Nonequilibrium Polariton Condensation: Introduction to Microcavity Polaritons

Jonathan Keeling, P. R. Eastham, P. B. Littlewood, F. M. Marchetti, M. H. Szymańska Theory of Condensed Matter, Cambridge

April 9th 2007

J. Keeling, KITP, 2007

Overview

• Microcavity polaritons: review of experiments.

Overview

- Microcavity polaritons: review of experiments.
- Models of polaritons: Dicke model.

Overview

- Microcavity polaritons: review of experiments.
- Models of polaritons: Dicke model.
- Similarities and differences to Feshbach resonance

Overview

- Microcavity polaritons: review of experiments.
- Models of polaritons: Dicke model.
- Similarities and differences to Feshbach resonance
- Nonequilbrium quantum condensation

Polaritons

• Strong coupling of photons to excitons

Momentum

[Pekar, JETP (1958)], [Hopfield, Phys. Rev (1958)]

Polaritons

- Strong coupling of photons to excitons
- Anti-crossing form two new modes

Momentum

Polaritons

- Strong coupling of photons to excitons
- Anti-crossing form two new modes
- No condensation can relax to photon mode.

[Pekar, JETP (1958)],[Hopfield, Phys. Rev (1958)]

Momentum

Microcavity polaritons

Quantum well excitons coupled to photons confined in a microcavity.

Microcavity polaritons

Quantum well excitons coupled to photons confined in a microcavity.

Microcavity polaritons

Quantum well excitons coupled to photons confined in a microcavity.

$$\omega_k = \sqrt{\omega_0^2 + c^2 k^2} \simeq \omega_0 + k^2/2m$$

Contents 3

Microcavity polaritons

Quantum well excitons coupled to photons confined in a microcavity.

J. Keeling, KITP, 2007

Contents 3

Why polariton condensation

Why polariton condensation:

Why polariton condensation

Why polariton condensation:

• Polariton mass $10^{-4}m_{\text{electron}}$, high T_c .

Why polariton condensation

Why polariton condensation:

- Polariton mass $10^{-4}m_{\text{electron}}$, high T_c .
- Photon component non-classical light.

Why polariton condensation

Why polariton condensation:

- Polariton mass $10^{-4}m_{\text{electron}}$, high T_c .
- Photon component non-classical light.
- Crossover to laser.

Why polariton condensation

- Problems?
- Cavity lifetime is short (ps), hard to thermalise.

Polariton Experiments: Photoluminescence

Polariton Experiments: Photoluminescence

Polariton Experiments: Thermal distribution

[Kasprzak et al. Nature 443 409]

Polariton Experiments: Interference setup

Contents 7

Polariton Experiments: Interference setup

Polariton Experiments: Interference setup

Polariton Experiments: Interference resuls

[[]Kasprzak et al. Nature 443 409]

Localised two level systems

Localised two level systems

Localised two level systems

• Effective hard-core exciton-exciton interaction exists.

Localised two level systems

- Effective hard-core exciton-exciton interaction exists.
- Energy difference between levels represents energy of bound exciton state.

The Dicke Model Hamiltonian

$$H = \sum_{\alpha=1}^{\alpha=nA} \epsilon \left(b_{\alpha}^{\dagger} b_{\alpha} - a_{\alpha}^{\dagger} a_{\alpha} \right)$$

The Dicke Model Hamiltonian

$$H = \sum_{\alpha=1}^{\alpha=nA} \epsilon \left(b_{\alpha}^{\dagger} b_{\alpha} - a_{\alpha}^{\dagger} a_{\alpha} \right) + \sum_{k=l/\sqrt{A}} \hbar \omega_k \psi_k^{\dagger} \psi_k$$

The Dicke Model Hamiltonian

$$H = \sum_{\alpha=1}^{\alpha=nA} \epsilon \left(b_{\alpha}^{\dagger} b_{\alpha} - a_{\alpha}^{\dagger} a_{\alpha} \right) + \sum_{k=l/\sqrt{A}} \hbar \omega_{k} \psi_{k}^{\dagger} \psi_{k}$$
$$+ \frac{g}{\sqrt{A}} \sum_{\alpha,k} \left(e^{2\pi i \mathbf{k} \cdot \mathbf{r}_{n}} \psi_{k} b_{\alpha}^{\dagger} a_{\alpha} + e^{-2\pi i \mathbf{k} \cdot \mathbf{r}_{n}} \psi_{k}^{\dagger} a_{\alpha}^{\dagger} b_{\alpha} \right).$$

