Hidden Symmetry and Quantum Phases in Spin 3/2 Cold Atomic Systems

Congjun Wu

Kavli Institute for Theoretical Physics, UCSB

Ref: C. Wu, Mod. Phys. Lett. B 20, 1707, (2006);

C. Wu, J. P. Hu, and S. C. Zhang, Phys. Rev. Lett. 91, 186402(2003);

C. Wu, Phys. Rev. Lett. 95, 266404 (2005);

S. Chen, C. Wu, S. C. Zhang and Y. P. Wang, Phys. Rev. B 72, 214428 (2005);

C. Wu, J. P. Hu, and S. C. Zhang, cond-mat/0512602.

<u>Collaborators</u>

- S. Chen, Institute of Physics, Chinese Academy of Sciences, Beijing.
- J. P. Hu, Purdue.
- Y. P. Wang, Institute of Physics, Chinese Academy of Sciences, Beijing.
- S. C. Zhang, Stanford.

Many thanks to L. Balents, E. Demler, M. P. A. Fisher, E. Fradkin, T. L. Ho, A. J. Leggett, D. Scalapino, J. Zaanen, and F. Zhou for very helpful discussions.

Rapid progress in cold atomic physics

M. Greiner et al., Nature 415, 39 (2002).

M. Greiner et. al., PRL, 2001.

• Magnetic traps: spin degrees of freedom are frozen.

• Optical traps and lattices: spin degrees of freedom are released; a controllable way to study high spin physics.

• In optical lattices, interaction effects are adjustable. New opportunity to study strongly correlated high spin systems.

High spin physics with cold atoms

• Most atoms have high hyperfine spin multiplets.

F = I (nuclear spin) + S (electron spin).

• Different from high spin transition metal compounds.

• Spin-1 bosons: ²³Na (antiferro), ⁸⁷Rb (ferromagnetic).

• High spin fermions: zero sounds and Cooper pairing structures.

D. M. Stamper-Kurn et al., PRL 80, 2027 (1998); T. L. Ho, PRL 81, 742 (1998);

- F. Zhou, PRL 87, 80401 (2001); E. Demler and F. Zhou, PRL 88, 163001 (2002);
- T. L. Ho and S. Yip, PRL 82, 247 (1999); S. Yip and T. L. Ho, PRA 59, 4653(1999).

Hidden symmetry: spin-3/2 atomic systems are special!

- Spin 3/2 atoms: ¹³²Cs, ⁹Be, ¹³⁵Ba, ¹³⁷Ba, ²⁰¹Hg.
- Hidden **SO(5)** symmetry without fine tuning!

Continuum model (s-wave scattering); the lattice-Hubbard model.

Exact symmetry regardless of the dimensionality, lattice geometry, impurity potentials.

SO(5) in spin 3/2 systems $\leftrightarrow \rightarrow$ SU(2) in spin $\frac{1}{2}$ systems

• This SO(5) symmetry is qualitatively different from the SO(5) theory of high T_c superconductivity.

What is SO(5)/Sp(4) group?

• SO(5) /Sp(4) group.

 n_1, n_2

5-vector:	n_1, n_2, n_3, n_4, n_5
10-generator:	$L_{ab} \ (1 \le a < b \le 5)$
4-spinor:	

<u>Quintet superfluidity and half-quantum vortex</u></u>

• High symmetries do not occur frequently in nature, since every new symmetry brings with itself a possibility of new physics, they deserve attention.

---D. Controzzi and A. M. Tsvelik, cond-mat/0510505

• Cooper pairing with S_{pair}=2.

• Half-quantum vortex (non-Abelian Alice string) and quantum entanglement.

C. Wu, J. P. Hu, and S. C. Zhang, cond-mat/0512602.

Multi-particle clustering order

• Quartetting order in spin 3/2 systems.

4-fermion counter-part of Cooper pairing.

- Feshbach resonances: Cooper pairing superfluidity.
- Driven by logic, it is natural to expect the quartetting order as a possible focus for the future research.

