

Experimental demonstration of anyonic statistics with photons

JKP Christian Schmid Witlef Wieczorek Reinhold Pohlner Nikolai Kiesel Harald Weinfurter

KITP, March 2007

now my lame no large humb che fue about

Overview

- In condensed matter anyons appear in ground or excited states of two dimensional systems:
 - Superconducting electrons in a strong magnetic field (Fractional Quantum Hall Effect)
 - Lattice systems (Kitaev's toric code/hexagonal lattice, Wen's models, Ioffe's model, Freedman-Nayak-Shtengel model...)
- Energy gap protects anyons:
 - if I get anyonic statistics I do not need gap.
- · Relatively large systems:
 - employ largest implementable system.
- · Close the gap between theory and experiment.

Overview

- Anyonic statistics is a property of a (highly entangled) wavefunction.
 - Engineer states rather than cool same effect.
- · Employ the toric code model.
 - One plaquette: one anyon and path of another.
 - No Hamiltonian: is like algorithmic encoding.
- · How to generate, manipulate, measure anyons?
- The control manipulations are exactly the same with Hamiltonian or larger system.
- Future work: $H \neq 0, L >> 1$

Anyons

Anyons have non-trivial statistics.

Consider as composite particles of fluxes and charges. Then phase is like the Aharonov-Bohm effect.

Anyons: do they live among us?

Create two localized "things" with effective charge and magnetic field.

Anyons: do they live among us?

Create two localized "things" with effective charge and magnetic field.

Braid them -> PHASE FACTOR: Effective gauge theory!

Toric Code (also ECC)

Consider the lattice Hamiltonian

$$H = -\sum_{p} Z_1 Z_2 Z_3 Z_4 - \sum_{s} X_1 X_2 X_3 X_4$$

Spins live on the vertices.

There are two different types of plaquettes, p and s, which support ZZZZ or XXXX interactions respectively.

The four spin interactions involve spins at the same plaquette.

Toric Code

Consider the lattice Hamiltonian

$$H = -\sum_{p} Z_1 Z_2 Z_3 Z_4 - \sum_{s} X_1 X_2 X_3 X_4$$

It is easy to find the ground state of this Hamiltonian.

First observe that

$$[H, Z_1 Z_2 Z_3 Z_4] = 0, [H, X_1 X_2 X_3 X_4] = 0$$

$$[X_1X_2X_3X_4, Z_1Z_2Z_3Z_4] = 0$$

$$(X_1X_2X_3X_4)^2 = (Z_1Z_2Z_3Z_4)^2 = 1$$

Eigenvalues of XXXX and ZZZZ terms are 1 and -1

Toric Code

Consider the lattice Hamiltonian

$$H = -\sum_{p} Z_1 Z_2 Z_3 Z_4 - \sum_{s} X_1 X_2 X_3 X_4$$

Hence, the ground state is:

$$\left|\xi\right\rangle = \prod_{s} \left(I + X_{1}X_{2}X_{3}X_{4}\right)_{p} \left|00...0\right\rangle$$

The |00...0> state is a ground state of the ZZZZ terms and the (I+XXXX) term projects that state to the ground state of the XXXX term.

[F. Verstraete, et al. PRL, 96, 220601 (2006)]

Toric Code

• Excitations are produced by Z or X rotations of one spin.

 These rotations anticommute with the X or Z part of the Hamiltonian, respectively.

- Z excitations on s plaquettes.
- X excitations on p plaquettes.
- X and Z excitations behave as anyons with respect to each other.

It is possible to demonstrate the anyonic properties with one s plaquette only. Then the Hamiltonian takes the form

$$H = -X_1 X_2 X_3 X_4$$
$$-Z_1 Z_2 - Z_2 Z_3 - Z_3 Z_4 - Z_4 Z_1$$

The following state is the ground state

$$\begin{aligned} \left| \xi \right\rangle &= \frac{1}{\sqrt{2}} \left(I + X_1 X_2 X_3 X_4 \right) \left| 0_1 0_2 0_3 0_4 \right\rangle \\ &= \frac{1}{\sqrt{2}} \left(\left| 0_1 0_2 0_3 0_4 \right\rangle + \left| 1_1 1_2 1_3 1_4 \right\rangle \right) \end{aligned}$$

GHZ state!

