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Exploring new phases of cold atomic matter with or 
without an optical lattice

W. Vincent Liu
University of Pittsburgh -- http://www.pitt.edu/~wvliu/

A. Unconventional vortex properties of a (gapless) breached pair 
superfluid [with M. Forbes, E. Gubankova, Y. B. Kim, V. M. Stojanovic,  
F. Wilczek, P. Zoller]

B. Orbital order of p-band bosons in the optical lattice [with S. Das 
Sarma, J. Moore, C. Wu]

Two topics:
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Topic A. Breached pair superfluidity (BP)

M. Forbes  (MIT graduate; now postdoc
at UW Seattle) 

E. Gubankova (MIT postdoc)
Y. B. Kim (U of Toronto)
F. Wilczek (MIT)
V. Stojanovic (Carnegie-Mellon student)
P. Zoller (Innsbruck)

Collaborators:

A. PRL 90, 047002 (2003)
B. PRL 91, 032001(2003)
C. PRA 70, 033603 (2004)
D. PRL 94, 017001 (2005)
E. cond-mat/0611295

publications

News story: 
“Odd particle out”, 
Phys. Rev. Focus

(January 5, 2005; story 1)
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Part  A.1.
A brief remark on Breached Pair Superfluidity
(BP state)
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Why called Breached Pair

BCS vs BP wavefunctions: Unpaired 
matter??

where

“breach” region: p−∆ ≤ |p| ≤ p+∆
[WVL and F. Wilczek, PRL (2003)]
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Essential Difference: Sarma vs Breached Pair

Sarma [J. Phys. Chem. Solids (1963)]

WVL-Wilczek [PRL 2003a] (see also our [PRL 2005])

My mistake: The conclusion of [Gubankova-WVL-Wilczek, PRL 2003b].

1. Re-discover the interest of mismatched Fermi surfaces.
2. First time introduced the effect of unequal masses.
3. Used momentum cutoff λ.
4. First recognized the interest of δkF > λ.
5. Stable breached pair (BP) state.

1. Equal masses only.
2. Used Debye-like energy cutoff ωD for interaction.
3. Did not pay attention to the new possibility of δkF >

ωD/vF .
4. Correctly concluded an unstable (now known as) Sarma state.
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How stable?

The stability of BP criticized by:

1. Shin-Tza Wu, Sungkit Yip, PRA (2003)
2. P. F. Bedaque, H. Caldas, G. Rupak, PRL (2003); Caldas, 

PRA (2004)

Both are correct, but are done for a short-range delta-interaction.
[WVL-Wilczek, PRL 2003] is valid and correct.

The stability issue was clarified and examined in:
[Forbes, Gubankova, WVL, Wilczek, PRL 94, 017001 (2005)]

Stable for interaction of
• a finite or long 

range; 
or
• a momentum cutoff

effective range inter-atom distance

R∗ & k−1F
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Effective range in real atomic gases

From D. Petrov, talk given at KITP Conference: Quantum gases 
2004:

Gas density: n ∼ 1014cm−3 ⇒ k−1F ∼ 1.0μm

[http://online.itp.ucsb.edu/online/gases_c04/petrov/]
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Summary of Stability Criteria of BP

Two essential/necessary conditions (for weak coupling):

• Unequal masses

• Momentum dependent interaction: either a finite or 
long range or a momentum cutoff

Clarified in [Forbes, Gubankova, WVL, Wilczek, PRL 2005]
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Part. A.2
Strong coupling imbalanced superfluid

Focus on the following case:
Strong interaction, wide Feshbach resonance

• There is a long list of papers before the phase-separation 
experiments of imbalanced fermi gases [M.. Zwierlein, W. 
Ketterle et al. Science (2006); G. Partridge, R. Hulet et al.,
Science (2006)] --- (it seems) in part stimulated by our 
work.

• There is even a longer list of papers after the experiments 
(>150?? as based on the citation record of [WVL and F. 
Wilczek PRL 2003])
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BP states of one or two fermi surfaces: BP2 vs BP1

weak coupling strong coupling

two fermi surfacesone fermi surface

m↑ = m↓

k

m↑ < m↓
μ(∆) ≈ μ(∆ = 0) > 0

m↑ < m↓

Ep

px

WVL (unpublished)

quasiparticlequasiparticle spectrumspectrum

μ̄(∆ ∼ ²F ) < 0
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Spin imbalanced Fermi gas: phase diagram

κ = − 1

na3
∝ −

µ
1

kFa

¶3η =
δμ

2∆
with

δμ = μ↑ − μ↓,
∆=energy gap.