The Dicke Model Hamiltonian

$$H = \sum_{\alpha=1}^{\alpha=nA} \epsilon \left(b_{\alpha}^{\dagger} b_{\alpha} - a_{\alpha}^{\dagger} a_{\alpha} \right) + \sum_{k=l/\sqrt{A}} \hbar \omega_{k} \psi_{k}^{\dagger} \psi_{k}$$
$$+ \frac{g}{\sqrt{A}} \sum_{\alpha,k} \left(e^{2\pi i \mathbf{k} \cdot \mathbf{r}_{n}} \psi_{k} b_{\alpha}^{\dagger} a_{\alpha} + e^{-2\pi i \mathbf{k} \cdot \mathbf{r}_{n}} \psi_{k}^{\dagger} a_{\alpha}^{\dagger} b_{\alpha} \right).$$

• Photon dispersion in cavity: $\omega_k = \sqrt{\omega_0^2 + c^2 k^2} \approx \omega_0 + \hbar k^2/2m$

The Dicke Model Hamiltonian

$$H = \sum_{\alpha=1}^{\alpha=nA} \epsilon \left(b_{\alpha}^{\dagger} b_{\alpha} - a_{\alpha}^{\dagger} a_{\alpha} \right) + \sum_{k=l/\sqrt{A}} \hbar \omega_{k} \psi_{k}^{\dagger} \psi_{k}$$
$$+ \frac{g}{\sqrt{A}} \sum_{\alpha,k} \left(e^{2\pi i \mathbf{k} \cdot \mathbf{r}_{n}} \psi_{k} b_{\alpha}^{\dagger} a_{\alpha} + e^{-2\pi i \mathbf{k} \cdot \mathbf{r}_{n}} \psi_{k}^{\dagger} a_{\alpha}^{\dagger} b_{\alpha} \right).$$

- Photon dispersion in cavity: $\omega_k = \sqrt{\omega_0^2 + c^2 k^2} \approx \omega_0 + \hbar k^2/2m$
- Number of excitations

$$N = \sum_{\alpha=1}^{\alpha=nA} \frac{1}{2} \left(b_{\alpha}^{\dagger} b_{\alpha} - a_{\alpha}^{\dagger} a_{\alpha} + 1 \right) + \sum_{k=l/\sqrt{A}} \psi_{k}^{\dagger} \psi_{k}.$$

J. Keeling, KITP, 2007

Contents 10

Feshbach Analogies and differences

 \iff

Comparison of physical systems:

Feshbach resonance

Microcavity Polaritons

Feshbach Analogies and differences

 \iff

Comparison of physical systems:

Feshbach resonance Closed channel molecules \iff

Microcavity Polaritons Microcavity Photons

Feshbach Analogies and differences

Comparison of physical systems:

Feshbach resonance	\iff
Closed channel molecules	\iff
Atoms	\iff

Microcavity Polaritons Microcavity Photons Electron/Holes
Feshbach Analogies and differences

Comparison of physical systems:

Feshbach resonance	\iff
losed channel molecules	\iff
Atoms	\iff
Inter-channel coupling	\iff

Microcavity Polaritons

Microcavity Photons

 $\mathsf{Electron}/\mathsf{Holes}$

Electric dipole interaction

Feshbach Analogies and differences

Comparison of physical systems:

\Longrightarrow
\Rightarrow
\Longrightarrow
\Longrightarrow
\Longrightarrow

Microcavity Polaritons

Microcavity Photons

Electron/Holes

Electric dipole interaction

Coulomb attraction

Feshbach Analogies and differences

Comparison of physical systems:

Feshbach resonance \iff Closed channel molecules \iff Atoms \iff Inter-channel coupling \iff Background potential \iff

Important differences

• Polaritons: Measure only emitted photons.

Microcavity Polaritons

- Microcavity Photons
- Electron/Holes
- Electric dipole interaction
- Coulomb attraction

Feshbach Analogies and differences

Comparison of physical systems:

Feshbach resonance \iff Closed channel molecules \iff Atoms \iff Inter-channel coupling \iff Background potential \iff

Important differences

- Polaritons: Measure only emitted photons.
- Cannot dynamically change exciton-photon detuning.

