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Atomic and molecular gases

Quantum degenerate dilute 
atomic/molecular gases of 

fermions and bosons

Bose-Einstein condensation
   - Gross-Pitaevskii equation
   - non-linear dynamics

Rotating condensates
   - vortices
   - fractional quantum Hall 

Molecules
   - Feshbach resonances
   - BCS-BEC crossover 
   - polar molecules

Optical lattices
   - Hubbard models
   - strong correlations
   - exotic phases

c
o
n
tro

l and tunability



Crystalline phases

- long range dipole-dipole 
  interaction
- interaction energy exceeds 
  kinetic energy

Polar molecules

Three-body interaction

- tunable three-body interaction
- extended Hubbard models
  in the presence of optical lattices



Polar molecules

Why polar molecules?
- coupling to optical and microwave fields

- permanent dipole moment

 

- trapping/cooling
- internal states

- strong dipole-dipole 
  interaction
- long-range interaction

Polar molecules in 2D 

- stability for strong interactions

- tunable long range interaction
  in strength and shape  
- tool for exploring novel  
  quantum phenomena  

- suppressed three-body
  recombination
- absence of thermodynamic 
  instabilities

Quantum melting
- appearance of a crystalline phase
- quantum melting to a superfluid phase



Experimental status
- Polar molecules in the rotational and 
  vibrational ground state
- cooling and trapping techniques
  beeing developement:

- bosonic molecules with closed
  electronic shell, e.g., SrO, RbCs, LiCs

Polar molecules

Raman laser /
spontaneous emission

rotational and vibrational 
ground state

- cooling of polar molecules:
  D. De Mille, Yale
  J. Doyle, Harvard 
  G. Rempe, Munich
  G. Meijer, Berlin

- photo association
  (all cold atom labs)



Polar molecule

Low energy description

- rigid rotor in an electric field

}N = 1

N = 2

N = 0

- anharmonic spectrum
- electric dipole transition

- microwave transition frequencies
- no spontaneous emission

Accessible via microwave

dipole 
moment

rotation of 
the molecule

: angular momentum

: dipole operator



Polar molecule

Sr2+

O2–

req = 1.919 Ǻ
d = 8.9 D

X 1Σ+ ... electronic groundstate: 
S=0 ... closed shell (..9σ2 10σ2 4π4 )

req = 1.919 Ǻ ... equilibirum distance
d = 8.900 D ... dipole-moment

ωeq = 19.586 THz ... vibrational const.
Beq = 10.145 GHz ... rotational 
I=0 ... no nuclear momenta for 88SrO, 86SrO
          

heteronuclear molecule with strong persistent 
dipole moment in electronic groundstate.

Sr2+O2– ... ionic binding

Rydberg-Klein-Rees (RKR)-potentials
(R. Skelton et al., 2003)



Interaction between polar molecules

Hamiltonian

Without external drive

-  van der Waals 
   attraction 
   

kinetic
energy

trapping
potential

rigid 
rotor

electric 
field

interaction 
potential

Static electric field

- internal Hamilton

- finite averaged dipole moment



Dipole-dipole interaction
Dipole-dipole interaction

- anisotropic interaction
- long-range 

- Born-Oppenheimer  
  valid for:

Instability in the 
many-body systemattraction

- collaps of the system for 
  increasing dipole interaction
- roton softening
- supersolids? 
  (Goral et. al. ‘02, L. Santos et al. ‘03, Shlyapnikov ‘06)

Stability:

- strong interactions

- confining into 2D
  by an optical lattice

repulsionattraction

confining 
potential

oscillator 
wavefunction

z

a⊥{



Stability via transverse confining
Effective interaction

- interaction potential with 
  transverse trapping potential

- characteristic 
  length scale

- potential barrier: 
  larger than kinetic energy

V (r) = D

[

1

r3
− 3

z2

r5

]

+
mω2

z

2
z
2

Tunneling rate:

- semi-classical rate
  (instanton techniques)

- Euclidean action of the 
  instanton trajectory

Γ = A exp (−SE/h̄)

SE = h̄

(

Dm

h̄
2
a⊥

)2/5

C

attempt frequency
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numerical
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 energies



Effective 2D potential

- large distances

Transverse trapping

- integrating out the fast transverse 
  motion of the molecules

confining 
potential

oscillator 
wavefunction

z

a⊥{

transverse wave function

Static electric field



Crystalline phase



Hamiltonian
- polar molecules confined into a 
  two-dimensional plane
- dipole interaction

