KITP Santa Barbara, 24 May 2007

Exploring New Phases in Polarised Fermi Gases

Meera Parish

Cavendish Laboratory University of Cambridge

Department of Physics Princeton University

See F. M. Marchetti's talk

Outline

- Fermi gases with unequal masses
 - BCS-BEC crossover
 - Evolution of tricritical point
 - Existence of different 'breached pair' states?
 - Trapped gases at finite temperature

Model for unequal masses

$$\hat{H} - \mu_{\uparrow} N_{\uparrow} - \mu_{\downarrow} N_{\downarrow} = \sum_{\mathbf{k}\sigma} \left(\frac{\mathbf{k}^{2}}{2m_{\sigma}} - \mu_{\sigma} \right) a_{\mathbf{k}\sigma}^{+} a_{\mathbf{k}\sigma}$$
$$\mu_{\uparrow} \equiv \mu + h$$
$$\mu_{\downarrow} \equiv \mu - h + U \sum_{\mathbf{k},\mathbf{k}',\mathbf{q}} a_{\mathbf{k}\uparrow}^{+} a_{\mathbf{k}'\downarrow}^{+} a_{\mathbf{k}'-\mathbf{q}\downarrow}^{+} a_{\mathbf{k}+\mathbf{q}}$$

- Define mass ratio
- Assume $k_{F\uparrow} \ge k_{F\downarrow}$

$$r = \frac{m_{\downarrow}}{m_{\uparrow}}$$

Fermi

surfaces

- → r > 1 corresponds to the majority species being heavier
- Minimise mean-field free energy

<u>Related work</u>: Liu and Wilczek, PRL 2003; Iskin et al., PRL 2006; Wu et al., PRB 2006; Lin et al, PRA 2006.

Mean-field BCS-BEC crossover (r = 1)

Quasiparticle spectrum

Equal masses

$$E_k = \sqrt{\left(\varepsilon_k - \mu\right)^2 + \Delta^2}$$

- Minimum at nonzero k for $\mu > 0$
- Minimum at k = 0 for μ < 0

Unequal masses

- Minimum at nonzero k for one branch when:

Zero temperature phase diagram

Zero temperature phase diagram

Breached pair states

- Magnetised superfluids that are *homogeneous* in real space
- Two types:

Is BP-2 ever stable?

Is BP-2 ever stable? NO, but...

Density of states

- BP-1 can have two different types of quasiparticle spectra and DoS
- Singularity in DoS only occurs for r > 1

Parish et al., PRL 98, 160402 (2007)

- Local density approximation μ_{eff} = μ − V (x)
 → valid when trap slowly varying with respect to all other length scales
- *h* is constant across trap, but h/μ_{eff} varies

Trapped gases at zero T: Lin et al, PRA 2006.

"Superfluid shells" for r > 3.95

Conclusion

- The zero temperature tricritical point smoothly evolves from the BEC to BCS limits with increasing r
- The interior gap state or BP-2 state is never stable for s-wave interactions
- However, differences in the breached pair states show up in the DoS and pair correlations
- Trapped gases at finite temperature exhibit superfluid shells for r > 3.95 at unitarity

NEXT: Quasi-1D polarised Fermi gases

- Experimentally realisable
- It expands the region of FFLO in the phase diagram

- Experimentally realisable
- It expands the region of FFLO in the phase diagram

Possibility of phase inversion in a trap

• E.g. BCS limit: $\Delta \sim \varepsilon_F \exp(-1/UN(\varepsilon_F))$, $N(\varepsilon_F) \propto 1/\sqrt{\varepsilon_F}$

 Δ can increase with decreasing density

SF N SF

Spin-imbalanced Fermi gases in 1D

Bethe Ansatz calculation: Orso, PRL 2007; Hu, Liu & Drummond, PRL 2007

Quasi-1D model
• Add hopping t between 1D tubes
$$\begin{aligned}
\mu_{\uparrow} &\equiv \mu + h \\
\mu_{\downarrow} &\equiv \mu - h
\end{aligned}$$

$$\hat{H} &= \sum_{\mathbf{k}\sigma} \left(\varepsilon_{\mathbf{k}} - \mu_{\sigma}\right) a_{\mathbf{k}\sigma}^{+} a_{\mathbf{k}\sigma} + g_{1D} \sum_{\mathbf{k},\mathbf{k}',\mathbf{q}} a_{\mathbf{k}\uparrow}^{+} a_{\mathbf{k}'\downarrow}^{+} a_{\mathbf{k}'-\mathbf{q}\downarrow}^{+} a_{\mathbf{k}+\mathbf{q}\uparrow}^{+} \\
\varepsilon_{\mathbf{k}} &= \frac{k_{z}^{2}}{2m} - t(\cos(k_{x}) + \cos(k_{y}) - 2)
\end{aligned}$$

Bergeman et al. PRL 2003

Density-driven crossover from 3D to 1D

- 3D limit *h*, *μ* << *t*
- □ 1D limit *µ* >> *t*
- Mean-field approach

3 dimensionless parameters: h/t, μ/t , $g_{1D}(m/t)^{1/2}$

```
Phase diagram
```



```
Phase diagram
```


Phase diagram

FFLO phases

• FF state $\Delta(r) = \Delta e^{iqr}$

• LO state $\Delta(r) = \Delta \cos(qr)$

- Two types of FFLO in quasi-1D
 - Commensurate gapped
 - Incommensurate gapless

Conclusion

- Quasi-1D system has an enhanced region of FFLO in the phase diagram
- It exhibits a rich collection of phases in the trapped gas
- Two types of FFLO states commensurate and incommensurate
- Open question when are the FFLO modulations in each tube phase-locked?

Acknowledgements

Unequal masses

- □ F. M. Marchetti, Oxford II
- A. Lamacraft, Oxford
- B. D. Simons, Cambridge

Quasi-1D

- D. Huse, Princeton
- □ E. Mueller, Cornell