Strong quantum fluctuations in magnetic systems

• Intuitively, quantum fluctuations are weak in high spin systems.

$$\left[\frac{S_i}{S}, \frac{S_j}{S}\right] = i\varepsilon_{ijk} \frac{1}{S} \frac{S_k}{S}$$

Illustration by Dick Codor.

• However, due to the high SO(5) symmetry, quantum fluctuations here are even **stronger** than those in spin 1/2 systems.

From Auerbach's book:

<u>Outline</u>

• The proof of the exact SO(5) symmetry.

C. Wu, J. P. Hu, and S. C. Zhang, PRL 91, 186402(2003).

- Quintet superfluids and non-Abelian topological defects.
- Quartetting v.s pairing orders in 1D spin 3/2 systems.
- SO(5) (Sp(4)) Magnetism in Mott-insulating phases.

The SO(4) symmetry in Hydrogen atoms

- An obvious SO(3) symmetry: \vec{L} (angular momentum).
- The energy level degeneracy n² is mysterious.

• Not accidental! 1/r Coulomb potential gives rise to a hidden conserved quantity.

Runge-Lentz vector \vec{A} ; SO(4) generators \vec{A}, \vec{L} .

• Q: What are the **hidden** conserved quantities in spin 3/2 systems?

Generic spin-3/2 Hamiltonian in the continuum

• The s-wave scattering interactions and spin SU(2) symmetry.

$$\begin{split} H &= \int d^{d}\vec{r} \sum_{\alpha=\pm 3/2,\pm 1/2} \psi_{\alpha}^{+}(\vec{r}) (\frac{-\hbar^{2}}{2m} \hat{\nabla}^{2} - \mu) \psi_{\alpha}(\vec{r}) \\ &+ \frac{g_{0}}{2} \eta^{+}(\vec{r}) \eta(\vec{r}) + \frac{g_{2}}{2} \sum_{a=1\sim 5} \chi_{a}^{+}(\vec{r}) \chi_{a}(\vec{r}) \end{split}$$

$$\left. \begin{array}{c} \left| \frac{3}{2} \right\rangle \\ \left| \frac{1}{2} \right\rangle \\ \left| \frac{1}{2} \right\rangle \\ \left| \frac{1}{2} \right\rangle \\ \left| \frac{3}{2} \right\rangle \\ \left| \frac$$

• Pauli's exclusion principle: only $F_{tot}=0$, 2 are allowed; $F_{tot}=1$, 3 are forbidden.

singlet:
$$\eta^{+}(\vec{r}) = \sum_{\alpha\beta} \langle 00 | \frac{3}{2} \frac{3}{2}; \alpha\beta \rangle \psi_{\alpha}^{+}(\vec{r}) \psi_{\beta}^{+}(\vec{r})$$

quintet: $\chi_{a}^{+}(\vec{r}) = \sum_{\alpha\beta} \langle 2a | \frac{3}{2} \frac{3}{2}; \alpha\beta \rangle \psi_{\alpha}^{+}(\vec{r}) \psi_{\beta}^{+}(\vec{r})$

Spin-3/2 Hubbard model in optical lattices

$$H = \sum_{\langle ij \rangle, \alpha} -t\{c_{i,\alpha}^+ c_{j,\alpha} + h.c.\} - \mu \sum_i c_{i,\alpha}^+ c_{i,\alpha}$$
$$+ U_0 \sum_i \eta^+(i)\eta(i) + U_2 \sum_{a=1\sim 5} \chi_a^+(i)\chi_a(i)$$

• The single band Hubbard model is valid away from resonances.

 $a_{s:}\xspace$ scattering length, $E_{r:}\xspace$ recoil energy

$$\frac{U_{0.2}}{\Delta E} < 0.1,$$

$$l_0 \sim 400 \text{nm}, a_{s,0,2} \sim 100 a_B$$

$$(\frac{V_0}{E_r})^{1/4} \approx 1 \sim 2$$

13

SO(5) symmetry: the single site problem

 $2^4 = 16$ states.