Microcavity Polaritons

- Microcavity Photons
- Electron/Holes
- Electric dipole interaction
- Coulomb attraction

Holland-Timmermans model

Holland-Timmermans model

$$H - \mu N = \sum_{k,\sigma} (\epsilon_k - \mu) c_{k,\sigma}^{\dagger} c_{k,\sigma}$$

Holland-Timmermans model

$$H - \mu N = \sum_{k,\sigma} (\epsilon_k - \mu) c_{k,\sigma}^{\dagger} c_{k,\sigma} + \sum_k (\epsilon_k + 2\Delta - 2\mu) b_k^{\dagger} b_k$$

Holland-Timmermans model

$$H - \mu N = \sum_{k,\sigma} (\epsilon_k - \mu) c_{k,\sigma}^{\dagger} c_{k,\sigma} + \sum_k (\epsilon_k + 2\Delta - 2\mu) b_k^{\dagger} b_k$$
$$+ g \sum_{k,q} \left(b_q^{\dagger} c_{-k+q/2,\downarrow} c_{k+q/2,\uparrow} + c_{k+q/2,\uparrow}^{\dagger} c_{-k+q/2,\downarrow}^{\dagger} b_q \right)$$

Holland-Timmermans model

One model of Feshbach resonance, very similar to Dicke model:

$$H - \mu N = \sum_{k,\sigma} (\epsilon_k - \mu) c_{k,\sigma}^{\dagger} c_{k,\sigma} + \sum_k (\epsilon_k + 2\Delta - 2\mu) b_k^{\dagger} b_k$$

+
$$g \sum_{k,q} \left(b_q^{\dagger} c_{-k+q/2,\downarrow} c_{k+q/2,\uparrow} + c_{k+q/2,\uparrow}^{\dagger} c_{-k+q/2,\downarrow}^{\dagger} b_q \right)$$

-
$$\frac{U}{2} \sum_{k,k',q} c_{k+q,\uparrow}^{\dagger} c_{k'-q,\downarrow}^{\dagger} c_{k,\downarrow} c_{k',\uparrow}.$$

J. Keeling, KITP, 2007

Holland-Timmermans model

One model of Feshbach resonance, very similar to Dicke model:

$$\begin{aligned} H - \mu N &= \sum_{k,\sigma} (\epsilon_k - \mu) c_{k,\sigma}^{\dagger} c_{k,\sigma} + \sum_k (\epsilon_k + 2\Delta - 2\mu) b_k^{\dagger} b_k \\ &+ g \sum_{k,q} \left(b_q^{\dagger} c_{-k+q/2,\downarrow} c_{k+q/2,\uparrow} + c_{k+q/2,\uparrow}^{\dagger} c_{-k+q/2,\downarrow}^{\dagger} b_q \right) \\ &- \frac{U}{2} \sum_{k,k',q} c_{k+q,\uparrow}^{\dagger} c_{k'-q,\downarrow}^{\dagger} c_{k,\downarrow} c_{k',\uparrow}. \end{aligned}$$

J. Keeling, KITP, 2007

Holland-Timmermans model

One model of Feshbach resonance, very similar to Dicke model:

$$\begin{aligned} H - \mu N &= \sum_{k,\sigma} (\epsilon_k - \mu) c_{k,\sigma}^{\dagger} c_{k,\sigma} + \sum_k (\epsilon_k + 2\Delta - 2\mu) b_k^{\dagger} b_k \\ &+ g \sum_{k,q} \left(b_q^{\dagger} c_{-k+q/2,\downarrow} c_{k+q/2,\uparrow} + c_{k+q/2,\uparrow}^{\dagger} c_{-k+q/2,\downarrow}^{\dagger} b_q \right) \\ &- \frac{U}{2} \sum_{k,k',q} c_{k+q,\uparrow}^{\dagger} c_{k'-q,\downarrow}^{\dagger} c_{k,\downarrow} c_{k',\uparrow}. \end{aligned}$$

Gives energy dependent fermion-fermion scattering.

