

JKP
Agapitos Hatzinikitas Michael Stone
cond-mat/0607394 quant-ph/0701203

Experimental verification of anyonic statistics with photons

- JKP
- Christian Schmid
- Witlef Wieczorek
- Reinhold Pohlner
- Nikolai Kiesel
- Harald Weinfurter

Kitaev's honeycomb lattice model

- Energy of vortices
- Energy of fermions
- Vortex interactions
- Breakdown of non-abelian topological phase
- $B=0$ and $B \neq 0$

Chiral interactions in triangular lattices
$H=-\sum_{\langle i, j\rangle} \vec{\sigma}_{i} \cdot \vec{\sigma}_{j}-\lambda \sum_{\langle i, j, k\rangle} \vec{\sigma}_{i} \cdot \vec{\sigma}_{j} \times \vec{\sigma}_{k}$

- Ground state degeneracy
- Chiral spin liquid states
- Fragmentation of superfluid

Frustration of cold atoms in optical lattices

- 1 Dim optical lattice that simulates a ladder
- Exactly solvable limits
- Breakdown of superfluidity for large tunneling couplings

James Wootton, Ville Lahtinen, Kristan Temme --- Juanjo Ripoll, Dimitris Tsomokos

Quantum Information, Physics and Topology

- Encoding and manipulating QI in small physical systems is pledged by decoherence and control errors.
- Error correction can be employed to resolve this problem by using a (huge) overhead of qubits and quantum gates.
- An alternative method is to employ intrinsically error protected systems such as topological ones => properties are described by integer numbers! protected by macroscopic properties: hard to destroy.
- E.g. you can employ system with degenerate ground states:
- Make sure degeneracy is protected by topological properties (V)
- Make sure degenerate states are locally indistinguishable (X?)
- Encode information in these degenerate levels
\qquad
Nhas iom \qquad Thlen yom imai mothe
\qquad m) ions the lat Thall Lune Lnst Ltth ocrosin fon. Sad some Lt otyctions made
\qquad Ap whe bied I Sluse way tidy: Int when Letter from Faraday to Whewell (1834)

Overview

- Graphene: two dimensional layer of graphite -honeycomb lattice of C atoms
- Fullerene: C60, C70
- Nanotubes
- Conducting properties of these materials: zero energy modes.
- Can be used as miniaturized elements of circuits.
- Index theorem (Atiyah-Singer)
- Smooth, orientable, compact, Riemannian manifolds, M, with genus, g.
- Define elliptic operator D on M. Includes curvature and gauge fieds.
- The index theorem relates the number of zero energy mode with o
- Cond
- Zery des provide degenerack of ground state: G zero momeo $\Rightarrow 2^{\mathrm{O}}$ deg.
- Kitae
- Honeycombratnce (same as graphene, but win rear rermions)
$g=0$
$g=2$

Different geometries of Graphene

Fullerene (C60):

Nanotubes:

Graphene: structure

The Hamiltonian of graphene is given by

$$
\begin{gathered}
H=-t \sum_{\langle i, j>} a_{i}^{+} a_{j}=-\frac{t}{2} \sum_{\langle i, j\rangle}\left(a_{i}^{+} b_{j}+b_{j}^{+} a_{i}\right) \\
a_{i} \text { fermionic modes }
\end{gathered}
$$

Fourier transformation:

$$
H_{\vec{k}}=\left(\begin{array}{cc}
0 & -t\left(1+e^{-i \vec{k} \cdot \vec{u}}+e^{-i \vec{k} \cdot \vec{v}}\right) \\
-t\left(1+e^{i \vec{k} \cdot \vec{u}}+e^{i \vec{k} \cdot \vec{v}}\right) & 0
\end{array}\right)
$$

$$
E(\vec{k})= \pm t \sqrt{3+2 \cos \vec{k} \cdot \vec{u}+2 \cos \vec{k} \cdot \vec{v}+2 \cos \vec{k} \cdot(\vec{u}-\vec{v})}
$$