	SU(2)	SO(5)	degen
			eracy
E _{0,3,5}	singlet	scalar	1
E _{1,4}	quartet	spinor	4
E ₂	quintet	vector	5

• $U_0 = U_2 = U$, SU(4) symmetry. $H_{int} = \frac{U}{2}n(n-1)$

14

Quintet channel (S=2) operators as SO(5) vectors

• Kinetic energy has an obvious SU(4) symmetry; interactions break it down to SO(5) (Sp(4)); SU(4) is restored at $U_0=U_{2}$.

<u>Particle-hole bi-linears</u> $\psi_{\alpha}^{\dagger}M_{\alpha\beta}\psi_{\beta}$ (I)

- Total degrees of freedom: $4^2 = 16 = 1 + 3 + 5 + 7$.
- 1 density operator and 3 spin operators are not complete.

rank: 0
1,
1
$$F_x, F_y, F_z$$

 $M_{\alpha\beta}$ 2 $\xi^a_{ij}F_iF_j$ $(a = 1 \sim 5)$:
3 $\xi^a_{ijk}F_iF_jF_k$ $(a = 1 \sim 7)$
 $F_x^2 - F_y^2, F_z^2 - \frac{5}{4}, \{F_x, F_y\}, \{F_y, F_z\}, \{F_z, F_x\}$

• Spin-nematic matrices (rank-2 tensors) form five- Γ matrices (SO(5) vector) .

$$\Gamma^{a} = \xi^{a}_{ij} F_{i} F_{j}, \quad \{\Gamma^{a}, \Gamma^{b}\} = 2\delta_{ab}, \quad (1 \le a, b \le 5)$$

Particle-hole channel algebra (II)

• Both $F_{x,y,z}$ and $\xi_{ijk}^{a}F_{i}F_{j}F_{k}$ commute with Hamiltonian. 10 generators of SO(5): 10=3+7.

7 spin cubic tensors are the hidden conserved quantities.

$$\Gamma^{ab} = \frac{i}{2} [\Gamma^a, \Gamma^b] \quad (1 \le a < b \le 5)$$

• SO(5): 1 scalar + 5 vectors + 10 generators = 16

Time Reversal

1 density:	$n=\psi^{+}\psi;$	even
5 spin nematic:	$n_a = \frac{1}{2}\psi^+\Gamma^a\psi;$	even
3 spins + 7 spin cubic tensors:	$L_{ab} = \frac{1}{2} \psi^{+} \Gamma^{ab} \psi;$	odd

<u>Outline</u>

- The proof of the exact SO(5) symmetry.
- Quintet superfluids and Half-quantum vortices.

C. Wu, J. P. Hu, and S. C. Zhang, cond-mat/0512602.

- Quartetting v.s pairing orders in 1D spin 3/2 systems.
- SO(5) (Sp(4)) Magnetism in Mott-insulating phases.

• BCS theory: polar condensation; order parameter forms an SO(5) vector.

$$d_{xy} : \chi_{1}^{+}(r) = \oint \oint - \oint \oint \oint d_{xz} : \chi_{2}^{+}(r) = i \left(\oint \oint - \oint \oint \oint \oint f \right)$$

$$d_{yz} : \chi_{3}^{+}(r) = \oint \oint f + \oint \oint \oint f + \oint \oint f = i$$

$$d_{3z^{2}-r^{2}} : \chi_{4}^{+}(r) = i \left(\oint \oint f + \oint \oint f \right)$$

$$d_{x^{2}-y^{2}} : \chi_{5}^{+}(r) = i \left(\oint \oint f + \oint \oint f \right)$$

$$\chi_a^+ = \sqrt{\rho} \ e^{i\theta} \ \hat{d}_a$$
$$\hat{d} \qquad S^4$$
$$5d \text{ unit vector}$$

Ho and Yip, PRL 82, 247 (1999); Wu, Hu and Zhang, cond-mat/0512602.