BP1
BP2

Normal state

FFLO

BEC/BCS

BP=breached pair 
with 1 or 2 Fermi 
surfaces

unitarity

po
la

ri
ze

d
[D.T.Son, M.A.Stephanov, cond-mat/0507586,Phys. Rev. A 2006]

Many other versions of phase diagram (see next slide).
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BP1 (Breached pairing with 1 Fermi surface)
[same as ‘magnetized’ superfluid of Sheehy-Radzihovsky]

Found in the homogenous space by:
1. C. H. Pao, S.-T. Wu, and S. K. Yip, Phys. Rev. B 73 (2006) 132506.
2. D. E. Sheehy and L. Radzihovsky, Phys. Rev. Lett. 96 (2006) 060401.
3. D. T. Son and M. A. Stephanov, Phys. Rev. A 74 (2006) 013614.
4. M. Iskin and C. A. R. Sá de Melo,  Phys. Rev. Lett. 97 (2006) 100404.
5. P. Nikolic and S. Sachdev, cond-mat/0609106.
6. Y. Nishida and D. T. Son, cond-mat/0607835.

Correspondingly, a superfluid-normal mixture phase found in a trap:
1. P. Pieri and G. C. Strinati, PRL 96 (2006) 150404.
2. W. Yi and L. M. Duan, Phys. Rev. A 73 (2006) 031604.
3. T. N. De Silva and E. J. Mueller, Phys. Rev. A 73 (2006) 051602.
4. W. Yi and L. M. Duan, Phys. Rev. Lett. 97 (2006) 120401.
5. C. H. Pao and S. K. Yip, J. Phys.: Cond. Matt. 18 (2006) 5567.

BP1 is predicted to be on the molecular (BEC) side of 
the Feshbach resonance, but not in the unitary regime!
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The key is gapless fermions:

Unconventional vortex interaction
in a ‘polarized’ homogeneous gapless (BP1) superfluid.
[V. M. Stojanovic, WVL and Y. B. Kim, cond-mat/0611295]

kb

Ek =
q
( k

2

2m − μ̄)2 +∆2 ± δ
2

(μ̄ ≡ μ↑+μ↓
2 < 0 in BEC; δ = μ↑ − μ↓)

Breached-pairing Fermi ball

P =
n↑ − n↓
n↑ + n↓

↔ kb =
³
6π2(n↑ − n↓)

´1/3
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Check BP1 stability: superfluid density

“0.5” corresponds 
to         equal to the 
total number of 
fermion pairs per 
unit volume.

(spin polarization)

Definition: n = n↑ + n↓

ns

[V. Stojanovic, WVL, Y.B. Kim, unpublished]

NoteNote: Used the method of L. He, M. Jin, P. Zhuang [Phys. Rev. B. (2006)] 
originally derived for computing superfluid density for BP2.
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Vortex-vortex interaction

Conventional superfluid (s-wave BCS-like):

(strictly repulsive 2D Coulomb potential )

Vortex lattice is triangular.

Question arises for BP1 phase:
What is  the effect (if any) of those gapless fermions 
around the surface the ‘breach’ Fermi ball ?

Vvortex(r) ∝ − ln
r

ξ
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The ground state is ASSUMED, not derived, to be superfluid!

One superfluid phase (Goldstone) mode ---

One gapless branch of fermionic quasiparticles ---

Continuous symmetries are:     two global U(1)  (“charge” and 

“spin”) + Galilei invariance

θ
ψ

Low energy 
modes

Properties and assumptions of BP1
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Effective Lagrangian
[extension of Son-Stephanov's to the case of arbitrary polarization]

L = ψ∗[∂τ + ε(−i∇)]ψ + c1(∂τθ)2 + c2(∇θ)2

+c3ψ
∗ψ
h
i∂τθ +

1

2mp
(∇θ)2

i
+∇θ · j+ · · ·

Effective field theory of the polarized fermionic superfluid

Unit coefficient and the form 
of composite objects in the 
[…] all dictated by Galilei
invariance [Greiter, Wilczek, 
and Witten (1989)]