Holland-Timmermans model

One model of Feshbach resonance, very similar to Dicke model:

$$\begin{aligned} H - \mu N &= \sum_{k,\sigma} (\epsilon_k - \mu) c_{k,\sigma}^{\dagger} c_{k,\sigma} + \sum_k (\epsilon_k + 2\Delta - 2\mu) b_k^{\dagger} b_k \\ &+ g \sum_{k,q} \left(b_q^{\dagger} c_{-k+q/2,\downarrow} c_{k+q/2,\uparrow} + c_{k+q/2,\uparrow}^{\dagger} c_{-k+q/2,\downarrow}^{\dagger} b_q \right) \\ &- \frac{U}{2} \sum_{k,k',q} c_{k+q,\uparrow}^{\dagger} c_{k'-q,\downarrow}^{\dagger} c_{k,\downarrow} c_{k',\uparrow}. \end{aligned}$$

Gives energy dependent fermion-fermion scattering.

Mean field theory

At zero temperature, BCS-like ansatz is exact minimum

$$|\Psi\rangle = e^{\lambda(\psi_0^{\dagger} + \sum_{\alpha} X_{\alpha} b_{\alpha}^{\dagger} a_{\alpha})} \prod_{\alpha} a_{\alpha}^{\dagger} |0\rangle$$

[Eastham & Littlewood. Phys. Rev. B 64 235101].

Mean field theory

At zero temperature, BCS-like ansatz is exact minimum

$$|\Psi\rangle = e^{\lambda(\psi_0^{\dagger} + \sum_{\alpha} X_{\alpha} b_{\alpha}^{\dagger} a_{\alpha})} \prod_{\alpha} a_{\alpha}^{\dagger} |0\rangle = e^{\lambda\psi_0^{\dagger}} \prod_{\alpha} \left(v_{\alpha} b_{\alpha}^{\dagger} + u_{\alpha} a_{\alpha}^{\dagger} \right) |0\rangle$$

[Eastham & Littlewood. Phys. Rev. B 64 235101].

Mean field theory

At zero temperature, BCS-like ansatz is exact minimum

$$|\Psi\rangle = e^{\lambda(\psi_0^{\dagger} + \sum_{\alpha} X_{\alpha} b_{\alpha}^{\dagger} a_{\alpha})} \prod_{\alpha} a_{\alpha}^{\dagger} |0\rangle = e^{\lambda \psi_0^{\dagger}} \prod_{\alpha} \left(v_{\alpha} b_{\alpha}^{\dagger} + u_{\alpha} a_{\alpha}^{\dagger} \right) |0\rangle$$

At finite T, Integrate out TLS, and minimise w.r.t $\psi.$

[Eastham & Littlewood. Phys. Rev. B 64 235101].

Mean field theory

At zero temperature, BCS-like ansatz is exact minimum

$$|\Psi\rangle = e^{\lambda(\psi_0^{\dagger} + \sum_{\alpha} X_{\alpha} b_{\alpha}^{\dagger} a_{\alpha})} \prod_{\alpha} a_{\alpha}^{\dagger} |0\rangle = e^{\lambda \psi_0^{\dagger}} \prod_{\alpha} \left(v_{\alpha} b_{\alpha}^{\dagger} + u_{\alpha} a_{\alpha}^{\dagger} \right) |0\rangle$$

At finite T, Integrate out TLS, and minimise w.r.t ψ . Gap equation:

$$\tilde{\omega}_{0}\psi_{0} = g^{2}n\frac{\tanh(\beta E)}{E}\psi_{0}$$
$$E = \sqrt{\tilde{\epsilon}^{2} + g^{2}n|\psi_{0}|^{2}}$$

[Eastham & Littlewood. Phys. Rev. B 64 235101].

J. Keeling, KITP, 2007

Mean field theory

At zero temperature, BCS-like ansatz is exact minimum

$$|\Psi\rangle = e^{\lambda(\psi_0^{\dagger} + \sum_{\alpha} X_{\alpha} b_{\alpha}^{\dagger} a_{\alpha})} \prod_{\alpha} a_{\alpha}^{\dagger} |0\rangle = e^{\lambda\psi_0^{\dagger}} \prod_{\alpha} \left(v_{\alpha} b_{\alpha}^{\dagger} + u_{\alpha} a_{\alpha}^{\dagger} \right) |0\rangle$$

At finite T, Integrate out TLS, and minimise w.r.t $\psi.$ Gap equation:

$$\tilde{\omega}_{0}\psi_{0} = g^{2}n\frac{\tanh(\beta E)}{E}\psi_{0} \qquad \text{Excitation density:}$$

$$E = \sqrt{\tilde{\epsilon}^{2} + g^{2}n|\psi_{0}|^{2}} \qquad \frac{\rho_{ex}}{n} = -\frac{\tilde{\epsilon}}{2E}\tanh(\beta E) + |\psi_{0}|^{2}$$

[Eastham & Littlewood. Phys. Rev. B 64 235101].

