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Dipolar crystal 

Many-body physics/
Dipolar quantum gas

Quantum info & simulation

Ultracold Chemistry

Molecule optics & circuitry
Cold controlled chemistry

Diverse physics goals w/cold & ultracold molecules:

Structureless dipoles

Polar molecules 
w/unpaired electron spin

Chemically diverse species

Particular species needed
to study effects of interest

Novel collisions
Fundamental tests

Precision measurement

different conditions & types of molecules desired

Increasing
phase-space

density Increasing
number of
molecules

Adapted from

L. Carr, D.D., 

R. Krems, J. Ye 

New J. Phys (2010)
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Direct
photo-association

Sympathetic cooling?
Evaporative cooling

Laser cooling!

Different techniques address different needs

JILA, Innsbruck, etc. 2009-10

INDIRECT/
“assembly” 

from ultracold
alkali atoms



(almost) 
structureless

dipoles

Feshbach
ground state

transfer

Stark,
magnetic,

optical
deceleration

Buffer-gas
cooling

Polar molecules 
w/ simple spin 
substructure

Chemically 
diverse 
species

Particular species 
selected for 
fundamental 

studies

DIRECT

Dipolar crystal 

Many-body physics/
Dipolar quantum gas

Quantum info & simulation

Ultracold Chemistry

Molecule optics & circuitry
Cold controlled chemistry

Novel collisions
Fundamental tests

Precision measurement

Harvard,
Fritz-Haber (Berlin), 

etc.



Starting point= new molecular beam technology:
hydrodynamically enhanced cryogenic beams

Liquid helium bath

or pulse-tube refrigerator

Beam brightness [=flux/divergence] ~ 103 larger 
than other sources for refractory/free radical species:

Typically ~ 21011 mol/sr/state/pulse @ 10 Hz rep. rate

Basic method used for SrO, ThO, SrF, BaF, O2, NH3, Yb, …

• Inject hot molecules (e.g. via laser ablation)

• Cool w/cryogenic buffer gas @high density

• Efficient extraction to beam 
via “wind” in cell: 10-4  10%-40%

• “Self-collimated” by extraction dynamics

• Rotational cooling in expansion: T ~ 1 - 4K

• Moderately slow: v ~ 130-180 m/s

• BUT: spatially and temporally extended

[Maxwell et al. PRL 2005; Patterson & Doyle J Chem Phys 2007;
Barry et al. PCCP 2011; Hutzler et al. PCCP 2011]



Beating vibrational branching by choice of species
Large handful of “easy” cases w/ favorable Franck-Condon factors [DiRosa, EPJD 2004]

Our case: SrF

Only 3 lasers needed 
to scatter >105 photons 

sufficient to stop 
cryogenic beam of SrF

and cool to Doppler limit 

X 2S v=0

v=1

v=2
663 
nm

98%

A 2P v=0

1/50
686 
nm

1    v
2500

685 
nm

v=1

v 3

<1/105

t =25 ns



Beating rotational branching: general strategies

J=1, P= -1

J=0, P= +1 S

SJ=0, P= +1

s+ s -

•Closed rotational 

transition (with dark 

Zeeman sublevels) 

using lowest P- OR Q-

branch transition

2. Rapidly switch 

laser polarization

3. Resonant E-field 

(microwave or DC)   

repumping

Dark Zeeman sublevels 

must be remixed into cycle 

1. Transverse B-field 

+Larmor precession

B

Inspired by

Stuhl et al. (Ye/JILA) 

PRL 2009 

proposal

Example:

lowest P-branch

p

at least 3 routes

for “typical” diatomics



“Extra” levels reduced scattering rate

Population fractions for saturated transitions determine 
maximum scattering rate:  GMax = Pexc/t

J=1
1/71/7 1/7

1/7

1/7 1/7 1/7

v=1

v=0

J=1

J=0
1/4

1/4 1/41/4 1/2

1/2 [Similar findings using atomic indium, 
D. Meschede group Phys Rev A 2008-9]

1+1 = 2-level system:

3+1-level system:

3+3+1-level system:

Force = k Scat is reduced vs. atoms

½ n.b. …?



