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e Overview & motivations

e Transverse laser cooling of a molecular beam
e Longitudinal slowing of a molecular beam

e Towards trapping
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Diverse physics goals w/cold & ultracold molecules:
different conditions & types of molecules desired
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Starting point= new molecular beam technology:

hydrodynamically enhanced cryogenic beams

[Maxwell et al. PRL 2005; Patterson & Doyle J Chem Phys 2007;
Barry et al. PCCP 2011; Hutzler et al. PCCP 2011]

e Inject hot molecules (e.g. via laser ablation)

e Cool w/cryogenic buffer gas @high density

e Efficient extraction to beam
via “wind” in cell: 10* = 10%-40%

e “Self-collimated” by extraction dynamics
e Rotational cooling in expansion: T~ 1 - 4K
e Moderately slow: v ~ 130-180 m/s

e BUT: spatially and temporally extended

Beam brightness [=flux/divergence] ~ 103x larger
than other sources for refractory/free radical species:

Typically ~ 2x10'! mol/sr/state/pulse @ 110 Hz rep. rate
Basic method used for SrO, ThO, SrF, BaF, O,, NH,, Yb, ...



Beating vibrational branching by choice of species
Large handful of “easy” cases w/ favorable Franck-Condon factors [DiRosa, EPJD 2004]

Our case: SrF
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Beating rotational branching: general strategies

*Closed rotational
transition (with dark
Zeeman sublevels)

using lowest P- OR Q-
branch transition

Dark Zeeman sublevels
must be remixed into cycle
at least 3 routes
for “typical” diatomics

1. Transverse B-field
+Larmor precession

2. Rapidly switch
laser polarization

3. Resonant E-field
(microwave or DC)
repumping

Example:
lowest P-branch

J=0, P=+1 2,

Inspired by
Stuhl et al. (Ye/JILA)
PRL 2009
proposal



"Extra” levels [ reduced scattering rate

Population fractions for saturated transitions determine
maximum scattering rate: TMax=p_ /1

1+1 = 2-level system:
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3+1-level system:
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v=0
J=1

3+3+1-level system:
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exc

1/2 [Similar findings using atomic indium,
D. Meschede group Phys Rev A 2008-9]
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Level scheme for optical cycling in SrF
[with spin-rotation + hyperfine substructure]
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rotational transition
due to selection rules

+ remixing of
dark sublevels

@ w/added fields

So far with SrF:
laser sidebands
X Z+[V”=0] for hyperfine repumping
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Single-frequency modulation for SrF hfs repumping

Example with
025 - Mod. Frequency fy, = 42.5 MHz
Mod. Index M = 2.6 rad

Hyperfine Transitions
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1D transverse cooling of an SrF beam
[E.S. Shuman et al. Nature 467, 820 (2010)]

Pump Beams

V00, v10, v21 Probe Beam

v0O

1
=4

15 cm
~100 passes /

Long interaction region necessary
for cooling with reduced scattering rate
(due to “extra” ground-state sublevels)



Integrated Fluorescence (arb. units)

Doppler cooling of SrF

[E.S. Shuman et al. Nature 467, 820 (2010)]

* Red detuning by ~I
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Integrated Fluorescence (arb. units)

Sisyphus cooling (or heating) in SrF

[Shuman et al. Nature 467, 820 (2010)]

Laser standing waves
+Small B: og~T", ,,/10
_ISisyphus effect [Cohen-
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Laser slowing of a molecular beam: ;¢ sarryetar,
experimental setup

PRL 108, 103002 (2012)]
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via EOM range

~“white light slowing”



n.b.: Zeeman slowing of molecules is impractical

Cycling transition [ fast redistribution over Zeeman sublevels
BUT: shaped B-field such that
Zeeman shift = Doppler shift during slowing
possible for only 1 sublevel

Doppler shift

. Matched
i VS. position ,
i Zeeman shift
for constant
- acceleration
B : ____________ Doppler
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Raw Slowing Data

Fluorescence signal (arb. units)
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[Barry et al.,
PRL 108, 103002 (2012)]
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Loss due merely to divergence/transverse heating
[Barry et al., PRL 108, 103002 (2012)]
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Towards trapping of SrF

Beam
source

l MOT
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Load slowed beam into a trap
- MOT...?

- Conservative traps
w/dissipative loading

* Magnetic trap
*  Microwave trap?
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Increase slow flux
for trap loading
w/transverse cooling...?



Underway: attempting to load a 3-D MOT of SrF
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How to deliver more slow molecules to a trap?