Superfluid with spin: half-quantum vortex (HQV)

• Z₂ gauge $\hat{d} \rightarrow -\hat{d}, \quad \theta \rightarrow \theta + \pi$ symmetry

• π -disclination of \hat{d} as a HQV.

 $\chi_a^+ = \sqrt{\rho} e^{i\theta} \hat{d}_a$ remains single-valued.

• \hat{d} is not a rigorous vector, but a directionless director.

• Fundamental group of the manifold.

$$\pi_1(RP^4) = Z_2$$

$$\hat{d}: RP^4 = S^4 / Z_2$$

Stability of half-quantum vortices

$$E = \int dr \frac{\hbar^2}{4M} \{ \rho_{sf} (\nabla \theta)^2 + \rho_{sp} (\nabla \hat{d})^2 \}$$

• Single quantum vortex:

$$E = \frac{h}{4M^2} \rho_{sf} \log \frac{L}{\xi}$$

• A pair of HQV:

$$E = \frac{h}{4M^2} \left\{ \frac{\rho_{sf} + \rho_{sp}}{2} \log \frac{L}{\xi} + \frac{\rho_{sf} - \rho_{sp}}{2} \log \frac{L}{R} \right\}$$

• Stability condition: $\rho_{sp} < \rho_{sf}$

Example: HQV as Alice string (3He-A phase)

- A particle flips the sign of its spin after it encircles HQV.
- Example: ³He-A, triplet Cooper pairing.

The HQV pair in 2D or HQV loop in 3D

$$|\alpha\rangle_{vort} = \exp(iS_z\alpha)|\alpha = 0\rangle_{vort}$$

P. McGraw, Phys. Rev. D, 50, 952 (1994).

SO(2) Cheshire charge (3He-A)

- HQV pair or loop can carry spin quantum number.
- For each phase state, SO(2) symmetry is only broken in a finite region, so it should be dynamically restored.

P. McGraw, Phys. Rev. D, 50, 952 (1994).

Spin conservation by exciting Cheshire charge

• Initial state: particle spin up and HQV pair (loop) zero charge.

• Final state: particle spin down and HQV pair (loop) charge 1.

$$|init\rangle = |\uparrow\rangle_p \otimes |m=0\rangle_{vort} = |\uparrow\rangle_p \otimes \int d\alpha |\alpha\rangle_{vort}$$

$$|final\rangle = |\downarrow\rangle_p \otimes \int d\alpha \ e^{i\alpha} |\alpha\rangle_{vort}$$
$$= |\downarrow\rangle_p \otimes |m=1\rangle_{vort}$$

Quintet pairing as a non-Abelian generalization

• HQV configuration space $|\hat{n}\rangle_{vort}$, SU(2) instead of U(1).

 π -disclination

SU(2) Berry phase

• After a particle moves around HQV, or passes a HQV pair:

Non-Abelian Cheshire charge

• Construct SO(4) Cheshire charge state for a HQV pair (loop) through S³ harmonic functions.

$$\left|TT_{3};T'T'_{3}\right\rangle_{vort} = \int_{n \in S^{3}} d\hat{n} Y_{TT_{3};T'T'_{3}}(\hat{n}) \left|\hat{n}\right\rangle_{vort}$$

$$\vec{T}(\vec{T}') = L_{12,} \pm L_{35}, L_{13,} \pm L_{25,}, L_{23} \pm L_{15}.$$

• Zero charge state.

$$\left|00;00\right\rangle_{vort} = \int_{n\in S^3} d\hat{n} \left|\hat{n}\right\rangle_{vort}$$

 e_4

Entanglement through non-Abelian Cheshire charge!

• SO(4) spin conservation. For simplicity, only $S_z = T_3 + \frac{3}{2}T_3'$ is shown.

$$|init\rangle = \left|\frac{3}{2}\right\rangle_p \otimes |\text{zero charge}\rangle_{vort}$$
 \longrightarrow
 $|final\rangle = \left|\frac{1}{2}\right\rangle_p \otimes |\mathbf{S}_z = 1\rangle_{vort} - \left|\frac{-1}{2}\right\rangle_p \otimes |\mathbf{S}_z = 2\rangle_{vort}$

 Generation of entanglement between the particle and HQV loop!

