

Polarons in Immersed Optical Lattices

Dieter Jaksch (University of Oxford, UK)

QIP IRC

Immersed optical lattices

M. Bruderer, A. Klein, S.R. Clark and DJ, preprint

M. Bruderer and DJ, New J. Phys. 8, 87 (2006)

Immersed Lattice

- We consider a mixture of two degenerate atomic species
 - ➡ Species |ai is trapped by an optical lattice
 - ➡ The second species |bi does not see the lattice but is magnetically trapped

- We consider the limit where the background gas contains many more particles than the optical lattice
 - ➡ The background acts as a bath
 - ➡ The interaction between bath and lattice atoms creates phonons
 - ➡ We study the effects of these phonons on the dynamics of the lattice atoms

Optical Potentials

AC – Stark shift

Spontaneous emission

shift:
$$v = \frac{\Omega^2}{4\Delta + 2i\Gamma}$$

$$\frac{\text{AC -Stark shift } <\{v\}}{\text{Spontaneous emission } I\{v\}} \quad \frac{\Delta}{\Gamma} \stackrel{\text{$\grave{\text{A}}$ 1}}{}$$

→ Spontaneous emission rates of less than 1s⁻¹

State dependent potentials

- Use two species with different transition frequencies
- 'Magic' frequencies for hyperfine states in Alkali atoms

Fine structure of ⁸⁷Rb, ²³Na

Hyperfine structure of ⁸⁷Rb, ²³Na

State dependent optical lattice

AC Stark shift due to σ⁺ laser light

- DJ et al., PRL 1999
- O. Mandel et al., Nature 2003

Initialization of a fermionic register

A. Griessner et al., Phys. Rev. A 72, 032332 (2005).

Start with an empty optical lattice immersed in an ultracold Fermi gas

- ⇒ a) load atoms into the first band
- ⇒ b) incoherently emit phonons into the reservoir
- ⇒ c) remove remaining first band atoms

Cooling by superfluid immersion

A. Griessner et al., Phys. Rev. Lett. 97, 220403 (2006); A. Griessner et al., New J. Phys. 9, 44 (2007).

- ⇒ Lattice fermions immersed in a BEC
- Atoms with higher quasi-momentum q are excited
- ➡ They decay via the emission of a phonon into the BEC
- → They are collected in a dark state in the region q¼0
- → Analysis of an iterative map in terms of Levy statistics

$$\mathcal{M}_j:\hat{\mathbf{\rho}}_j
ightarrow \hat{\mathbf{\rho}}_{j+1} \equiv \left(\hat{\mathcal{D}} \circ \hat{E}_j\right) \hat{\mathbf{\rho}}_j$$

See KITP talk by P. Zoller

Interactions of lowest band atoms with a BEC

We consider atoms moving in the lowest band only, BEC at finite temperature

• The total Hamiltonian is $H = H_{\gamma} + H_{B} + H_{I}$

$$\hat{H}_{\rm B} = \int d\mathbf{r} \, \hat{\phi}^{\dagger}(\mathbf{r}) \left[-\frac{\hbar^2 \nabla^2}{2m_b} + V_{\rm ext}(\mathbf{r}) + \frac{g}{2} \hat{\phi}^{\dagger}(\mathbf{r}) \hat{\phi}(\mathbf{r}) \right] \hat{\phi}(\mathbf{r})$$

$$\hat{H}_{\rm I} = \kappa \int d\mathbf{r} \, \hat{\chi}^{\dagger}(\mathbf{r}) \hat{\chi}(\mathbf{r}) \hat{\phi}^{\dagger}(\mathbf{r}) \hat{\phi}(\mathbf{r}) , \qquad \qquad \text{Phonon energy / speed of sound}$$

and H_{γ} covers the dynamics of the lattice atoms

A single impurity in a BEC

A deep optical lattice realizes atomic quantum dots

(see A. Recati et al. PRL 2005)

- ⇒ Species |bi is a BEC in 1D, 2D or 3D
- → Impurities are assumed to interact independently (dÅξ)