Effective Hamiltonian

Polar molecule: SrO
- dipole moment:

- transverse 
  confining:

(2.4 Debye ∼ ea0)

SE/! ! 130

interaction 
strength:

- interparticle 
  distance:

- stability:



Quantum Phase transition

Crystal phase

- triangular lattice structure
- phonon modes

Strongly interacting 
superfluid

- superfluid stiffness
- large depletion

Ra

g(R)
1

Kosterlitz-Thouless 
transition

Quantum melting
- indication of a first order transition
- Quantum Monte Carlo simulations

First order melting 
(Kalida ‘81)
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Three-body interactions



Single polar molecule

Ω

|g〉

∆
|e, 1〉

|e, 0〉

|e,−1〉

Mircowave field

- coupling the state       and

- restrict to two states
- ignore influence of
- rotating wave approximation
  

|g〉 |e, 1〉

: detuning
: rabi frequency

∆
Ω

Static electric field

- along the z-axes
- splitting the degeneracy of the first 
  excited states 
- induces finite dipole moments

dg = 〈g|dz|g〉
de = 〈e, 1|dz|e, 1〉

|e,−1〉

- anharmonic spectrum
- electric dipole transition

- microwave transition frequencies
- no spontaneous emission



Many-body Hamiltonian

H =
∑

i

p2
i

2m
+

∑

i

Vtrap(ri) +
∑

i

H(i)
0 + Hstat

int + Hex
int

Many-body Hamiltonian

- dipole-Dipole interaction
- restriction to the two 
  internal states:

|g〉i |e, 1〉i

{{
- external potentials:

- trapping potential
- optical lattices

Two-level System

- rotating wave approximation

-  two-level system in an effective 
   magnetic field

H(i)
0 =

1
2

(
∆ Ω
Ω −∆

)
= hSi

-  two eigenstates

    and energies

|+〉i = α|g〉i + β|e, 1〉i

|−〉i = −β|g〉i + α|e, 1〉i

E± = ±
√

Ω2 + ∆2/2



Dipole-dipole interaction

Hstat
int =

1
2

∑

i !=j

Dν (ri − rj) [ηgPi + ηeQi] [ηgPj + ηeQj ]

Hex
int = −1

2

∑

i !=j

D

2
ν(ri − rj)

[
S+

i S−j + S+
j S−i

]

ν(r) =
1− cos θ

r3

Induced dipole moments

-

Microwave photon exchange

- D = |〈e, 1|d|g〉|2 ≈ d2/3

ηd,g = de,g/
√

D

dipole-dipole 
interaction

Pi = |g〉〈g|i

Qi = |e, 1〉〈e, 1|i



Born-Oppenheimer potentials

Effective interaction

(i)  diagonalizing the internal Hamiltonian 
     for fixed interparticle distance         .

(ii) The eigenenergies 
     describe the Born-Oppenheimer
     potential a given state manifold.

(iii)  Adiabatically connected to the
groundstate

“weak” dipole interaction

{ri}

∑

i

H(i)
0 + Hstat

int + Hex
int

E({ri})

|G〉 = Πi|+〉i

interparticle 
distanceD√

∆2 + Ω2
= R3

0 " a3



Born-Oppenheimer potential

E(1)({ri}) =
1
2
λ1

∑

i !=j

Dν(ri − rj)

λ1 =
(
α2ηg + β2ηe

)2 − α2β2

Veff(r) = λ1
1− 3 cos θ

r3
dipole-dipole 
interaction:

First order perturbation

- 

- 

E(1)({ri}) = 〈G|Hex
int + Hstat

int |G〉
|G〉 =

∏

i

(α|g〉i + β|e, 1〉1)

Dimensionless coupling parameter
 
-

- tunable by the external electric field
  and the ratio            . 

dE/B
Ω/∆

- for a magic rabi frequency the 
  dipole-dipole interaction vanishes

λ1 = 0



Born-Oppenheimer potential

Second order perturbation

M = αβ
[(

α2ηg + β2ηe

)
(ηe − ηg) + (β2 − α2)/2

]

N = α2β2
[
(ηe − ηg)

2 + 1
]

E(2) ({ri}) =
∑

k !=i !=j

|M |2√
∆2 + Ω2

D2ν (ri − rk) ν (rj − rk)

+
∑

i !=j

|N |2√
∆2 + Ω2

[Dν (ri − rj)]
2

: three-body   
  interaction

: repulsive two-body 
  interaction 

Matrix elements

- 

- special point 

λ1 = 0
M = 0

repulsive two-body
interaction



Effective Hamiltonian
Effective interaction

- two-body interaction

- three-body interaction

- validity is restricted to

Veff ({ri}) =
1
2

∑

i !=j

V (ri − rj) +
1
6

∑

i !=j !=k

W (ri, rj , rk)