One can demonstrate the anyonic statistics with only this plaquette. First create excitation with Z rotation at one spin:

$$|Z\rangle = Z_1 |\xi\rangle = \frac{1}{\sqrt{2}} (|0_1 0_2 0_3 0_4\rangle - |1_1 1_2 1_3 1_4\rangle)$$

Energy of ground state

$$H|\xi\rangle = -5|\xi\rangle$$

Energy of excited state

$$H|Z\rangle = -3|Z\rangle$$

One can demonstrate the anyonic statistics with only this plaquette. First create excitation with Z rotation at one spin:

 $|Z\rangle = Z_1 |\xi\rangle = \frac{1}{\sqrt{2}} (|0_1 0_2 0_3 0_4\rangle - |1_1 1_2 1_3 1_4\rangle)$

Now we want to move an X anyon around the Z one. What we really want is the path that it traces and this can be spanned on the spins 1,2,3,4.

Note that the second anyon from the Z rotation is outside the system.

One can demonstrate the anyonic statistics with only this plaquette. First create excitation with Z rotation at one spin:

 $|Z\rangle = Z_1 |\xi\rangle = \frac{1}{\sqrt{2}} (|0_1 0_2 0_3 0_4\rangle - |1_1 1_2 1_3 1_4\rangle)$

One can demonstrate the anyonic statistics with only this plaquette. First create excitation with Z rotation at one spin:

 $|Z\rangle = Z_1|\xi\rangle = \frac{1}{\sqrt{2}}(|0_10_20_30_4\rangle - |1_11_21_31_4\rangle)$

One can demonstrate the anyonic statistics with only this plaquette. First create excitation with Z rotation at one spin:

$$|Z\rangle = Z_1 |\xi\rangle = \frac{1}{\sqrt{2}} (|0_1 0_2 0_3 0_4\rangle - |1_1 1_2 1_3 1_4\rangle)$$

One can demonstrate the anyonic statistics with only this plaquette. First create excitation with Z rotation at one spin:

$$|Z\rangle = Z_1 |\xi\rangle = \frac{1}{\sqrt{2}} (|0_1 0_2 0_3 0_4\rangle - |1_1 1_2 1_3 1_4\rangle)$$

One can demonstrate the anyonic statistics with only this plaquette. First create excitation with Z rotation at one spin:

$$|Z\rangle = Z_1 |\xi\rangle = \frac{1}{\sqrt{2}} (|0_1 0_2 0_3 0_4\rangle - |1_1 1_2 1_3 1_4\rangle)$$

Assume there is an X anyon outside the system. With successive X rotations it can be transported around the plaquette.

The final state is given by:

$$|Final\rangle = X_1 X_2 X_3 X_4 |Z\rangle =$$

$$-\frac{1}{\sqrt{2}}(|0_{1}0_{2}0_{3}0_{4}\rangle - |1_{1}1_{2}1_{3}1_{4}\rangle) = -|Initial\rangle$$

$$\begin{aligned} &|Final\rangle = X_{1}X_{2}X_{3}X_{4}|Z\rangle = \\ &-\frac{1}{\sqrt{2}}(|0_{1}0_{2}0_{3}0_{4}\rangle - |1_{1}1_{2}1_{3}1_{4}\rangle) = -|Initial\rangle \end{aligned}$$

After a complete rotation of an X anyon around a Z anyon (two successive exchanges) the resulting state gets a phase π (a minus sign): hence **ANYONS!** A property we used is that $X_1X_2X_3X_4|\xi\rangle=|\xi\rangle$ which is true.

A crucial point is that these properties can be demonstrated without the Hamiltonian!!!

An interference experiment can reveal the presence of the phase factor.