➡ The condensate density operator

$$\hat{\phi}^{\dagger}(\mathbf{x})\hat{\phi}(\mathbf{x}) = n_0 + \hat{n}(\mathbf{x}, t)$$

➡ The impurity is trapped inside the BEC

$$\psi_{\sigma}(\mathbf{x} - \mathbf{x}_0) \propto \frac{1}{a_{\perp}^2 \sigma} \exp\left[-\left(\frac{x - x_0}{\sqrt{2}a_{\perp}}\right)^2 - \left(\frac{y - y_0}{\sqrt{2}a_{\perp}}\right)^2 - \left(\frac{z - z_0}{\sqrt{2}\sigma}\right)^2\right]$$

Dephasing of a quantum dot

• With $H_{\chi}=0$ and

$$\hat{H}_B = \frac{1}{2} \int d^D \mathbf{x} \left(\frac{n_0}{m} (\nabla \hat{\varphi})^2 + g \hat{n}^2 \right)$$

➡ The temporal correlation function of the impurity is given by

$$\langle \hat{\chi}^{\dagger}(0)\hat{\chi}(\tau)\rangle \propto \left\langle \exp\left(-i\frac{\kappa}{g}\int d\mathbf{x}|\psi_{\sigma}(\mathbf{x},\tau)|^{2}\{\hat{\varphi}(\mathbf{x},\tau)-\hat{\varphi}(\mathbf{x},0)\}\right)\right\rangle$$

- Turn the dephasing into fringe visibility by Ramsey interferometry
- Measure coarse grained phase correlations
- Spatial and temporal correlations accessible
- → In terms of Bogoliubov excitations the resulting Hamiltonian is an independent boson model (easy to solve)

$$H = \left(\kappa n_0 + \sum_{\mathbf{k}} \left(g_{\mathbf{k}} b_{\mathbf{k}}^\dagger + \text{h.c.}\right)\right) \hat{\chi}^\dagger \hat{\chi} + \sum_{\mathbf{k}} \omega_{\mathbf{k}} \left(b_{\mathbf{k}}^\dagger b_{\mathbf{k}} + \frac{1}{2}\right) + \text{const}$$

with gk overlap matrix elements for the impurity-Bogoliubov excitations coupling

Measuring properties of the BEC

• We obtain for a D dimensional BEC and long waiting time τ ! 1

$$\langle \widehat{\chi}^{\dagger}(\mathbf{0})\widehat{\chi}(\tau)\rangle \propto \begin{cases} C_T \exp\left[-\left(\frac{\kappa}{g}\right)^2 \frac{mc \, k_B T}{2\hbar^2 n_0} \tau\right] & \text{for } D = 1\\ C_T'\left(\frac{\sigma}{c\tau}\right)^{\nu} & \text{for } D = 2\\ \exp\left[-\left(\frac{\kappa}{g}\right)^2 \frac{m \, k_B T}{(2\pi)^{3/2} \hbar^2 n_0 \sigma}\right] & \text{for } D = 3 \end{cases}$$

$$\nu = (\kappa/g)^2 m k_B T / (2\pi \hbar^2 n_0)$$

- → Measure temperature, speed of sound, ...
- → A SAT in a 1D BEC cannot be used as a qubit
- ➡ The frequencies of the Bogoliubov excitations are not changed by the presence of the impurity

Atom interferometry

A.D. Cronin, J. Schmiedmayer, D.E. Pritchard, review article, to be published

- Use atoms instead of photons for interferometric measurement
 - \Rightarrow Apply a $\pi/2$ pulse (a Hadamard gate)

$$\phi(x)|a\rangle \to \phi(x)(|a\rangle + |c\rangle)$$

Split the wave function e.g. using state dependent potential

$$\rightarrow \phi(x)|a\rangle + \psi(x,t)|c\rangle$$

BEC

 \Rightarrow By interaction with e.g. a BEC one arm of the interferometer acquires a phase α

$$\rightarrow \phi(x)|a\rangle + e^{i\alpha}\psi(x,t)|c\rangle$$

 \Rightarrow Combine the two components yielding a kinematic phase β and apply $\pi/2$ pulse

$$\rightarrow \phi(x)[(1+e^{i(\alpha+\beta)})|a\rangle + (1-e^{i(\alpha+\beta)})|c\rangle]$$