Coefficients are 
NOT universal but determined 
phenomenologically/experimentally:

c1, c2, c3

c1 =
∂n

∂μ

4mc2 + c3(n↑ − n↓) = ns
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Outline of Method
Task: Study the problem of parallel vortex lines pointing to the z-direction, 
say, generated by rotation.

phase = “spin wave” part + singular vortex part
θ = φ+ θv

Vortex gauge field: a = −∇θv ⇒ ∇θ = ∇φ− a

∇× a = −π~
m
ρ(x)êz

Standard relation between vortex charge density and a

ρ(x) = 2π
P

α δ
(2)(x− xα),

Integrate out gapless quasi-particle fermions.

Integrate out the regular part  of the phase field,  

Retain effective action for vortices effective vortex interaction

φ
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Effective vortex interaction 
(momentum space)

Veff = V0 + Vind

V0 ∝ ns
4m

1

q2
2D Coulomb potential

Vind ∝ P 0q
q2

fermion-induced potential

P 0q −→ zero-temperature static limit of the transverse
current-current correlator
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Recall RKKY (Ruderman-Kittel-Kasuya-Yosida) in metals

Classic result: Indirect exchange interaction between magnetic impurities 
(mediated by the conduction electrons) in non-magnetic metals (1950's)

Spin-spin interaction J(r) Spin density response function
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Analogue of RKKY oscillation in BP1

The transverse current-current correlation, Pq, has a knee
at |q| = 2kb.
(Recall kb is the gapless Fermi wavevector.)

k∆ ≡
r
2m∆

~

Momentum units
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Effective potential in real space (I)

Intermediate  polarization: 

New vortex 
lattice structure?!

Pc1 ≤ P ≤ Pc2
(Pc1 ∼ 0.2; Pc2 ∼ 0.4)
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Effective potential in real space (II)

High spin polarization: P ≥ Pc2 , (Pc2 ∼ 0.4)

vortex lattice 
instability at 
short distance?!
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Related recent studies

Non-monotonic (as a function of distance) interaction 
between vortices in a multi-component superconductor 
[Babaev & Speight, PRB 72, 180502(R) (2005)]

Nodal-quasiparticle mediated interaction between vortices 
in a d-wave superconductor [Nikolic & Sachdev, PRB 73, 
134511 (2006)]
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Summary of New Results for the first topic

• First find that vortex interaction is not strictly repulsive due
to gapless fermions!

• It has RKKY-like oscillating character!

• After the Friedel oscillation (charge sector) and the RKKY 
(spin sector), oscillating behavior is first shown to occur in 
the vortex sector !

New results (to the best of our knowledge) are:

Future:
• What is the form of the resulting vortex lattice in the BP1 state ?
• Will the new form of vortex interaction change the Kosterlitz-

Thouless transition in 2D? How?
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Topic B.
Bosonic atoms in the p-orbital band 
of an optical lattice 

Our work:Our work:
• WVL and C. Wu, cond-mat/0601432, Phys. Rev. A (2006)
• C. Wu, WVL, J. Moore and S. Das Sarma, Phys. Rev. Lett.

(2006)

Collaborators: Congjun Wu  (KITP)
Joel Moore  (UC Berkeley)
Sankar Das Sarma (U Maryland)
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Other related theoretical studies

• V. W. Scarola and S. Das Sarma, Phys. Rev. Lett. 65, 33003 
(2005).

• A. Isacsson and S. Girvin, Phys. Rev. A 72, 053604 (2005).
• A. B. Kuklov, PRL 97, 110405 (2006)
• C. Xu et al., cond-mat/0611620.
• C. Wu, D. Bergman, L. Balents, and S. Das Sarma, cond-

mat/0701788.
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Motivations:

• Look beyond s-band; Beyond cold atom models of spins.

• Explore orbital degeneracy and symmetries, and new aspects of 
strong correlation [those not well studied in usual condensed matter 
systems]

• Anisotropy is not a problem, but a new feature.

• Possible quantum (cold atoms) simulation of the difficult orbital-
related problems [as observed in electronic materials, e.g., transition-metal 
oxides]?