Interference Experiment

Create state

$$\left|\xi\right\rangle = \frac{1}{\sqrt{2}} \left(\left|0_{1} 0_{2} 0_{3} 0_{4}\right\rangle + \left|1_{1} 1_{2} 1_{3} 1_{4}\right\rangle\right)$$

With half of an Z rotation on spin 1, $Z_1^{1/2}$, one can create the superposition between an Z anyon and the vacuum: $e^{-i\varphi}Z_1^{1/2}|\xi\rangle=(|\xi\rangle+i|Z\rangle)/\sqrt{2}$

for $\varphi = 3\pi/4$. Then the X anyon is rotated around it:

$$X_1 X_2 X_3 X_4 (\left| \xi \right\rangle + i \left| Z \right\rangle) / \sqrt{2} = (\left| \xi \right\rangle - i \left| Z \right\rangle) / \sqrt{2}$$

Then we make the inverse rotation

$$e^{i\varphi}Z_1^{-1/2}(|\xi\rangle - i|Z\rangle)/\sqrt{2} = |Z\rangle$$

Interference Experiment

That we obtained the $|Z\rangle$ state is due to the minus sign produced from the anyonic statistics.

If it wasn't there then we would have returned to the vacuum state $|\xi\rangle$.

Distinguish between $|\xi\rangle$ and $|Z\rangle$ states:

 $H^{\otimes 4} | \xi \rangle$ has even number of 1's. $H^{\otimes 4} | Z \rangle$ has odd number of 1's.

$$H^{\otimes 4}|\xi\rangle \propto |0000\rangle + |0011\rangle + |0101\rangle + |0110\rangle + |1001\rangle + |1010\rangle + |1110\rangle + |1111\rangle$$

$$H^{\otimes 4}|Z\rangle \propto |0001\rangle + |0010\rangle + |0100\rangle + |1000\rangle + |0111\rangle + |1011\rangle + |1101\rangle + |1110\rangle$$

Experimental process (preliminary)

Qubit states 0 and 1 are encoded in the polarization, V and H, of four photonic modes.

The states that come from this setup are of the form:

$$|\Psi\rangle = a|GHZ\rangle + b|EPR\rangle \otimes |EPR\rangle =$$

$$a(|HHHHH|\rangle + |VVVV\rangle) +$$

$$b(|VHVH|\rangle + |HVVH|\rangle + |VHHV|\rangle + |HVHV|\rangle) \text{ so}$$
Measurements and

Measurements and manipulations are repeated over all modes.

Experimental process (preliminary)

Consider correlations:

$$tr\left[\left(\cos\gamma\sigma^{x} + \sin\gamma\sigma^{y}\right)^{\otimes 4} \left| \xi \right\rangle \left\langle \xi \right|\right] = +\cos(4\gamma) \frac{\xi^{0.5}}{2}$$

$$tr\left[\left(\cos\gamma\sigma^{x} + \sin\gamma\sigma^{y}\right)^{\otimes 4} \left| Z\right\rangle \left\langle Z\right|\right] = -\cos(4\gamma) \frac{\xi^{0.5}}{2}$$

Visibility > 64%

Fidelity:

$$F = |a_1|^2 + |a_{16}|^2 + a_1^* a_{16} + a_1 a_{16}^* > 70\%$$

Witness for genuine

4-qubit entanglement:

$$W_{GHZ_4} = \frac{1}{2} \mathbf{1} - |GHZ_4\rangle\langle GHZ_4|$$

$$\Rightarrow tr(W_{GHZ_4}\rho) < 0$$

Conclusions

Invariance of vacuum w.r.t. to closed paths:

$$|Z| = |\xi|$$

 $|Z\rangle = Z_i |\xi\rangle$ • Fusion rules:

$$Z_{i}Z_{j}|\xi\rangle = |\xi\rangle$$

$$Z_{i}Z_{j}|Z\rangle = |Z\rangle$$

$$1 \times e = e$$

Useful for:

- · quantum anonymous broadcasting,
- · quantum error correction,
- topological quantum memory (?) ...

Non-abelian statistics can be detected similarly.

Implement Hamiltonian and larger systems.

Annals of Physics, IJQI