 \implies Measure population in states |ai and |ci to determine α

$$p_a = \cos^2(\alpha + \beta)$$
 $p_c = \sin^2(\alpha + \beta)$

move via laser parameters

BEC properties

$$m = 10^{-25} kg$$
, $l_0 = 2 \times 10^6 m^{-1}$, $c = 10^{-3} ms^{-1}$
 $\sigma = 10^{-6} m$ $\kappa = g$ $T = 2 \times 10^{-7} K$

BEC properties

$$m = 10^{-25} kg, l_0 = 2 \times 10^6 m^{-1}, c = 10^{-3} ms^{-1}$$

 $\sigma = 10^{-6} m \qquad \kappa = g$

Immersed optical lattice (I)

- We do not specify H_{χ} yet but assume $\hat{\chi}(\mathbf{r}) = \sum_{\nu} \eta_{\nu}(\mathbf{r}) \hat{a}_{\nu}$ and solve GPE at κ =0
- For sufficiently weak BEC-impurity coupling $|\kappa|/gn_0({\bf r})\xi^D({\bf r})\ll 1$ we assume the deviation h $\delta\phi({\bf r})$ i » κ
- The linear order in $\delta \phi$ does not vanish and we obtain

$$\hat{H}_I = \kappa \int d\mathbf{r} \hat{\chi}^{\dagger}(\mathbf{r}) \hat{\chi}(\mathbf{r}) \hat{\phi}_0(\mathbf{r}) \left[\delta \hat{\phi}^{\dagger}(\mathbf{r}) + \delta \hat{\phi}(\mathbf{r}) \right]$$

• Carry out a Bogoliubov transformation to diagonalize the quadratic terms in $\delta \phi$ and obtain a Hubbard-Holstein model

$$\hat{H} = \hat{H}_{\chi} + \sum_{\nu,\mu} \omega_{\mu} \left[M_{\nu,\mu} \hat{b}_{\mu} + \text{h.c.} \right] \hat{n}_{\nu} + \sum_{\mu} \omega_{\mu} b_{\mu}^{\dagger} b_{\mu}$$

• Here $n_v = a_v^y a_v$ and $M_{v,\mu}$ describes the coupling of mode function $η_v$ to Bogoliubov excitation μ

Immersed optical lattice (II)

We apply a unitary Lang-Firsov transformation

$$\hat{H}_{\mathsf{LF}} = \mathsf{e}^{\hat{S}} \hat{H} \mathsf{e}^{-\hat{S}}$$
 $\hat{S} = -\sum_{\nu,\mu} \left(M_{\nu,\mu} \hat{b}_{\mu} - \mathsf{h.c.} \right) \hat{n}_{\nu}$

• We specialize to the case where H_{χ} is a BHM (parameters U_a and J_a) and find the transformed Hamiltonian

$$\hat{H}_{\mathsf{LF}} = -J_a \sum_{\langle i,j \rangle} (\hat{X}_i \hat{a}_i)^{\dagger} (\hat{X}_j \hat{a}_j) + \left(\frac{U_a}{2} - E_P\right) \sum_j \hat{n}_j (\hat{n}_j - 1)$$
$$+ (\mu - E_P) \sum_j \hat{n}_j - \sum_{i \neq j} V_{i,j} \hat{n}_i \hat{n}_j + \sum_{\mathbf{q}} \omega_{\mathbf{q}} \hat{b}_{\mathbf{q}}^{\dagger} \hat{b}_{\mathbf{q}}$$

X_v is a unitary Glauber displacement operator for the phonon cloud

$$\hat{X}_{\nu}^{\dagger} = \exp\left[\sum_{\mu} \left(M_{\nu,\mu}^* \hat{b}_{\mu}^{\dagger} - M_{\nu,\mu} \hat{b}_{\mu} \right) \right]$$