Fermi points: $E(k)=0$

Graphene: structure

$E(\vec{k})= \pm t \sqrt{3+2 \cos \vec{k} \cdot \vec{u}+2 \cos \vec{k} \cdot \vec{v}+2 \cos \vec{k} \cdot(\vec{u}-\vec{v})}$
Linearise energy $E(\vec{k})$ around a conical point,

$$
\begin{array}{r}
\vec{k}=\vec{K}+\vec{p} \\
H_{\vec{p}} \approx \pm \frac{3 t}{2}\left(\begin{array}{cc}
0 & p_{x}+i p_{y} \\
p_{x}-i p_{y} & 0
\end{array}\right)= \pm \frac{3 t}{2} \vec{\sigma} \cdot \vec{p}
\end{array}
$$

Relativistic Dirac equation at the tip of a pencil!
Two types of spinors:

$$
\binom{\left|K_{+}, A\right\rangle}{\left|K_{+}, B\right\rangle}, \quad\binom{\left|K_{-}, A\right\rangle}{\left|K_{-}, B\right\rangle}
$$

$K_{ \pm}$are the Fermi points and A and B are the two triangular sub-lattices
Note: σ^{2} rotation maps to states with the same energy, but opposite momenta

Graphene: curvature

To introduce curvature:
cut $\pi / 3$ sector and reconnect sites.
This creates a single pentagon with no other deformations present.
Results in a conical configuration.
To preserve continuity of the spinor field when circulating the pentagon one can introduce two additional fields:
-Spin connection Q :

$$
\oint Q_{\mu} d x^{\mu}=-\frac{\pi}{6} \sigma^{2} \quad \text { Mixes } \mathrm{A} \text { and } \mathrm{B} \text { components }
$$

-Non-abelian gauge field, $A: \quad \oint A_{\mu} d x^{\mu}=-\frac{\pi}{2} \tau^{y} \quad$ Mixes + and - spinors
Resulting 4×4 Dirac equation can be decoupled by
 simple rotation to a pair of 2×2 Dirac equatisits ($k=1,2$):

$$
\frac{3 t}{2} \sum_{\mu} \gamma^{\mu}\left(p_{\mu}-i Q_{\mu}-i A_{\mu}^{k}\right) \mu^{k}=E \psi^{k} \quad \oint A_{\mu}^{k} d x^{\mu}= \pm \frac{\pi}{2}
$$

Graphene: curvature

$$
\begin{aligned}
& \frac{3 t}{2} \sum_{a, \mu} \gamma^{\mu}\left(p_{\mu}-i Q_{\mu}-i A_{\mu}^{k}\right) \psi^{k}=E \psi^{k} \\
& F_{\mu \nu}^{k}=\partial_{\mu} A_{\nu}^{k}-\partial_{\nu} A_{\mu}^{k} \\
& \gamma^{\mu}=e_{a}^{\mu} \gamma^{a}, g^{\mu \nu}=e_{a}^{\mu} e_{b}^{\nu} \eta^{a b} \\
& \Gamma_{\mu \nu}^{\sigma}=\frac{1}{2} g^{\sigma \rho}\left(\partial_{\mu} g_{v \rho}+\partial_{\nu} g_{\mu \rho}-\partial_{\rho} g_{\mu \nu}\right) \\
& R_{\nu \rho \sigma}^{\mu}=\partial_{\sigma} \Gamma_{v \rho}^{\mu}-\partial_{\rho} \Gamma_{v \sigma}^{\mu}+\Gamma_{\nu \rho}^{\lambda} \Gamma_{\lambda \sigma}^{\mu}-\Gamma_{v \sigma}^{\lambda} \Gamma_{\lambda \rho}^{\mu} \\
& R_{\mu \nu}=R_{\mu \nu \rho}^{\rho}, R=g^{\mu \nu} R_{\mu \nu}
\end{aligned}
$$

Continuous limit: Small energies => large wavelengths => insensitive to lattice spacing, conical singularity,...