<u>Outline</u>

• The proof of the exact SO(5) symmetry.

• Alice string in quintet superfluids and non-Abelian Cheshire charge.

Quartetting and pairing orders in 1D systems.

C. Wu, Phys. Rev. Lett. 95, 266404(2005).

• SO(5) (Sp(4)) Magnetism in Mott-insulating phases.

Multiple-particle clustering (MPC) instability

• Pauli's exclusion principle allows MPC. More than two particles form bound states.

baryon (3-quark); alpha particle (2p+2n); bi-exciton (2e+2h)

• Spin 3/2 systems: quartetting order.

SU(4) singlet: 4-body maximally entangled states

 $O_{qt} = \psi_{3/2}^{+}(r)\psi_{1/2}^{+}(r)\psi_{-1/2}^{+}(r)\psi_{-3/2}^{+}(r)$

• Difficulty: lack of a BCS type well-controlled mean field theory.

trial wavefunction in 3D: A. S. Stepanenko and J. M. F Gunn, cond-mat/9901317.

1D systems: strongly correlated but understandable

• Bethe ansatz results for 1D SU(2N) model:

2N particles form an SU(2N) singlet; Cooper pairing is not possible because 2 particles can not form an SU(2N) singlet.

P. Schlottmann, J. Phys. Cond. Matt 6, 1359(1994).

• Competing orders in 1D spin 3/2 systems with SO(5) symmetry.

Both quartetting and singlet Cooper pairing are allowed. Transition between quartetting and Cooper pairing.

C. Wu, Phys. Rev. Lett. 95, 266404(2005).

Phase diagram at incommensurate fillings

• Gapless charge sector.

• Spin gap phases B and C: pairing v.s. quartetting.

• Ising transition between B and C.

• Singlet pairing in purely repulsive regime.

• Quintet pairing is not allowed.

Phase B: the quartetting phase

• Quartetting superfluidity v.s. CDW of quartets (2k_f-CDW).

$$O_{qt} = \psi_{3/2}^{+} \psi_{1/2}^{+} \psi_{-1/2}^{+} \psi_{-3/2}^{+} \text{ wins at } K_{c} > 2;$$

$$N_{2k_{f}} = \psi_{R\alpha}^{+} \psi_{L\alpha} \text{ wins at } K_{c} < 2.$$

K_c: the Luttinger parameter in the charge channel.

Phase C: the singlet pairing phase

• Singlet pairing superfluidity v.s CDW of pairs (4k_f-CDW).

$$\eta^{+} = \psi_{3/2}^{+} \psi_{-3/2}^{+} - \psi_{1/2}^{+} \psi_{-1/2}^{+} \text{ wins at } K_{c} > \frac{1}{2};$$

$$O_{4k_{f},cdw} = \psi_{R\alpha}^{+} \psi_{R\beta}^{+} \psi_{L\beta} \psi_{L\alpha} \text{ wins at } K_{c} < \frac{1}{2}.$$

Competition between quartetting and pairing phases

A. J. Leggett, Prog, Theo. Phys. 36, 901(1966); H. J. Schulz, PRB 53, R2959 (1996).

• Phase locking problem in the two-band model.

 $\eta^{+} = \Delta_{1}^{+} - \Delta_{2}^{+} \propto e^{i\sqrt{\pi}\theta_{c}} \cos\sqrt{\pi}\theta_{r}; \qquad \Delta_{1}^{+} = \psi_{3/2}^{+}\psi_{-3/2}^{+} \qquad \Delta_{2}^{+} = \psi_{1/2}^{+}\psi_{-1/2}^{+}$ $O_{quar} = \Delta_{1}^{+}\Delta_{2}^{+} \propto e^{i\sqrt{4}\pi\theta_{c}} \cos 2\sqrt{\pi}\varphi_{r}.$ $\sqrt{\pi}\theta_{c} \text{ overall phase}; \quad \sqrt{\pi}\theta_{r} \text{ relative phase}.$ $\sqrt{\pi}\varphi_{r} \text{ dual field of the relative phase}$