V (r) = λ1D ν (r) + λ2DR3
0 [ν (r)]2

W (r1, r2, r3) = γ2R
3
0D [ν(r12)ν(r13) + ν(r12)ν(r23) + ν(r13)ν(r23)]

interparticle 
distanceD√

∆2 + Ω2
= R3

0 " a3

(i) transverse confining 
    into 2D

(ii) vanishing dipole-dipole 
     interaction

0 1 2 3 4

0

+1.5
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!
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Bose-Hubbard 
model



Optical lattices

- characteristic energies

V (x) = V0 sin2 k x + ...

- AC Stark shift

Er =
!2k2

2m

|e〉

|g〉
off-resonant 

laser

- periodic potentials

∼ 10kHz

V0/Er ∼ 50

ω

- 2D and 1D setups 
- different lattice structures



Microscopic Hamiltonian

optical 
lattice

- strong opitcal lattice
- express the bosonic field operator 
  in terms of Wannier functions
- restriction to lowest Bloch band
  Jaksch et al, PRL (1998)

V/Er

x

ωBS

xi

w(x)

ψ(x) =
∑

i

w(x− xi)bi

V > Er

H =
∫

dxψ†(x)
(
− !2

2m
∆ + Vtrap(x)

)
ψ(x) + Hint

effective 
interaction Veff



Hubbard model

Extended Bose-Hubbard models

- hardcore bosons

H = −J
∑

〈ij〉

b†i bj +
1
2

∑

i #=j

Uijninj +
1
6!

∑

i #=j #=k

Wijkninjnk.

hopping energy two-body interaction three-body interaction

- interaction parameters
  for strong optical lattices Uij = V (Ri −Rj) Wijk = W (Ri,Rj ,Rk)

Polar molecule: LiCs: 

- dipole moment

- hopping energy

d ≈ 6Debye
- lattice spacing:

- nearest neighbor 
  interaction:

J/Er ∼ 0− 0.5

λ ≈ 1000 nm

W/Er ∼ 30 (R0/aL)
3

U/Er ∼ 30

Er ≈ 1.4 kHz



Supersolids on a triangular lattice

H = −J
∑

〈ij〉

b†i bj +
1
2

∑

i #=j〉

Uijninj

Uij ∼
1

|i− j|3

Uij ∼
1

|i− j|6

: static electric field

: static electric field
  + microwave field
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Supersolid hardcore bosons on the triangular lattice

Stefan Wessel(1) and Matthias Troyer(2)
(1)Institut für Theoretische Physik III, Universität Stuttgart, 70550 Stuttgart, Germany and

(2)Theoretische Physik, ETH Zürich, CH-8093 Zürich, Switzerland
(Dated: May 18, 2006)

We determine the phase diagram of hardcore bosons on a triangular lattice with nearest neighbor
repulsion, paying special attention to the stability of the supersolid phase. Similar to the same model
on a square lattice we find that for densities ρ < 1/3 or ρ > 2/3 a supersolid phase is unstable and
the transition between a commensurate solid and the superfluid is of first order. At intermediate
fillings 1/3 < ρ < 2/3 we find an extended supersolid phase even at half filling ρ = 1/2.

PACS numbers:

Next to the widely observed superfluid and Bose-
condensed phases with broken U(1) symmetry and “crys-
talline” density wave ordered phases with broken trans-
lational symmetry, the supersolid phase, breaking both
the U(1) symmetry and translational symmetry has been
a widely discussed phase that is hard to find both in
experiments and in theoretical models. Experimentally,
evidence for a possible supersolid phase in bulk 4He has
recently been presented [1], but the question of whether
a true supersolid has been observed is far from being set-
tled [2, 3], leaving the old question of supersolid behavior
in translation invariant systems [4, 5] unsettled for now.

More precise statements for a supersolid phase can be
made for bosons on regular lattices. It has been pro-
posed that such bosonic lattice models can be realized
by loading ultracold bosonic atoms into an optical lattice,
where the required longer range interaction between the
bosons could be induced by using the dipolar interaction
in chromium condensates [6], or an interaction mediated
by fermionic atoms in a mixture of bosonic and fermionic
atoms [7]. With the recent realization of a Bose-Einstein
condensate (BEC) in Chromium atoms [8], these exper-
iments have now become feasible, raising the interest in
phase diagrams of lattice boson model, and particularly
in the stability of supersolids on lattices.