Index Theorem

Consider operators, $P, P^{+} \quad V_{+} \xrightarrow{P} V_{-}, V_{-} \xrightarrow{P^{+}} V_{+}$
For $\lambda \neq 0, \quad P^{+} P u=\lambda u \Rightarrow\left(P P^{+}\right) P u=\lambda P u$
$\begin{aligned} & \text { Define } \\ & \text { (Dirac op.) } \\ & \text { D }\end{aligned} \quad D=\left(\begin{array}{cc}0 & P^{+} \\ P & 0\end{array}\right), D^{2}=\left(\begin{array}{cc}P^{+} P & \begin{array}{c}\text { non-zero modes come in pairs } \\ 0\end{array} \\ P P^{+}\end{array}\right) \quad r^{-}$
$\begin{aligned} & \text { Define } \\ & \text { (Dirac op.) } \\ & \text { D }\end{aligned} \quad D=\left(\begin{array}{cc}0 & P^{+} \\ P & 0\end{array}\right), D^{2}=\left(\begin{array}{cc}P^{+} P & \begin{array}{c}\text { non-zero modes come in pairs } \\ 0\end{array} \\ P P^{+}\end{array}\right) \quad r^{-}$
Define operator: $\quad \gamma_{5}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) \quad$ with eigenvalues $+1,-1$ for $\quad V_{+}, V_{-}$
Consider v_{+}, v_{-}the dimension of the null subspace of V_{+}, V_{-}
Then

$$
\operatorname{Tr}\left(\gamma_{5} e^{-t D^{2}}\right)=\sum_{S p\left(P^{+} P\right)} e^{-t \lambda^{2}}-\sum_{S p\left(P P^{+}\right)} e^{-t \lambda^{2}}=v_{+}-v_{-} \equiv \operatorname{index}(D)
$$

Non-zero eigenvalues cancel in pairs.
Expression is t independent.

Index Theorem

D can describe a general 2-dimensional Dirac operator defined over a compact surface coupled with a gauge field.

One can evaluate that $\quad D^{2}=-g^{\mu \nu} \nabla_{\mu}^{\mu} \nabla_{v}+\frac{i}{4}\left[\gamma^{\mu}, \gamma^{\nu}\right] F_{\mu \nu}-\frac{1}{4} R$
metric covariant derivative gauge field curvature scalar
Heat kernel expansion (2-dims):

$$
\operatorname{Tr}\left(f e^{-t D}\right)=\frac{1}{4 \pi t} \sum_{k \geq 0} t^{k / 2} a_{k}(f, D)
$$

For $f=\gamma_{5}, D=D^{2}$ the only non-zero coefficient is
$a_{2}=\operatorname{Tr}\left\{\gamma_{5}\left(\frac{i}{4}\left[\gamma^{\mu}, \gamma^{\nu}\right] F_{\mu \nu}-\frac{1}{4} R\right)\right\}=2 \iint F \Rightarrow \operatorname{Tr}\left(\gamma_{5} e^{-t D^{2}}\right)=\frac{1}{2 \pi} \iint F$

Index Theorem

We have

$$
\begin{aligned}
\operatorname{Tr}\left(\gamma_{5} e^{-t D^{2}}\right)= & \sum_{S p\left(P^{+} P\right)} e^{-t \lambda^{2}}-\sum_{S p\left(P P^{+}\right)} e^{-t \lambda^{2}}=v_{+}-v_{-}=\operatorname{index}(D) \\
& \operatorname{Tr}\left(\gamma_{5} e^{-t D^{2}}\right)=\frac{1}{2 \pi} \iint F_{x y} d^{2} x
\end{aligned}
$$

The Index theorem states: for a (compact) manifold...

$$
\text { index }(D)=v_{+}-v_{-}=\frac{1}{2 \pi} \iint F
$$

It is a topological number: small deformations do not change its value. From this theorem you can obtain the least number of zero modes. The exact number is obtained if V_{+}or V_{-}is equal to zero.

