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noise = information

Rolf Landauer: “The noise is the signal”

physical quantities like current fluctuate ⇒ measurement
contains information beyond the average value
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Schottky formula

example: current in a vacuum tube (Schottky 1918)

discreteness of electron charge leads to shot noise
definition: noise power

S(ω) =

∫ ∞

−∞

dt eiωt〈∆I(t)∆I(0) + ∆I(0)∆I(t)〉

where ∆I = I − Ī

Schottky showed that S(ω = 0) = 2eĪ

random and independent emission of electrons from cathode
⇒ Poisson process ⇒ 〈(N − N̄)2〉 = N̄
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Schottky formula 2

hence, by measuring both

the average current Ī

and the noise power S = 2eĪ

we get additional information, viz., the electron charge!
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full counting statistics

generalization of noise / cross-correlations to higher
cumulants leads to the idea of full counting statistics

Levitov and Lesovik ‘93; Levitov, Lee, and Lesovik ‘96
Nazarov, Belzig, Kindermann, Bagrets, Samuelsson, Büttiker, Cuevas, Fazio, ... ‘99 – ‘07

idea: calculate probability P (N) that N electrons have
passed a certain cross section of the lead during time t0

Ī =
eN̄

t0
where N̄ =

∑

N

P (N)N

S(ω = 0) =
2e2

t0
〈(N − N̄)2〉

all higher moments/cumulants also determined by P (N)
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experiment

experimental situation: noise power measurements X

higher moments: very difficult!

3rd cumulant of the current through a tunnel junction
Reulet et al., PRL 2003, Reznikov et al., PRL 2005

FCS by counting single electron tunneling events:
Gustavsson et al., PRL 2006 (4th cumulant!)

Fujisawa et al., Science 2006
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hybrid beamsplitter

cross-correlations of currents in two normal-metal leads
created by splitting a supercurrent

normal 2

superconductor

normal 1

〈∆I1∆I2〉 = 2
∫

dt〈∆I1(t)∆I2(0)〉 positive or negative ?
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hybrid beamsplitter

cross-correlations of currents in two normal-metal leads
created by splitting a supercurrent

normal 2

superconductor

normal 1

〈∆I1∆I2〉 = 2
∫

dt〈∆I1(t)∆I2(0)〉 positive or negative ?

thermal bosons ⇒ bunching ⇒ positive cross-correlations
thermal fermions ⇒ antibunching ⇒ negative cross-corr.
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Büttiker PRB 1992:

zero-frequency cross-correlations in

non-interacting

normal-metal multi-terminal structures

are always negative!

...doesn’t cover our hybrid beam splitter...

normal 2

superconductor

normal 1

...so let’s calculate its statistics
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cross-correlations

calculate the probability P (N1, N2; t0) to count

N1 electrons passing lead 1

N2 electrons passing lead 2

}

during time t0

P (N1, N2; t0) determines ALL moments of I1 and I2,
in particular the cross-correlations 〈I1I2〉.
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cumulant generating function

exp(−S(χ1, χ2)) :=
∑

N1,N2

P (N1, N2) exp(iχ1N1+iχ2N2)

χi: “counting fields”

example: noise or cross-correlations of two currents:

〈∆I1∆I2〉 =
2e2

t0

∂2S(χ1, χ2)

∂χ1∂χ2

∣

∣

∣

∣

χ1=χ2=0
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circuit theory

0
S

g  /2

g  /2

N2

N1
N

N

,χ1V

V,χ2

central node

tunnel junction,
dimensionless conductance g

gS

S

Nazarov 1998

1. draw system as a ‘discretized’ electric circuit

2. temperature, potential, counting field χi determine
4 × 4 matrix Keldysh Green’s function in each contact

3. Kirchhoff’s law for matrix currents determines Green’s
function on central node

4. matrix currents ⇒ physical currents ⇒
cumulant-generating function S(χ1, χ2)
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cumulant-generating function
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cross-correlations

F12 =
〈∆I1∆I2〉

2e〈I〉
=

e

t0〈I〉
∂2S(χ1, χ2)

∂χ1∂χ2

∣

∣

∣

∣

χ1=χ2=0
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J. Börlin, W. Belzig, and CB, PRL 2002

P. Samuelsson and M. Büttiker, PRL 2002

T. Martin, Phys. Lett. ‘96

J. Torres and T. Martin, EPJB ‘99

positive cross-correlations for y = gN/gS ≪ 1 or ≫ 1

negative cross-correlations around y = 1
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interpretation

For y = gN/gS ≪ 1 or ≫ 1, expand S(χ1, χ2):

S(χ1, χ2) ∼ e2iχ1 + e2iχ2 + 2ei(χ1+χ2)

Poisson statistics

⇒ uncorrelated pair tunneling events

⇒ first two terms do NOT contribute to cross-correlations

positive contribution of third term

– p.16



outline

(1) introduction

(2) full counting statistics of a superconducting beam
splitter

(3) density correlations in ultracold Fermi gases

– p.17



idea

use noise correlations / statistics of density fluctuations in
absorption images to get information on the many-body
nature of an ultracold atom system

E. Altman, E. Demler, and M. Lukin, PRA 2004:

“Probing many-body states of ultracold atoms via noise correlations”

see also A. Lamacraft, PRA 2006
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density fluctuations

M. Bartenstein et al., PRL 92, 120401 (2004)

axial profile, averaged over 50 experiments

bin size ≈ 10µm (imaging resolution)
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correlation/noise experiments

S. Fölling et al., Nature 2005

“Spatial quantum noise interferometry in expanding ultracold atom clouds”

M. Greiner, C.A. Regal, J.T. Stewart, and D.S. Jin, PRL 2005 (experiment)

“Probing pair-correlated fermionic atoms through correlations in atom shot noise”

A. Öttl , S. Ritter, M. Köhl, and T. Esslinger, PRL 2005

“Correlations and counting statistics of an atom laser”

I.B. Spielman et al., PRL 2007

“Mott-Insulator Transition in a Two-Dimensional Atomic Bose Gas”
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experiment by Greiner et al.