The question if a supersolid phase is a stable ther-
modynamic phase for lattice boson models has been
controversial for many years. Analytical calculations
using mean-field and renormalization group methods
[9, 10, 11, 12] have predicted supersolid phases for many
models, including for the simplest model of hardcore
bosons with nearest neighbor repulsion on a square lat-
tice with Hamiltonian

H = −t
∑

〈i,j〉

(

a†
iaj + a†

jai

)

+ V
∑

〈i,j〉

ninj − µ
∑

i

ni, (1)

where a†
i (ai) creates (destroys) a particle on site i,

t denotes the nearest-neighbor hopping, V a nearest-
neighbor repulsion, and µ the chemical potential. Sub-
sequent numerical investigations using exact diagonal-
ization and quantum Monte Carlo (QMC) algorithms
[13, 14, 15, 16, 17] have shown that for this model, the

0 0.1 0.2 0.3 0.4 0.5
t/V

0
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0.8

1

! superfluid

solid !=2/3

solid !=1/3

supersolid

PS

PS

PS

PS

FIG. 1: Zero-temperature phase diagram of hardcore bosons
on the triangular lattice in the canonical ensemble obtained
from quantum Monte Carlo simulations. The regions of phase
separation are denoted by PS. The insets exhibit the density
distribution inside the solid phases for ρ = 1/3 (lower panel),
and ρ = 2/3 (upper panel).

supersolid phase is unstable and phase separates into su-
perfluid and solid domains at a first order (quantum)
phase transition. Recently, this occurrence of a first or-
der phase transition was explained by showing that a
uniform supersolid phase in a hardcore boson model is
unstable towards the introduction of domain walls, low-
ering the kinetic energy of the system by enhancing the
mobility of the bosons on the domain wall [17]. In a re-
lated work it has been proposed that superfluid domain
walls might be an explanation for the experimental ob-
servation of possible supersolidity in Helium [3, 18].

To stabilize a supersolid on the square lattice, the ki-
netic energy of the bosons in the supersolid has to be
enhanced either by sufficiently reducing the on-site in-
teraction to be less than 4V [17], by adding additional
next-nearest-neighbor hopping terms [16], or by forming
striped solid phases with additional longer-ranged repul-
sions [13, 19].

In this Letter we will consider the interplay of super-
solidity and frustration by studying the hardcore boson
model (1) on a triangular lattice. In the classical limit

Quantum Monte Carlo simulations
Wessel and Troyer, PRL (2005)
Melko et al., PRB, (2006)

- supersolid close to half filling
  and strong nearest neighbor
  interactions

- stable under next-nearest
  neighbor interactions

n = 1/2
U/J ! 10



One-dimensional model next-nearest 
neighbor interactions

 Bosonization
  
- hard-core bosons
- instabilities for densities:

- quantum Monte Carlo simulations
  (in progress)

n = 2/3

n = 1/3

n = 1/2

µ/W

J/W

Critical phase

- algebraic correlations
- compressible
- repulsive fermions  

Solid phases

- excitation gap
- incompressible
- density-density correlations  

- hopping correlations (1D VBS)

n = 2/3 n = 1/2 n = 1/3

〈∆ni∆nj〉

〈b†i bi+1b
†
jbj+1〉

H = −J
∑

i

b†i bi+1 + W
∑

i

ni−1ni ni+1 − µ
∑

i

ni + Hn.n.n.



String nets
next-nearest 

neighbor interactions
Honeycomb lattice

cos θ = 1/3
| ↑〉

| ↓〉

Hint = W
∑

〈〈ijk〉〉

ninj nk + Hn.n.n.

- interaction Hamiltonian

- integer filling within a single layer
- split the layer into a double layer

each well splits into 
a double well

maps to an effective 
spin system

Spin-Hamiltonian

- penalizes three successive spins
- allowed configurations are characterized 
  by string nets (Fidkowski, et al, 2006)

Hspin = W
∑

〈〈ijk〉〉

PStot=±3/2

Next-nearest 
neighbor 

interactions?



Conclusion and Outlook
Polar molecular crystal

- reduced three-body collisions
- strong coupling to cavity QED
- ideal quantum storage devices

Lattice structure

- alternative to optical lattices
- tunable lattice parameters
- strong phonon coupling: polarons

Extended Hubbard models

- strong nearest neighbor interaction
- three-body interaction

Novel quantum matter

- supersolid phases
- string nets?