• New experiments on p-band at  NIST [A. Browaeys, et al, PRA (2005); 
J.J. Sebby-Strabley, Porto, et al., PRA  (2006)] and Mainz [T. Mueller and 
I. Bloch et al., Mueller thesis (2006); T. Mueller, I. Bloch, et al, 
arXiv:0704.2856 ]
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Preparation of p-band bosons: three experiment groups

By moving lattice [A. Browaeys, W. D. 
Phillips, et al, PRA 72, 053605 (2005)]

Dynamically deforming the 
double-well lattice [M. Anderlini, 
J. V. Porto, et al., J. Phys. B 39, 
S199 (2006)]

…

Pumping bosons by Raman transition 
[T. Mueller, I. Bloch et al., thesis of 
Mueller (2006); arXiv:0704.2856]



KITP Santa Barbara 8 May 2007 30

The decay problem of p-orbital bosons

The decay process where two p-bosons collide, promoting one to 
the 2nd excited band and bringing one down to the s-band. 
[Studied by Isacsson and Girvin (2005).]
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“Energy-blocking” mechanism to suppress the decay

single well lattice double well lattice

[WVL and C. Wu, PRA (2006)]

Low energy motion of bosons is an effective two-band model; 
p-orbital bosons cannot decay to the “s” by energy conservation. 
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p-band decay time measured by the Mainz group
[T. Mueller, I. Bloch, et al, arXiv:0704.2856 ]

Decay time in units of 
tunneling time scale
vs
lattice depth

Decay time in (ms) 
vs atom number

A key to slow decay as explained by Bloch et al: anharmonicity
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p-orbital Bose-Hubbard model: 3D cubic lattice

H =
X
rμ

[tkδμν − t⊥(1− δμν)]
³
b†μ,r+aeνbμr + h.c.

´
+ 1

2U
X
r

£
n2r − 1

3L
2
r

¤

Density field operator nr =
P

μ b
†
μrbμr

Angular momentum operator: Lμr = −i
P

νλ ²μνλb
†
νrbλr

μ, ν = x, y, z or px, py, pz

σ bond

π bond
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p-band minima in momentum space (k-space)

px band

Qx =
³π
a
, 0, 0

´
, Qy =

³
0,
π

a
, 0
´
, Qz =

³
0, 0,

π

a

´
a = lattice constant

Bose-Einstein condensation (BEC) of
px, py, and pz orbital atoms occurs at finite momenta:
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The p-orbital BEC (p-OBEC)

Parameterization of 
Order parameter:

⎛⎝hbxk=Qx
i

hbyk=Qy
i

hbzk=Qz
i

⎞⎠ = ρeiϕ−iT·θ

⎛⎝ cosχi sinχ
0

⎞⎠
U(1) 
phase

SO(3) 
orbital T-reversal

For  a dilute lattice gas of 
U>0, the condensate 
is found to be:

⎛⎝hbxk=Qx
i

hbyk=Qy
i

hbzk=Qz
i

⎞⎠ =rVol.× nb0
2

⎛⎝ 1±i
0

⎞⎠
[T’s are three 3x3 matrices]
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It is also an order of …

Transversely Staggered Orbital Current (TSOC)

Example:
px + ipy state

hLxri = hLyri = 0, hLzri = nb0(−)
x+y
a .

Quantitative 
Description 
of TSOC:
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Prediction:Prediction: non-zero momentum BEC of p-orbital atoms

Time-of-flight (TOF)
experiment

p-orbital wavefunction
imposes a non-Gaussian profile; 
The highest moves when varying the 
size of the p-wavefunction.

Peaks not at (0,0)!

[Related results independently by: A. Isacsson, S. Girvin, PRA (2005); A. B. 
Kuklov, PRL 97, 110405 (2006)]
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Experimental discovery of the Mainz group

Confirms our prediction!