M. Greiner et al., PRL 2005: noise in absorption images of 40K
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Esslinger counting exp.

Öttl et al., PRL 2005
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Esslinger counting exp.

atom laser (Poissonian) vs. (pseudo-)thermal beam (Bose)
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Porto experiment

Spielman et al., PRL 2007 – p.24



application to BEC-BCS transition

goal:
calculate counting statistics of atom number in a bin of a
fermionic cloud of cold atoms with attractive interactions
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atom number fluctuations

assumption: Ntotal ≫ Nbin ≫ 1

atoms outside a bin serve as reservoir:
⇒ grand-canonical treatment
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full counting statistics

systematic treatment of fluctuations:

probability to find N particles in the system = bin:

P (N) = 〈δ(N̂ −N)〉

evaluated in thermal ensemble or ground state
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full counting statistics 2

characteristic function:

e−S(χ) =
∑

N e
iNχP (N) = 〈eiN̂χ〉

cumulant generating function:

S(χ) = −
∞
∑

r=0

Cr

r!
(iχ)r

Cn = −
(

−i ∂
∂χ

)n

S(χ)
∣

∣

∣

χ=0

C1 = 〈N̂〉
C2 = 〈(N̂ − 〈N̂〉)2〉
C3 = 〈(N̂ − 〈N̂〉)3〉

P(N)

N

C2

C3

C =N1
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BEC-BCS crossover
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experimentally accessible by tuning magnetic field:
Feshbach resonance
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mean-field description of crossover

BCS wavefunction

|BCS〉 =
∏

k

(uk + vkc
†
k↑c

†
−k↓)|0〉

Eagles 69, Leggett 80, Randeria et al. 90

variational approach yields

v2
k

= 1 − u2
k

=
1

2
(1 − ǫk − µ

√

(ǫk − µ)2 + ∆2
)
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self-consistency condition

∆ and µ determined by self-consistency equations:

order parameter (interaction constant λ)

∆ = −λ
∑

k

ukvk

average particle number

N̄ = 〈N̂〉 = 2
∑

k

v2
k
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self-consistent solution
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-20

-10

0

µ/
ε F

-4 -2 0 2 4
-(ξ−ξ0)

0

5

10

∆/
ε F
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(a)

ξ = 1/kFa

−(ξ − ξµ=0) ≪ 0 ⇒ BEC-limit

−(ξ − ξµ=0) ≫ 0 ⇒ BCS-limit
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cumulant generating function

for a single k-state (i.e. pair of states with k ↑,−k ↓):

e−Sk(χ) = 〈BCS|eiχ(n̂k↑+n̂−k↓)|BCS〉
= u2

k
+ v2

k
e2iχ

combining all states:

S(χ) =
∑

k

Sk(χ) = −
∑

k

ln[1 + v2
k
(e2iχ − 1)]

general result in the BEC-BCS crossover regime

(for given ∆ and µ)
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counting statistics in 2D/3D

analytic expression in 2D:

S(χ) = N̄
∆

ǫF

cos(χ)atan(
ǫF

∆
eiχ)+N̄

µ

ǫF

ln[1+v2
0(e

2iχ−1)]

numerical evaluation in 3D

N̄ = average number of particles per bin,

v2
0

= 1

2
(1 + µ√

∆2+µ2
)
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limiting cases: BEC-regime

BEC-limit: µ/ǫF ≪ −1 ; v2
k

≪ 1

S(χ) ≈
∑

k

v2
k
(e2iχ − 1) = −N̄

2
(e2iχ − 1)

Poissonian statistics of strongly bound pairs

number statistics corresponds to Bose condensate of
molecules
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compare with free condensate

|ψ〉 = (a†
0)

Ntot|vac〉 where ak = bk + ck,

bk =

∫

Vbin

d3r eikrΨ(r) , ck =

∫

V \Vbin

d3r eikrΨ(r) ,

bin number operator N̂ :=
∑

k b
†
kbk

S(χ) = 〈eiN̂χ〉 = −Ntot ln [1 +
Vbin

V
(eiχ − 1)]

For Vbin/V ≪ 1

S(χ) ≈ −N̄(eiχ − 1) X
N̄ = NtotVbin/V
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limiting cases: BCS-regime

BCS-limit: µ/ǫF ≈ 1 ; ∆ ≪ ǫF

S(χ) = −iN̄χ− πN̄D
∆

8ǫF

(eiχ + e−iχ − 2)

mean value (∼ iχ) dominates FCS

small fluctuations: only ∼
∆

ǫF

N̄ particles fluctuate

all odd cumulants vanish (except C1 = N̄ )

compare with free Fermi gas for kBT ≪ ǫF :

S(χ) = −iχ̃N̄ − (DkBT/4ǫF )N̄χ̃2

variance ∼ T/ǫF (see also Castin, cond-mat/0612613)
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crossover regime: 2nd cumulant
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noise strongly reduced in BCS-limit

∆/ǫF = 4C2/πN̄D can be determined from C2
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crossover regime: 3rd cumulant
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C3 vanishes faster in 2D than in 3D (due to constant
density of states in 2D ⇒ particle-hole symmetry)
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conclusion

full counting statistics reveals additional information on
many-body systems

full counting statistics of fermionic atomic clouds at the
BEC-BCS crossover

open questions:

better models for crossover regime

finite-temperature effects

finite-trap effects
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