Level scheme for optical cycling in SrF
[with spin-rotation + hyperfine substructure]

N=0

+ remixing of 
dark sublevels 
w/added fields

So far with SrF:
laser sidebands

for hyperfine repumping
+transverse B-field

for Zeeman sublevel remixing

Closed 
rotational transition
due to selection rules



Single-frequency modulation for SrF hfs repumping

Example with

Mod. Frequency f0 = 42.5 MHz

Mod. Index M = 2.6 rad

NOTE:

No single detuning

“detuning” 
carrier offset d

from max signal

2 knobs control
4-8+ detunings

d



1D transverse cooling of an SrF beam

Pump Beams

V00, v10, v21
Probe Beam

v00

ICCD

15 cm

~100 passes

Long interaction region necessary 

for cooling with reduced scattering rate

(due to “extra” ground-state sublevels)

[E.S. Shuman et al. Nature 467, 820 (2010)]



Doppler cooling of SrF

• Red detuning by ~Γnat

+ sideband freq. 46.4 MHz
+ B for Larmor freq. wB~Gnat

yields Doppler Cooling
as expected

• Cooling capture range 
observed width (~4 m/s)

as expected

• Est. temp. TDop ~ 5 mK
interaction time-limited
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Sisyphus cooling (or heating) in SrF
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• Laser standing waves
+ Small B: wB~Gnat/10 

Sisyphus effect [Cohen-
Tannoudi, Metcalf,etc.]

• Blue detuning yields colder 
central beam than Doppler, 
but heating outside capture 
range v ~ 1 m/s

• Est. temp. TSis ~ 300 mK

• Red detuning gives heating 
out of small velocities, 
accumulation at non-zero v
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Laser slowing of a molecular beam:
experimental setup

vfwd  150 m/s

20,000 photon recoils
to stop SrF

Γscat=3x106 s-1

  70 cm to stop 

 Frequency (MHz)

 In
te

ns
ity

 (a
.u

)

~300 MHz

Slowing Lasers Sideband Spectrum Extra 

sidebands 

via EOM


Larger

capture

range

[J.F. Barry et al., 
PRL 108, 103002 (2012)]

~“white light slowing”



n.b.: Zeeman slowing of molecules is impractical
Cycling transition fast redistribution over Zeeman sublevels

B

Doppler shift
vs. position
for constant
acceleration

BUT: shaped B-field such that 
Zeeman shift = Doppler shift during slowing

possible for only 1 sublevel

Matched 
Zeeman shift

Other sublevels
shifted far away
from resonance`

Doppler
-Zeeman = 0



Raw data

 

F
lu

o
re

s
c
e

n
c
e

 s
ig

n
a

l 
(a

rb
. 

u
n

it
s
)

0 50 100 150 200

 

 Velocity (m/s)

 

Raw data

 

F
lu

o
re

s
c
e

n
c
e

 s
ig

n
a

l 
(a

rb
. 

u
n

it
s
)

0 50 100 150 200

 

 Velocity (m/s)

 

Raw data

 

F
lu

o
re

s
c
e

n
c
e

 s
ig

n
a

l 
(a

rb
. 

u
n

it
s
)

0 50 100 150 200

 

 Velocity (m/s)

 

Max shift of half-max edge

 60 m/s  ~104 scatters

Raw Slowing Data

Molecules below 50 m/s

60

m/s

Different

detunings

Different

slowing

Different

apparent

loss

Why?

Control
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vres

280

m/s

vres

227

m/s

vres

173

m/s

vres

120

m/s

vres

67

m/s

D=-420 MHz vresonant=280 m/s

D=-340 MHz vresonant=221 m/s

D=-260 MHz vresonant=173 m/s

D=-180 MHz vresonant=120 m/s

D=-100 MHz vresonant=67 m/s

Slowed

velocity

profiles

[Barry et al., 
PRL 108, 103002 (2012)]



SimulationRaw data
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Match control

velocity profiles

Estimated

force profile

3x106 s-1

max scatter

rate

Prediction

Assuming loss

ONLY

due to divergence

agrees well

with data

Loss due merely to divergence/transverse heating
[Barry et al., PRL 108, 103002 (2012)]



Towards trapping of SrF

Load slowed beam into a trap 

• MOT…?

• Conservative traps 

w/dissipative loading

• Magnetic trap

• Microwave trap?

Increase slow flux

for trap loading

w/transverse cooling…?

MOT



Underway:  attempting to load a 3-D MOT of SrF



How to deliver more slow molecules to a trap?

1. Simultaneous Slowing & Transverse Cooling

Slowing

beams

v00

v10

v21

Cooling

Beam

v00

Cooling + Slowing = Simultaneously?

Spontaneous forces

Fixed total spontaneous scattering rate

Forces compete 



0 50 100 150

F
lu

o
re

s
c
e
n

c
e

 s
ig

n
a

l 
(a

.u
.)

Velocity (m/s)

0 50 100 150

F
lu

o
re

s
c
e
n

c
e

 s
ig

n
a

l 
(a

.u
.)

