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Outline

• Introduction.

• New features of orbital physics in optical lattices.

- Rapid progress of cold atom physics in optical lattices.

Bosons: novel superfluidity with time-reversal symmetry 
breaking (square, triangular lattices).

- New direction: orbital physics in high orbital bands; several 
pioneering experiments.

Fermions: flat bands and crystallization in honeycomb lattice.
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Bose-Einstein condensation

314 cm10~1~ −nKTBEC μ

weakly interacting systems

M. H. Anderson et al., Science 269, 198 (1995)
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New era: optical lattices

• New opportunity to study strongly correlated systems.

• Interaction effects are tunable by varying laser intensity.

U

t
t: inter-site tunneling
U: on-site interaction
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Superfluid-Mott insulator transition

Superfluid

Greiner et al., Nature (2001).

Rb87

Mott insulator

t<<Ut>>U
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• 1st order coherence          disappears 
in the Mott-insulating state.
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• Noise correlation function oscillates 
at the reciprocal lattice vectors; 
bunching effect for bosons.

Noise correlation (time of flight) in Mott-insulators

Folling et al.,  Nature 434, 481 (2005); Altman et al., 
PRA 70, 13603 (2004).
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Two dimensional superfluid-Mott insulator transition

I. B. Spielman et al., cond-mat/0606216.
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Fermionic atoms in optical lattices
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• Simulating strongly correlated condensed matter systems.

e.g. Can 2D Hubbard model describe  high Tc cuprates?

• Observation of Fermi surface.

Low density: metal high density: band insulator
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Esslinger et al., 
PRL 94:80403 
(2005)
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Outline

• Introduction.

• New features of orbital physics in optical lattices.

- Rapid progress of cold atom physics in optical lattices.

Bosons: novel superfluidity with time-reversal symmetry 
breaking (square, triangular, and double-well lattices).

- New direction: orbital physics in high orbital bands; 
several pioneering experiments.

Fermions: flat bands and crystallization in honeycomb lattice.
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Orbital physics

• Orbital band degeneracy and spatial anisotropy.

• cf. transition metal oxides (d-orbital bands with electrons).

Charge and orbital ordering in La1-xSr1+xMnO4

• Orbital: a degree of freedom independent of  charge and 
spin.

Tokura, et al., science 288, 462, (2000).
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New features of orbital physics in optical lattices

⊥>> tt //

σ-bond π-bond

strong anisotropy: flat band, novel orbital ordering … …

bosons in excited bands: frustrated superfluidity with 
translational and time-reversal symmetry breaking … …

• p-orbital physics using cold atoms.

• Fermions: s-band is fully-filled; p-orbital bands are active.

• Bosons: pumping bosons from s to p-orbital bands.
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Double-well optical lattices

White spots=lattice sites. 
Note the difference in 
lattice period!

Combining both 
polarizations

J. J. Sebby-Strabley, et al., PRA 73, 33605 (2006).

xyI zI

• The potential barrier height and the 
tilt of the double well can be tuned.

• Laser beams of in-plane and out-of-plane polarizations. 
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Transfer bosons to the excited band

Grow the long period lattice

• Band mapping.

• Phase incoherence.

M. Anderlini, et al., J. Phys. B 39, S199 (2006).

Create the excited state (adiabatic) Create the short period lattice (diabatic)

Avoid tunneling (diabatic)
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Ongoing experiment: pumping bosons by Raman transition

T. Mueller, I. Bloch et al.

• Quasi-1d feature in the square 
lattice.
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• Long life-time: phase coherence.
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Outline

• New features of orbital physics in optical lattices.

Fermions in 
honeycomb lattice

Graphene: 
Dirac cone

Flat bands: Wigner 
crystallization

pz-orbital bandpxy-orbital bands

• Introduction.

C. Wu, D. Bergman, L. Balents, and S. Das Sarma, cond-mat/0701788
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Honeycomb lattice: a surge of research interest

• Graphene: 2pz-orbital band; Dirac cone; 
isotropic and non-degenerate.

However, in graphene, 2px, 2py-orbital 
bands hybridize with 2s.

• In optical lattices, px and py-orbital bands 
are well separated from s.

• Even more interesting physics in the 
px, py-orbital bands.



18

Artificial graphene in optical lattices

.}.)ˆ()({// cherprptH ii
Ar

it ++= ∑
∈

+

• Band Hamiltonian (σ-bonding) for spin-
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• If π-bonding is included, the flat 
bands acquire small width at the 
order of     .

Flat bands in the entire Brillouin zone!

• Flat band + Dirac cone. • localized eigenstates.