1. Simultaneous Slowing & Transverse Cooling

Cooling

Beam

Slowing
beams

Voo
-——--- Vv,

Vo1

mw Simultaneously?

Spontaneous forces

Y

Fixed total spontaneous scattering rate

|

Forces compete



Fluorescence signal (a.u.)

Simultaneous slowing + transverse cooling (1D)

Preliminary data:

SS———- - 50 100
Velocity (m/s)

' I
Bottom line:
competition between
slowing & transverse cooling
gives much smaller increase in slow
flux than originally anticipated

Molecules below ~20 m/s:
slow enough to capture in trap...?

Slowing only

Slowing & 1D
Doppler cooling
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How to deliver more slow molecules to a trap?
2. Simultaneous slowing & (conservative force) guiding

Problem: beam divergence during slowing

Basic approach to mitigate:

Transverse restoring force while slowing
can confine molecules without loss

THEN transverse cooling can be applied
more effectively with already-slow molecules

v
~-_$ 's*




How to deliver more slow molecules to a trap?
2. Simultaneous slowing & (conservative force) guiding

Technical approach:
Microwave Guiding

X2% Blue detuned
microwave
radiation

m=0 m=0 m=-1

(Inspried by Meijer/Schnell et al.
result w/ND:
S. Merz et al. PRA 2012)

All N=1 sublevels guided
into field minimum
(N=1 states: low field seekers)

All sublevels feel
~equal potential depth

=>» State redistribution from cycling
no problem for guiding

Slowing & microwave guiding
to be applied alternately in time
(guiding fields 1 leaks in cycle)

Guiding

Slowing



Details of the microwave guide design

Microwave guide depth

0.008 -
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Guiding depth (K)
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Distance from guide center (mm)

Use TE,,,, mode:
(zero field at guide center)

~ 10 mK guide depth ( @ 10 Watts circ. Power)
(~ 1 m/s trans. velocity)

Guide depth =» power limited

Prototype (short) cavity characteristics:
Unloaded Q ~ 18000

Frequency = 30.150 GHz (N=1—>N=2)



Laser slowing w/reduced photon scatter?
Enhanced optical forces from stimulated/coherent processes:

Some demonstrated & more proposed e.g.

Bichromatic Force slowing [Grimm, Metcalf, Eyler]; Optical Stark deceleration [Barker];
“Forced Sisyphus slowing” [DD et al., in preparation]

Resonant ~_ Spontaneous
traveling-wave emission
repump |
£ I
YA
-‘
Intense
longitudinal

standing wave
(Red-detuned,
D 00 Ug)
gives periodic
potential

/\

BUT: all need high laser intensity over large area for efficient use of molecules



Laser slowing w/reduced photon scatter?

Scaling behavior for stimulated forces & use w/pulsed beams
leads naturally to desire for a new laser technology:

* With optimal detuning D » W,, Force F p W, p \ﬁ

R

 Qvertime T, change in velocity dv u \/I_T i «/ET / A
where E = |laser energy felt by molecules in beam of area Aintime T

1 Optimal laser has long pulses w/high energy, large area
Example: E=100mJ @ T=100ms, A=1cm? >k, » 100" F

spont

(n.b. instantaneous power is P =1 kW)

_IReduce required number of scattered photons by >100!"

Construction underway on novel
long-pulse, high pulse-energy tunable laser



A new candidate for laser cooling: TIF

w/Larry Hunter, Amherst College: L.R. Hunter et al., PRA 85, 012511 (2012)

¢ Favorable FC factors
calculated & measured values
in agreement for B-X

e Measured lifetime
short enough to give substantial force

eCycling laser + 1 repump enough for
transverse cooling...

e BUT UV wavelengths (270-280 nm)
needed

¢2-3 repumps sufficient for radiative
slowing

* Possible application to Schiff
moment (L] “nuclear EDM”) search

e Chemically distinct from other laser-
cooling species (NOT a free radical)
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Summary and Conclusions

— 1-D transverse laser cooling of SrF demonstrated;
Doppler and Sisyphus effects observed; [Shuman et al., Nature 2010]
qualitative agreement w/expectations, T, ~ 5 mK, T, ~ 300 pK

— Possible application to bright molecular beams for precision
measurements (electron EDM, parity violation)

— Longitudinal slowing demonstrated [Barry et al., PRL (2012)]

— Beam divergence during slowing limits useful flux to trap:
efforts underway to improve by transverse guiding (microwave)

— SrF has properties (unpaired electron spin, simple hfs, efficient
cycling detection) useful for quantum information & simulation

— Basic method applicable to several other species

— Possibility to efficiently slow species with poorly-closed cycles,
using stimulated forces?