Velocity (m/s)

0 50 100 150

F
lu

o
re

s
c
e
n

c
e

 s
ig

n
a

l 
(a

.u
.)

Velocity (m/s)

Control

Slowing only

Slowing & 1D

Doppler cooling

Molecules  below ~20 m/s:

slow enough to capture in trap…?

Preliminary data:
Simultaneous slowing + transverse cooling (1D)

Bottom line:

competition between 

slowing & transverse cooling

gives much smaller increase in slow 

flux than originally anticipated



Basic approach to mitigate:

Transverse restoring force while slowing

can confine molecules without loss

How to deliver more slow molecules to a trap?

2.  Simultaneous slowing & (conservative force) guiding

THEN transverse cooling can be applied

more effectively with already-slow molecules

Problem: beam divergence during slowing



Technical approach:

(Inspried by Meijer/Schnell et al. 

result w/ND3:

S. Merz et al. PRA 2012)

Blue detuned

microwave

radiation

X2S

N=2

N=1
DE

DE

m=0 m=0 m=-1

All N=1 sublevels guided

into field minimum

(N=1 states: low field seekers)

All sublevels feel 

equal potential depth

State redistribution from cycling 

no problem for guiding

Slowing & microwave guiding 

to be applied alternately in time

(guiding fields leaks in cycle)

Microwave Guiding

Guiding

Slowing
Time

How to deliver more slow molecules to a trap?

2.  Simultaneous slowing & (conservative force) guiding



Prototype (short) cavity characteristics:

Unloaded Q ~ 18000 

Frequency = 30.150 GHz (N=1N=2)

Distance from guide center (mm)
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Microwave guide depth

Details of the microwave guide design

~ 10 mK guide depth ( @ 10 Watts circ. Power)

(~ 1 m/s trans. velocity)

Guide depth  power limited

Use TE01n mode: 

(zero field at guide center) 



Laser slowing w/reduced photon scatter?
Enhanced optical forces from stimulated/coherent processes:

Some demonstrated & more proposed e.g.
Bichromatic Force slowing [Grimm, Metcalf, Eyler]; Optical Stark deceleration [Barker];

“Forced Sisyphus slowing” [DD et al., in preparation]

BUT: all need high laser intensity over large area for efficient use of molecules

Spontaneous

emission

Intense

longitudinal 

standing wave

(Red-detuned,

D R )

gives periodic

potential

Resonant

traveling-wave

repump



Laser slowing w/reduced photon scatter?

Scaling behavior for stimulated forces & use w/pulsed beams
leads naturally to desire for a new laser technology:

R
F Iµ W µ

R
D » W

/v IT ET Ad µ µ

100
stim spont

FF » ´

• With optimal detuning         ,   Force

• Over time T, change in velocity

where E = laser energy felt by molecules in beam of area A in time T

Optimal laser has long pulses w/high energy, large area

Example: E = 100 mJ @ T = 100 ms, A = 1 cm2


(n.b. instantaneous power is P = 1 kW)

Reduce required number of scattered photons by >100

Construction underway on novel
long-pulse, high pulse-energy tunable laser



A new candidate for laser cooling: TlF
w/Larry Hunter, Amherst College:  L.R. Hunter et al., PRA 85, 012511 (2012)

t = 99(9) ns • Favorable FC factors
calculated & measured values
in agreement for B-X 

• Measured lifetime 
short enough to give substantial force

•Cycling laser + 1 repump enough for 
transverse cooling…

• BUT UV wavelengths (270-280 nm) 
needed

•2-3 repumps sufficient for radiative
slowing

• Possible application to Schiff 
moment ( ”nuclear EDM”) search

• Chemically distinct from other laser-
cooling species (NOT a free radical)
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Summary and Conclusions

– 1-D transverse laser cooling of SrF demonstrated;
Doppler and Sisyphus effects observed; [Shuman et al., Nature 2010] 

qualitative agreement w/expectations, TD ~ 5 mK, TS ~ 300 mK

– Possible application to bright molecular beams for precision 
measurements (electron EDM, parity violation)

– Longitudinal slowing demonstrated

– Beam divergence during slowing limits useful flux to trap:
efforts underway to improve by transverse guiding (microwave)

– SrF has properties (unpaired electron spin, simple hfs, efficient 
cycling detection) useful for quantum information & simulation

– Basic method applicable to several other species

– Possibility to efficiently slow species with poorly-closed cycles, 
using stimulated forces?

[Barry et al., PRL (2012)]