J. Keeling, KITP, 2007

Mean field theory

At zero temperature, BCS-like ansatz is exact minimum

$$|\Psi\rangle = e^{\lambda(\psi_0^{\dagger} + \sum_{\alpha} X_{\alpha} b_{\alpha}^{\dagger} a_{\alpha})} \prod_{\alpha} a_{\alpha}^{\dagger} |0\rangle = e^{\lambda\psi_0^{\dagger}} \prod_{\alpha} \left(v_{\alpha} b_{\alpha}^{\dagger} + u_{\alpha} a_{\alpha}^{\dagger} \right) |0\rangle$$

At finite T, Integrate out TLS, and minimise w.r.t $\psi.$ Gap equation:

$$\tilde{\omega}_{0}\psi_{0} = g^{2}n\frac{\tanh(\beta E)}{E}\psi_{0} \qquad \text{Excitation density:}$$

$$E = \sqrt{\tilde{\epsilon}^{2} + g^{2}n|\psi_{0}|^{2}} \qquad \frac{\rho_{ex}}{n} = -\frac{\tilde{\epsilon}}{2E}\tanh(\beta E) + |\psi_{0}|^{2}$$

[Eastham & Littlewood. Phys. Rev. B 64 235101].

J. Keeling, KITP, 2007

Comparing mean field theories

General form

$$\frac{1}{U_{\text{eff}}} = \int \nu_s(\epsilon) \frac{\tanh(\beta(\epsilon - \mu))}{\epsilon - \mu} d\epsilon$$

BCS superconductor Holland-Timmermans

Dicke model

Comparing mean field theories

Comparing mean field theories

Comparing mean field theories

Comparing mean field theories

J. Keeling, KITP, 2007

Comparing mean field theories

Supplementary slides

Localised two level systems

[Marchetti et al. PRL 96, 066405 (2006);cond-mat/0608096].

Localised two level systems

Fluctuation corrections

• Consider crossover to BEC with changing density.

Fluctuation corrections

- Consider crossover to BEC with changing density.
- Treatment similar to [Nozières & Schmitt-Rink J.L.T.P 59 195 (1985)]

Fluctuation corrections

- Consider crossover to BEC with changing density.
- Treatment similar to [Nozières & Schmitt-Rink J.L. T.P **59** 195 (1985)]
- However:
 - Two dimensional system consider Kosterlitz-Thouless

Fluctuation corrections

- Consider crossover to BEC with changing density.
- Treatment similar to [Nozières & Schmitt-Rink J.L. T.P **59** 195 (1985)]
- However:
 - Two dimensional system consider Kosterlitz-Thouless
 - Boson field dynamic, with chemical potential similar to Holland-Timmermans model, e.g. [*Ohashi & Griffin*, *PRA*. **67** 063612 (2003)]

Fluctuations in 2d

Fluctuations in 2d

$$\rho_s = \# \frac{2mk_BT}{\hbar^2}$$

J. Keeling, KITP, 2007

Fluctuations in 2d

J. Keeling, KITP, 2007

Fluctuations in 2d

Need $\rho_{sf} = \rho_{total} - \rho_{normal}$. ρ_{normal} found by current response: $J_i(\mathbf{q}) = \chi_{ij}(\mathbf{q})F_j(\mathbf{q})$.

J. Keeling, KITP, 2007

Fluctuations in 2d

Fluctuations in 2d

Thus, need to find: $\rho_{\rm total}$ in presence of condensate.

J. Keeling, KITP, 2007

Fluctuations in presence of condensate

Density is total derivative of free energy:

$$\rho = -\frac{\partial F}{\partial \mu} - \frac{d\psi_0}{d\mu} \frac{\partial F}{\partial \psi_0}$$

Fluctuations in presence of condensate

Density is total derivative of free energy:

$$\rho = -\frac{\partial F}{\partial \mu} - \frac{d\psi_0}{d\mu} \frac{\partial F}{\partial \psi_0}$$

Write $F = F_{m.f.} + F_{fluct.}$

Fluctuations in presence of condensate

Schematically,

Density is total derivative of free energy:

$$F_{\rm fluct} = -k_B T \ln \left\langle e^{-\beta (H_{\rm fluct}[\psi_0] - \mu \rho_{\rm uncondensed})} \right\rangle$$

$$\rho = -\frac{\partial F}{\partial \mu} - \frac{d\psi_0}{d\mu} \frac{\partial F}{\partial \psi_0}$$