• No symmetry breaking in the overall phase (charge) channel in 1D.

$$\psi_{\pm\frac{3}{2},\pm\frac{1}{2}}^{+} \rightarrow \psi_{\pm\frac{3}{2},\pm\frac{1}{2}}^{+} e^{i\alpha} \quad i.e. \quad \sqrt{\pi}\theta_{c} \rightarrow \sqrt{\pi}\theta_{c} + 2\alpha$$

Ising transition in the relative phase channel

$$H_{eff} = \frac{1}{2} \{ (\partial_x \theta_r)^2 + (\partial_x \varphi_r)^2 \} + \frac{1}{2\pi a} (\lambda_1 \cos 2\sqrt{\pi} \theta_r + \lambda_2 \cos 2\sqrt{\pi} \varphi_r)$$

• $\lambda_1 > \lambda_2$ the relative phase is pinned: pairing order; $\lambda_1 < \lambda_2$ the dual field is pinned: quartetting order.

Ising transition: two Majorana fermions with masses: $\lambda_1 \pm \lambda_2$

• Ising symmetry: $\psi_{\frac{3}{2}}^+ \rightarrow i\psi_{\frac{3}{2}}^+, \quad \psi_{\frac{1}{2}}^+ \rightarrow -i\psi_{\frac{1}{2}}^+.$

relative phase: $\sqrt{\pi}\theta_r \rightarrow \sqrt{\pi}\theta_r \pm \pi \qquad \sqrt{\pi}\varphi_r \rightarrow \sqrt{\pi}\varphi_r$

• Ising ordered phase: $\eta \rightarrow -\eta$, Ising disordered phase: $O_{quart} \rightarrow O_{quart}$

Experiment setup and detection

<u>Outline</u>

• The proof of the exact SO(5) symmetry.

• Alice string in quintet superfluids and non-Abelian Cheshire charge.

- Quartetting v.s pairing orders in 1D spin 3/2 systems.
- SO(5) (Sp(4)) magnetism in Mott-insulating phases.

S. Chen, C. Wu, S. C. Zhang and Y. P. Wang, Phys. Rev. B 72, 214428 (2005).

Spin exchange (one particle per site)

• Spin exchange: bond singlet (J_0) , quintet (J_2) . No exchange in the triplet and septet channels.

$$H_{ex} = \sum_{\langle ij \rangle} -J_0 Q_0(ij) - J_2 Q_2(ij)$$

$$J_0 = 4t^2 / U_0, J_2 = 4t^2 / U_2, J_1 = J_3 = 0$$

$$\frac{3}{2} \times \frac{3}{2} = 0 + 2 + 1 + 3$$

- Heisenberg model with bi-linear, bi-quadratic, bi-cubic terms.
- SO(5) or Sp(4) explicitly invariant form:

$$H_{ex} = \sum_{ij} \frac{J_0 + J_2}{4} L_{ab}(i) L_{ab}(j) + \frac{-J_0 + 3J_2}{4} n_a(i) n_b(j) \qquad a, b = 1 \sim 5$$

 L_{ab} : 3 spins + 7 spin cubic tensors; n_a : spin nematic operators; L_{ab} and n_a together form the15 SU(4) generators.

◀

Two different SU(4) symmetries

• B: J₂=0, the staggered SU'(4) point.

In a bipartite lattice, a particle-hole transformation on odd sites:

$$\begin{split} L_{ab}(j) &= L'_{ab}(j) \quad n_{ab}(j) = -n'_{ab}(j) \\ H_{ex} &= \frac{J_0}{4} \sum_{ij} \left\{ L_{ab}(i) L'_{ab}(j) + n_a(i) n'_a(j) \right\} \quad \mathsf{J}_0 \quad \begin{cases} \mathsf{quintet triplet septet} \\ ---- \\ \mathbf{J}_0 \\$$

Construction of singlets

• The SU(2) singlet: 2 sites.

