant ZZ or W*w®
production, then decay

,
[Dogiel & Sharov, A&A 229, 259 (1990)] e ."f‘ 3

e p-stuff - m - p* - e; Fermi 2w 3
acceleration by gas turbulence. W ‘ E

: E

Small primary positron . 0

Energy (GeV)

component possible |
[Coutu et al. Astroparticle Phys. 11 (1999) 429]
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Positrons from Annihilating Galactic
Halo WIMPs (Revisited)

= Large region of MSSM space explored . Gajactic diffusion model + solar

= Continuum and monochromatic e* modulation
Production = e+ enhancement not as good a fit to HEAT
= Thermal production in early universe data as Kamionkowski and Turner.

Substantial boost factors required to = None of these models can be observed at
explain HEAT data (e.g. clumpy halo)  Tevatron, LHC unclear.

T T
HEAT 2000 SUSY+bkg. fit

T
SUSY+bkg. fit

HEAT 2000
SUSY component HEAT 94+95 SUSY component - HEAT 94+95 |
bkg. component bkg. component
bkg. only fit m,=340 GeV bkg. only fit m, =238 GeV
,h*=0.100 0,h*=0.002

e
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[Baltz/Edsj6, Phys. Rev. D 59 023511 (1999)
and Baltz, Edsj6, Freese & Gondolo, Phys. Rev. D 65 063511 (2002
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Positron Excess and General SUSY Models

For my > My, XX - WW annihilation leads to peak at 0OM,,/2 but J, T cascades, Tt
decays and Galactic propagation “wash out” peak towards lower energy.
et/(et+e”) enhancement at ~ 10 GeV (insensitive to WIMP mass!)

0.14

Higgsino LSP (m=91 GeV, Bs=7.7, Bp=0.77)
é Wino LSP (m=131 GeV, Bs=0.9, Bp=0.7)

\ Expected Positron Fraction without LSP

-

0.12
0.10 average relic density 0.3 GeV/cm3

0.08

v b b b by 1y

Kane, Wang and Wells
[Phys.Rev. D65 (2002) 057701]
Kane, Wang and Wang

[Phys. Lett. B 536 (2002) 263]
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Positron excess and special SUSY models

Strong peaking in the positron energy spectrum can be achieved by fine
tuning special models.
Kane, Wang & Wang [Phys. Lett. B 536 (2002) 263], Kane, Wang & Wang [in preparation, 2002]

Electron sneutrino ~ stable if its mass is very close to LSP mass (within m,).
Decays shown produce sharp peak in positron injection spectrum at E = m(1-
my,2/4m.2). For peak at ~ 8 GeV: m,+m, = my+10 GeV.

Propagation washes sharp peak out towards lower energies.

Detectability: Tevatron, simple models excluded by direct searches and
underground neutrino experiments.

sneutrino only <m:9fi GeV, Bs=22, Bp=0. 66)7 . - nght SneUtrIno (< MW) )
E O\ rreutring & neutral (me51 Gev, Be-54, 5p-097) ] Detectability: Tevatror_1, simple models
N Expected Positron Fraction without LSP a“—eady excluded by dlrect sea rChes
and underground neutrino

experiments.

Heavy sneutrino (m > My)
Detectability: Tevatron, simple models
! already excluded by direct searches
HEAT 1994 & 1995 & 2000 - and underground neutrino

0.00 ; experiments

Positron Fraction e'/(e*+e”)
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Conclusions

HEAT measurements consistent with purely secondary production of antiprotons.
Data are in agreement with ‘standard spectrum’ calculated by Moskalenko et al.

No support for *hard nucleon injection’ models

New positron fraction measurement with HEAT-pbar confirm HEAT-e* results.
Feature seen in experiments:

- With two independent techniques.

- At solar maximum and minimum.

- At two different geomagnetic cutoff rigidities.

Positrons appear to be mainly from CR interactions in ISM but feature exists
above ~ 7 GeV.

None of the existing primary et models explain the structure well. Is feature due
to Dark Matter annihilation?

Feature (amplitude, shape and location) can be reproduced with a number of
realistic SUSY models that are allowed by current accelerator limits.

More measurements needed to confirm this structure seen with HEAT and
establish its nature.
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