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Consider a system of bosons and fermions at non-zero density, 
and N particle-number (U(1)) conservation laws.

Then, for each conservation law there is a “Luttinger” theorem 
constraining the momentum space volume enclosed by the 
locus of gapless single particle excitations, unless:

• there is a broken translational symmetry, and there are an 
integer number of particles per unit cell for every conservation
law;

• there is a broken U(1) symmetry due to a boson condensate –
then the associated conservation law is excluded;

• the ground state has “topological order” and fractionalized 
excitations.
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Mixture of bosons b and fermions f

(e.g. 7Li+6Li, 23Na+6Li, 87Rb+40K) 

Tune to the vicinity of a Feshbach resonance 
associated with a molecular state ψ
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2 FS, no BEC phase

“molecular” Fermi surface
“atomic” Fermi surface

Volume = bN Volume = f bN N−

2  Luttinger theorems; volume within both 
Fermi surfaces is conserved
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Phase diagram
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2 FS + BEC phase

“molecular” Fermi surface
“atomic” Fermi surface

Total volume = fN

1  Luttinger theorem; only total volume 
within Fermi surfaces is conserved
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1 FS + BEC phase

“atomic” Fermi surface

Total volume = fN

1  Luttinger theorem; only total volume 
within Fermi surfaces is conserved
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Tune to the vicinity of a Feshbach resonance 
associated with a Cooper pair Δ

† †

† †

   Conservation laws:
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Mixture of fermions  and f f↓ ↑



  chemical potential;   "magnetic" field;   detuninghμ ν

D. E. Sheehy and L. Radzihovsky, Phys. Rev. Lett. 96, 060401 (2006);       
M. Y. Veillette, D. E. Sheehy, and L. Radzihovsky, cond-mat/0610798.



  chemical potential;   "magnetic" field;   detuninghμ ν



  chemical potential;   "magnetic" field;   detuninghμ ν



2 FS, normal state

minority Fermi surface
majority Fermi surface

Volume = N↓ Volume = N↑

2  Luttinger theorems; volume within both 
Fermi surfaces is conserved
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1 FS, normal state

minority Fermi surface
majority Fermi surface

 0N↓ = Volume = N↑

2  Luttinger theorems; volume within both 
Fermi surfaces is conserved

0Δ =



Superfluid

minority Fermi surface majority Fermi surface

Volume Volume N N↑ ↓ ↑ ↓− = −

1  Luttinger theorem; difference volume 
within both Fermi surfaces is conserved
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Magnetized Superfluid

minority Fermi surface majority Fermi surface

Volume Volume N N↑ ↓ ↑ ↓− = −

1  Luttinger theorem; difference volume 
within both Fermi surfaces is conserved

0Δ ≠



Sarma (breached pair) Superfluid

minority Fermi surface majority Fermi surface

Volume Volume N N↑ ↓ ↑ ↓− = −

1  Luttinger theorem; difference volume 
within both Fermi surfaces is conserved

0Δ ≠



Any state with a density imbalance 
must have at least one Fermi surface
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The Kondo lattice

+

Local moments fσ Conduction electrons cσ
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Number of f electrons per unit cell = nf = 1
Number of c electrons per unit cell = nc



†

  Define a bosonic field which measures the
    hybridization between the two bands:
                    

Analogy with Bose-Fermi mixture problem:
         is the analog of the "molecule"
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Decoupled
FL

1
Fk cV n

If the  f  band is dispersionless in the decoupled case, the 
ground state is always in the 1 FS FL phase.

= +
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1 FS + BEC Heavy Fermi liquid (FL) Higgs phase⇔ ⇔



2 FS + BEC Heavy Fermi liquid (FL) Higgs phase⇔ ⇔

A bare  f  dispersion (from the RKKY couplings) allows a    
2 FS FL phase.

FL
0b ≠



2 FS, no BEC Fractionalized Fermi liquid (FL*)
                                          Deconfined phase

⇔
⇔

FL*
0b =

The  f  band “Fermi surface” realizes a spin liquid     
(because of the local constraint)
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Local moments fσ
Conduction electrons cσ
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Another perspective on the FL* phase

Determine the ground state of the quantum antiferromagnet defined by 
JH, and then couple to conduction electrons by JK

Choose JH so that ground state of antiferromagnet is                        
a Z2 or U(1) spin liquid
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Local moments fσ
Conduction electrons cσ

Influence of conduction electrons

Perturbation theory in JK is regular, and so this state will be stable for finite JK.
So volume of Fermi surface is determined by

(nc+nf -1)= nc(mod 2), and does not equal the Luttinger value.

At JK= 0 the conduction electrons form a Fermi surface on 
their own with volume determined by nc.

The (U(1) or Z2) FL* state
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Phase diagram of S=1/2 square lattice antiferromagnet
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