• For a sufficiently deep lattice $V_{i,j}=(\kappa^2/\xi g)\,\mathrm{e}^{-2|i-j|a/\xi}$ and $\mathsf{E}_\mathsf{p}=\mathsf{V}_\mathsf{i,i}/2$, where a is the lattice spacing

Small hopping term and low BEC temperature

For J/E_P¿1 and k_BT/E_P¿1 we treat the hopping term as a perturbation and find

$$\hat{H}^{(1)} = -\tilde{J} \sum_{\langle i,j \rangle} \hat{a}_i^{\dagger} \hat{a}_j + \tilde{\mu} \sum_j \hat{n}_j + \frac{1}{2} \tilde{U} \sum_j \hat{n}_j (\hat{n}_j - 1) - \frac{1}{2} \sum_{i \neq j} V_{i,j} \hat{n}_i \hat{n}_j$$

where $\tilde{\mu} = \mu - E_p, \ \tilde{U} = U - 2E_p \text{ and } \tilde{J} = J \langle \langle \hat{X}_i^{\dagger} \hat{X}_i \rangle \rangle.$

hh.ii denotes the average over the thermal phonon bath and gives

$$\langle\!\langle \hat{X}_i^\dagger \hat{X}_j \rangle\!\rangle = \exp\left\{-\sum_{\mathbf{q} \neq 0} |M_{0,\mathbf{q}}|^2 [1 - \cos(\mathbf{q} \cdot \mathbf{a})] (2N_{\mathbf{q}} + 1)\right\}$$
 \rightarrow $N_{\mathbf{q}}$ is the thermal occupation of the Bogoliubov excitation \mathbf{q}

- \Rightarrow The hopping bandwidth thus decreases exponentially with T and κ .

Generalized master equation

 For larger temperature T_cT_c we derive a generalized master equation for the occupation probabilities P_i(t) and find

$$\frac{\partial P_i(t)}{\partial t} = \int_0^t ds \sum_i \left[W_{i,j}(s) P_j(t-s) - W_{j,i}(s) P_i(t-s) \right]$$

- This describes a transition from coherent to incoherent transport
 - ⇒ Small temperatures (wave)

$$W_{i,j}(s) = 2\tilde{J}^2\Theta(s)$$

→ Large temperature (diffusion)

$$W_{i,j}(s) = 2w_{i,j}\delta(s)$$

Quantum statistics with classical particles, D. Gottesman, cond-mat/0511207.

Polaron clusters

- lacktriangle Low temperature $k_BT \,\lesssim\, E_p$ and $ilde{U} \gg V_{j,j+1},\, ilde{U} \gg ilde{J}$
- The off-site interactions lead to the formation of clusters of polarons in adjacent sites with biding energy [see T. Holstein, Annals of Physics 8, 343 (1959)]

$$E_b(s) \approx (s-1)V_{j,j+1}$$

and a lowest band

$$E_k(s) \approx -E_b(s) - 2\tilde{J}^s(V_{j,j+1})^{1-s}\cos(ka)$$

Observing polaron clusters

Measure density-density correlations and broadening in momentum distribution

- Exponential localization in real space
- Broadening in momentum space
- Increased particle number fluctuations

$$\kappa/E_R\lambda = \{4.0, 6.1, 8.1, 10.1, 12.1\} \times 10^{-2}$$

Outlook

- Anisotropic lattices and off-site interactions
 - → Hopping rates differently suppressed along different axes
 - → Off-sites interactions become anisotropic
 - Fermions moving in the first excited band
- Probing the BEC
 - → Measurements using entangled impurities
 - → Making the impurities small compared to a_s → GPE approach breaks down
- Experiments
 - → Bose-Bose mixture setup in M. Inguscio's group
 - ⇒ State dependent lattice under construction
 - Joint work on immersion experiments starting in May

People

S. Clark Oxford:

R. Palmer

M. Bruderer

K. Surmacz

A. Klein

B. Vaucher

M. Rosenkranz

K.C. Lee

K. Loukopoulos S.-W. Lee

U.Dorner

D. J.