⊥t
π-bond

⊥>> tt //
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Enhance interactions among polarized fermions
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=• Hubbard-type interaction:

• Problem: contact interaction vanishes for spinless
fermions.

)63,(SCr  53
Bμμ==• Use fermions with large magnetic 

moments. 

B
• Under strong 2D confinement, 
U is repulsive and can reach 
the order of recoil energy.
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Exact solution with repulsive interactions!

6
1=n

• Crystallization with only on-site 
interaction!  

• The result is also good for 
bosons.

• Closest packed hexagons; 
avoiding repulsion.

• The crystalline order is stable 
even with      if              .⊥t ⊥>> tU
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Orbital ordering with strong repulsions 

10/ // =tU

2
1=n

• Various orbital ordering 
insulating states at 
commensurate fillings.

• Dimerization at <n>=1/2! Each dimer is an entangled state 
of empty and occupied states.
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Experimental detection
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• Noise correlations of the time of 
flight image.

G: reciprocal lattice vector for the  
enlarged unit cells; ‘+’ for bosons, 
‘-’ for fermions.
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22 δ

• Transport: tilt the lattice and measure the excitation gap.

in unit of a3/2π
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Future work: exotic states of matter in the flat 
band; divergence of density of states.

• A wonderful realistic system for flat band 
ferromagnetism (fermions with spin).  

• Pairing superfluidity in the flat band. BEC-BCS 
crossover? Is there the BCS limit?

• Bosons in the flat-band: highly frustrated system.   
where to condense? Can they condense? 
Possible “Bose metal” phase?
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Outline

Bosons: novel superfluidity with time-reversal symmetry 
breaking.

Other’s related work: V. W. Scarola et. al, PRL, 2005; A. Isacsson et. al., PRA 2005; 
A. B. Kuklov, PRL 97, 2006; C. Xu et al., cond-mat/0611620 .

square lattice: staggered on-site orbital angular 
momentum (OAM) order.

triangular lattice: quantum stripe ordering of OAM. 

W. V. Liu and C. Wu, PRA 74, 13607 (2006);  C. Wu, W. V. Liu, J. Moore and
S. Das Sarma, PRL 97, 190406 (2006).

• New features of orbital physics in optical lattices.

• Introduction.

Fermions: flat bands in honeycomb lattice.
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p-orbital Bose-Hubbard model (2D square lattice)

• Anisotropic hopping and odd parity:
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σ-bond π-bond

• On-site interaction the orbital version of “Hund’s rule”.
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• Band minima: Kx=(π,0), Ky=(0,π).

Superfluidity with time-reversal symmetry breaking
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• Interaction selects condensate as
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staggered orbital angular momentum 
order.
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Time of flight signature of p-orbital BEC

• p-orbital Wannier
wavefunction
imposes a non-
Gaussian profile; 

• At zero temperate, 
2D coherence peaks 
located at: 
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Quasi-1D behavior at finite temperatures

• Because          , px-particles can 
maintain phase coherence within the 
same row, but loose phase inter-row 
coherence at finite temperatures. 

T. Mueller, I. Bloch et al.

//tt <<⊥

A. Isacsson et. al., PRA 72, 53604, 2005;

• Similar behavior also occurs for py-
particles.

• The system effectively becomes 1D-
like as shown in the time of flight 
experiment.
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p-band Bose-Hubbard model in triangular lattice
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N
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• Interactions select the condensate as (weak coupling analysis):

CW, W. V. Liu, J. Moore, and S. Das
Sarma, Phys. Rev. Lett. (2006).
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Quantum stripe ordering of orbital angular 
momentum moments
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• Time-reversal, lattice translational, rotational symmetries 
are broken.

• Orbital configuration in each site:
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Strong coupling analysis

• Each site is characterized by a U(1) phase   , and an 
Ising variable     .

i
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:σ direction of the Lz.
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• Inter-site Josephson coupling: effective vector potential. 
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Strong coupling analysis
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• cf. The same analysis also applies 
to p+ip Josephson junction array.
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• The stripe pattern minimizes 
the ground state vorticity. 
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• Predicted time of flight  
density distribution for the 
stripe-ordered superfluid.

• Guzwiller mean field calculation also confirms the stripe 
ordering in the intermediate coupling regime.

Time of flight signature

• Stripe ordering occurs throughout all the coupling regimes.

• Coherence peaks occur at 
non-zero wavevectors.
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Summary

• Current experiment progress has provided a wonderful 
opportunity to study orbital physics in optical lattices.

• Fermions: flat bands and crystallization in honeycomb 
lattice.

• Bosons: novel superfluidity with time-reversal symmetry 
breaking (square, triangular).
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