• The uniform SU(4) singlet: 4 sites.

baryon
$$\frac{\varepsilon_{\alpha\beta\gamma\delta}}{4!}\psi_{\alpha}^{+}(1)\psi_{\beta}^{+}(2)\psi_{\gamma}^{+}(3)\psi_{\delta}^{+}(4)|0\rangle$$

• The staggered SU'(4) singlet: 2 sites.

meson
$$\frac{1}{2}\psi_{\alpha}^{+}(1)R_{\alpha\beta}\psi_{\beta}^{+}(2)$$

Phase diagram in 1D lattice (one particle per site)

• On the SU'(4) line, dimerized spin gap phase.

• On the SU(4) line, gapless spin liquid phase.

C. Wu, Phys. Rev. Lett. 95, 266404 (2005). 43

SU'(4) and SU(4) point at 2D

• At SU'(4) point $(J_2=0)$, QMC and large N give the Neel order, but the moment is tiny.

Read, and Sachdev, Nucl. Phys. B 316(1989). K. Harada et. al. PRL 90, 117203, (2003).

• J₂>0, no conclusive results!

SU(4) point $(J_0=J_2)$, 2D Plaquette order at the SU(4) point?

Exact diagonalization on a 4*4 lattice

Bossche et. al., Eur. Phys. J. B 17, 367 (2000).

Exact result: SU(4) Majumdar-Ghosh ladder

• Exact dimer ground state in spin 1/2 M-G model.

$$H = \sum_{i} H_{i,i+1,i+2}, \quad H_{i,i+1,i+2} = \frac{J}{2} (\vec{S}_i + \vec{S}_{i+1} + \vec{S}_{i+2})^2$$

• SU(4) M-G: plaquette state.

$$H = \sum_{\text{every six-site cluster}} H_i$$

$$H_i = \left(\sum_{\text{six sites}} L_{ab}\right)^2 + \left(\sum_{\text{six sites}} n_a\right)^2$$

SU(4) Casimir of the six-site cluster

• Excitations as fractionalized domain walls.

i i+1 i+2

 $J' = \frac{1}{2}J$

S. Chen, C. Wu, S. C. Zhang and Y. P. Wang, Phys. Rev. B 72, 214428 (2005). 45

SU(4) plaquette state: a four-site problem

- Bond spin singlet:
- Plaquette SU(4) singlet: $\frac{\varepsilon_{\alpha\beta\gamma\delta}}{4!}\psi^{+}_{\alpha}\psi^{+}_{\beta}\psi^{+}_{\gamma}\psi^{+}_{\delta}|0\rangle$

4-body EPR state; no bond orders

• Level crossing:

d-wave to s-wave

• Hint to 2D?

Speculations: 2D phase diagram ?

• $J_2=0$, Neel order at the SU'(4) point (QMC).

K. Harada et. al. PRL 90, 117203, (2003).

• J₂>0, no conclusive results!

2D Plaquette order at the SU(4) point?

Exact diagonalization on a 4*4 lattice

Bossche et. al., Eur. Phys. J. B 17, 367 (2000).

• Phase transitions as J₀/J₂? Dimer phases? Singlet or magnetic dimers?

The SU'(4) model: dimensional crossover

- J_{x} J_{y} Tquantum disorder renormalized classical dimer J_{v}/J_{x} r_{c} 0 Neel order 48
- SU'(4) model: 1D dimer order; 2D Neel order.
- SU'(4) model in a rectangular lattice; phase diagram as J_v/J_x .
- Competition between the dimer and Neel order.
- No frustration; transition accessible by QMC.

Conclusion

• Spin 3/2 cold atomic systems open up a new opportunity to study high symmetry and novel phases.

• Quintet Cooper pairing: the Alice string and topological generation of quantum entanglement.

- Quartetting order and its competition with the pairing order.
- Strong quantum fluctuations in spin 3/2 magnetic systems.