Index Theorem: Euler characteristic

Euler characteristic for lattices on "smooth" surfaces:

$$
\chi=V-E+F=2(1-g)-N
$$

Consider folding of graphene in a compact manifold. The minimal violation is obtained by insertion of pentagons or heptagons that contribute positive or negative curvature respectively. Consider

- n_{5} number of pentagons
- n_{6} number of hexagons
- n_{7} number of heptagons

$$
\} \Rightarrow \begin{aligned}
& V=\left(5 n_{5}+6 n_{6}+7 n_{7}\right) / 3 \\
& E=\left(5 n_{5}+6 n_{6}+7 n_{7}\right) / 2 \\
& F=n_{5}+n_{6}+n_{7}
\end{aligned}
$$

From the Euler characteristic formula:

$$
n_{5}-n_{7}=6 \chi=12(1-g)-6 N
$$

Fullerenes: $\quad g=0, N=0 \Rightarrow n_{5}=12$
Nanotubes: $g=0, N=2 \Rightarrow n_{5}-n_{7}=0$

Index Theorem: Graphene application

$$
\begin{aligned}
& \iint F=\oint A \quad \frac{1}{2 \pi}\left(\pm \frac{\pi}{2}\right)\left(n_{5}-n_{7}\right)= \pm \frac{3}{2} \chi \\
& \text { Stokes's theorem } \\
& \text { index }(D)=v_{+}-v_{-}=\frac{1}{2 \pi} \iint F
\end{aligned}
$$

Thus, one obtains: $\quad v_{+}-v_{-}=\left\{\begin{array}{c}\frac{3}{2} \chi, \text { for } k=1 \\ -\frac{3}{2} \chi, \text { for } k=2\end{array}\right.$
Least number of zero modes:

$$
3 \chi=6|1-g|+3 N
$$

Index Theorem: Graphene application

$$
\text { index }(D)=v_{+}-v_{-}=6|1-g|+3 N
$$

$$
\text { C60: } \mathrm{g}=0, \mathrm{~N}=0
$$

[J. Gonzalez et al. Phys. Rev. Lett. 69, 172 (1992)]

Nanotubes: $\mathrm{g}=\mathrm{O}, \mathrm{N}=2$

Zero mode pairs

No zero modes

Ultra-cold Fermi atoms and optical lattices

Single species ultra cold Fermi atoms superposed by optical lattices that form a hexagonal lattice.
[Duan et al. Phys. Rev. Lett. 91, 090402 (2003)]

- Very low temperatures: T~0.1TF
- Arbitrary filling factors: e.g. 1/2

See dependence of conductivity on disorder, impurities and lattice defects: e.g. insert pentagons at the edge of the lattice or effect of empty sites.

Similar index theorem can be devised for open boundary conditions.

Measurement of conductivity in Fermi lattices has already been performed in the laboratory:
[Ott et al. Phys. Rev. Lett. 92, 160601 (2004)]

Conclusions

- Index Theorem for various graphene configurations.
- Agrees well with known models of fullerenes and nanotubes.
- Gives conductivity properties for more complex models:
sideways connected nanotubes.
- Predicts stability of spectrum under small deformations.
- Relate to topological models:
- obtain topologically related degeneracy: $2^{611-g \mid+3 N}$
- encode and manipulate quantum information.
- apply reverse engineering to find new models with specific degeneracy properties.
- Related experiments with ultra-cold Fermi atoms can give insight to the properties of graphene. May be easier to implement than solid state setup.

Postdoc positions on Topological Quantum Information

$$
\begin{aligned}
& \text { University of Leeds } \\
& \text { available now! }
\end{aligned}
$$

Email: j.k.pachos@leeds.ac.uk