Initial time
(incoherent)

Later time
(coherent)
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p-band bosons in a triangular lattice

⊥>> tt//

σ-bond π-bond

|p1i= |p2i= |p3i=

For For 
interactioninteraction

Number density
Angular momentum

(with μ, ν = x, y for px, py)

For hoppingFor hopping

nr =
P

μ b
†
μrbμr

Lzr = −i
P

μν ²μνb
†
μrbνr

H = tk
X
r

X
i=1,2,3

h
b†i (r+ ei)bi(r) + h.c.

i
+ 1

2U
X
r

£
n2r − 1

3L
2
zr

¤
[C. Wu, WVL, J. Moore, and S. Das
Sarma, Phys. Rev. Lett. (2006).]
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1K
r

2K
r

3K
r )0,

3
4(

0a
π

Band structure

lowest energy states in 
the 1st Brillouin zone

3,2,1K
r

1K
rψ 2K

rψ
3K

rψ

Real space configurations of the three states

K1 = (0, 2π√
3a0
)

K2 = ( π
a0
, π√

3a0
)

K3 = (− π
a0
, π√

3a0
)

Note:Note: For lowering kinetic energy, any superposition of the three equally works.
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Stripe ordered superfluidity

1

1−
ii−

1

1−
ii−

1−

1
i−i

1−

1
i−i

1−1
i−

i
1−1

i−

i
1− 1

i−
i

Interactions select the condensate as (weak coupling analysis)

2K
rψ

3K
rψ

i+

0)}(
2

1{
!

1
0

32

0

N
KK i

N
++ + ψψ

c.f.  charge stripe orderings in electronic solids (e.g., high Tc cuprates, 
quantum Hall systems): long range Coulomb interactions, fermionic. 

Time-reversal, translational, and rotational symmetries are broken.

hLzi 6= 0
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Stripe ordering found for all couplings:
[new in both AMO and condensed matter]

)sin(cos yrx
i pipe r ασαφ +

weak coupling

1

1−
ii−

1−

1
i−i

1−1
i−

i

1

1−
ii−

1−

1
i−i

1−1
i−

i
1− 1

i−
i

1

1−
ii−

1

1−
ii−

1−

1
i−i

1−

1
i−i

1−1
i−

i
1−1

i−

i
1− 1i−

i

• Orbital wavefunction in lattice site r:

strong coupling

4
πα =

6
πα =

• c.f. strong coupling results also apply to the px+ ipy Josephson
junction array systems ( e.g. Sr2RuO4).

U(1) phase
Ising variable 
+1 or -1

mixing angle
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Effective gauge theory for strong coupling SF

Heff = −
1

2
ntk

X
h~r1,~r2i

cos
©
φ~r1 − φ~r2 −A~r1,~r2(σ~r1 ,σ~r2)

ª
+
1

3
U
X
~r

n2~r

External flux in a triangular plaquette:

Require minimum flux in each plaquette [as 
shown, e.g., by Moore and Lee (2004) for a 
Josephson array of  superconductors].

Staggered fluxes (stripe order)

U(1) vortex theory: 
Duality mapping to a 
lattice Coulomb gas

The gauge field (as an “external flux” for    )φ

Φ =
1

2π

X
hr,r0i

Ar,r0 =
1

6
(σ~r1+σ~r2+σ~r3) mod 1 must be ±1

6
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Gutzwiller mean field phase diagram 
for the p-band bosons in a triangular lattice

Stripe ordering even persists into Mott-insulating states 
without phase coherence!

Note:
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Prediction: Time-of-flight experiment

Predicted TOF density distribution for the stripe-ordered p-
orbital superfluid 
[C. Wu, WVL, J. Moore, and S. Das Sarma, Phys. Rev. Lett. (2006)]

Coherence peaks 
occur at non-zero 
wavevectors.
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Novelty of lattice p-band Bose gases

Non-zero momentum BEC---defying the paradigm:  predicted 
in theory, and discovered in experiments (for square lattice).
Quantum orbital stripe order in a triangular lattice, in both the 
superfluid and Mott insulator phase.
A rich set of broken symmetries:  time reversal (T), orbital 
unitary transformation, space rotation and translation, and 
U(1).
Different than He-3 superfluid: p-wave of the center-of-
mass motion vs p-wave of the relative motion as in He-3.
Future: novel excitations, topological defects, and 
topologically bound states?
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Summary and Conclusion

1

1−
ii−

1

1−
ii−

1−

1
i−i

1−

1
i−i

1−1
i−

i
1−1

i−

i
1− 1i−

i

Topic A: Breached Pair (without lattice) 
[with Forbes, Gubankova, Kim, Stojanovic, Wilczek, Zoller]

Phys Rev Focus BP1 fermions
RKKY-like, attractive 
vortex interaction

Topic B: lattice p-band bosons [with Das Sarma, Moore, Wu]

k 6= 0 BEC stripe phase diagram prediction
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