Write $F = F_{m.f.} + F_{fluct.}$

Fluctuations in presence of condensate

Schematically,

Density is total derivative of free energy:

$$F_{\rm fluct} = -k_B T \ln \left\langle e^{-\beta (H_{\rm fluct}[\psi_0] - \mu \rho_{\rm uncondensed})} \right\rangle$$

$$\rho = -\frac{\partial F}{\partial \mu} - \frac{d\psi_0}{d\mu} \frac{\partial F}{\partial \psi_0}$$

By definition, $\partial F_{\rm m.f.}/\partial \psi_0 = 0$, so:

Write $F = F_{m.f.} + F_{fluct.}$

Fluctuations in presence of condensate

Schematically,

Density is total derivative of free energy:

 $\rho = -\frac{\partial F}{\partial \mu} - \frac{d\psi_0}{d\mu} \frac{\partial F}{\partial \psi_0}$

$$F_{\rm fluct} = -k_B T \ln \left\langle e^{-\beta (H_{\rm fluct}[\psi_0] - \mu \rho_{\rm uncondensed})} \right\rangle$$

By definition,
$$\partial F_{\rm m.f.}/\partial \psi_0 = 0$$
, so:

Write
$$F = F_{m.f.} + F_{fluct}$$
.

$$\rho = \left(\rho_{\rm m.f.} - \frac{d\psi_0}{d\mu} \frac{\partial F_{\rm fluct}}{\partial \psi_0}\right) - \frac{\partial F_{\rm fluct}}{\partial \mu}$$

Fluctuations in presence of condensate

Schematically,

Density is total derivative of free energy:

$$F_{\rm fluct} = -k_B T \ln \left\langle e^{-\beta (H_{\rm fluct}[\psi_0] - \mu \rho_{\rm uncondensed})} \right\rangle$$

$$\rho = -\frac{\partial F}{\partial \mu} - \frac{d\psi_0}{d\mu} \frac{\partial F}{\partial \psi_0}$$
By definition, $\partial F_{\text{m.f.}} / \partial \psi_0 = 0$, so:
Write $F = F_{\text{m.f.}} + F_{\text{fluct.}}$

$$\rho = \left(\rho_{\text{m.f.}} - \frac{d\psi_0}{d\mu} \frac{\partial F_{\text{fluct}}}{\partial \psi_0}\right) - \frac{\partial F_{\text{fluct}}}{\partial \mu}$$

Condensate depletion changes critical chemical potential.

J. Keeling, KITP, 2007

Simple example: Weakly interacting Bose gas

$$H - \mu N = \sum_{k} (\epsilon_k - \mu) a_k^{\dagger} a_k + \frac{g}{2} \sum_{k,k',q} a_{k+q}^{\dagger} a_{k'-q}^{\dagger} a_k a_{k'}$$

Simple example: Weakly interacting Bose gas

$$H - \mu N = \sum_{k} (\epsilon_{k} - \mu) a_{k}^{\dagger} a_{k} + \frac{g}{2} \sum_{k,k',q} a_{k+q}^{\dagger} a_{k'-q}^{\dagger} a_{k} a_{k'}$$

J. Keeling, KITP, 2007

Simple example: Weakly interacting Bose gas

$$H - \mu N = \sum_{k} (\epsilon_{k} - \mu) a_{k}^{\dagger} a_{k} + \frac{g}{2} \sum_{k,k',q} a_{k+q}^{\dagger} a_{k'-q}^{\dagger} a_{k} a_{k'}$$

J. Keeling, KITP, 2007

Simple example: Weakly interacting Bose gas

$$H - \mu N = \sum_{k} (\epsilon_{k} - \mu) a_{k}^{\dagger} a_{k} + \frac{g}{2} \sum_{k,k',q} a_{k+q}^{\dagger} a_{k'-q}^{\dagger} a_{k} a_{k'}$$

Normal state exists for $\mu < 0$: Need self energy.

J. Keeling, KITP, 2007

The phase diagram

The phase diagram

J. Keeling, KITP, 2007

The phase diagram

J. Keeling, KITP, 2007

The phase diagram

The phase diagram

The phase diagram

M = 0.10

The phase diagram

J. Keeling, KITP, 2007