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Topics for this talk:

Overview of our philosophy (Accurate versus Mulliken-style potential curves)
Universal findings for the problem of 3 identical bosonic or fermionic dipoles

Recent experiment and theory: universality for 3 identical bosonic atoms
(with van der Waals interactions) plus - a 3-body D-wave resonance

Recent prediction: universality for 2 identical bosonic atoms + 1
distinguishable atom (with van der Waals interactions)

Recombination of 4 bosonic atoms and the connection to Efimov physics

Recombination resonances of 5 or more bosonic atoms

3, 4,95, .... To Avogadro’'s number
(but not beyond)



Our strategy

. Single out one collision/fragmentation coordinate
of the system — usually the hyperradius, R, to treat
adiabatically

. FInd the fixed-R eigenenergies, plot the resulting
potential energy curves U (R). Then study their
parriers and avoided crossings where inelasticity
OCCUrs

. Solve for scattering observables such as N-body
recombination, e.g., A+tA+A+A+A>As+A,

. Along the way, build intuition to the point where we
can Iintuit the structure of the potential curves



ROBERT S. MULLIKEN

Rev. Mod. Phys. 4, p.1 (1932)
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Resonant five-body recombination in an ultracold gas of bosonic atoms

Mulliken-style

potential .
energy 3
versus X
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arXiv:1205.1921

Alessandro Zenesini'i, Bo Huang!, Martin Berninger', Stefan

Besler!, Hanns-Christoph Nagerl!. Francesca Ferlaino!, Rudolf
Grimm'?, Chris H Greene®§, Javier von Stecher?



Dipelaigases

We characterize dipolar two-body interactions by the “dipole
length”, which can be viewed as the characteristic range of the
polar-polar interaction potential, namely: e
L

d = o

We are interested in the strongly dipolar limit: kdy > 1

RbK =6 x 10%aq 2.4
) : Three-body dipolar
RbCs &5 x 107 23 physics becomes
LiCs ~ 6 x 10%aq 938 universal (Efimov states)
StO = L1 x10%; 467
K ~28x10%; 1100

kdy =1



Dipole-dipole (2-body) resonances at low
energy as the dipole strength is varied, e.g. by
changing the aligning E-field strength
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Ticknor and Bohn, PHYSICAL REVIEW A 72, 0327172005



A case of two fermionic dipoles colliding in 3D
From Yujun Wang and CHG, Phys Rev A 85, 022704 (2012)

What is the low energy behavior?

We know that all odd partial waves should be present, and the
leading term is known analytically, and because the dipole potential
IS anisotropic, the S-matrix is not diagonal in an L-representation,
so define a diagonal phaseshift as:

5" =1In(8)7)/2i

Then the low energy expansion of this
phaseshift for fermionic dipoles looks like:

Re[8" (k)] = —a"k — b)"k* — V"I + O(k")

m_, D3tmisll) . .
d =Leading term, universal, worked out by Bohn,

ﬂf — Uy '
20+ 1) Cavagnero, Ticknor, NJP 2009




m m . m_ Ds(my; 1)
5 =In(s))/2i @ =d7

Re[8/" (k)| = —a" k — b]" k> — V"' k> + O(k™)

!

And also the term in k? turns out to be universal, but
the term in k3 depends on the short-range potential,
and in particular V|, _, is the first term that diverges
when a bound state goes through E=0.

Jia Wang has since demonstrated this qualitative
effect for other long range potentials, such as the
van der Waals long range tail, where for L>1 the
leading term is not the Wigner Law k?-*1, but rather
k4, and the coefficient of k*is UNIVERSAL, but when
a bound state goes through zero energy, it is the
coefficient of the Wigner Law term that diverges.



The three-dipole problem in 3D

A major extension of 3-body interactions
to account for polar molecule
resonances and recombination



Three dipoles in 3D PRL 106, 233201 (2011)

Yujun Wang, D’Incao, & CHG
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Some physics with 3 dipoles

References to our 2011 progress:

Yujun Wang, D’Incao, CHG, Efimov effect for three
Interacting bosonic dipoles

PRL 106, 233201 (2011)

Yujun Wang, D’Incao, CHG, Universal three-body
physics for fermionic dlpPRL 107, 233201 (2011)

RbK ~ 6 x 10%ag 2.4
RbCs =~ 5 x 10%a, 23
LiCs ~ 6 % 10%ag 238
SrO ~ 1.1 x 10%, 467

TK =~ 2.8 x 10%a, 1100



Summary of what we’ve found so far about the 3-dipole problem:

1. For three polar bosons, there is an Efimov effect, the first time this has
been demonstrated for a system in 3D that has anisotropic interactions with no
conservation of angular momentum. Also, the scattering length at which the
Efimov state reaches zero energy is UNIVERSAL, and it has a barrier that
makes it long-lived, and we...

predict some important three-body scattering observables

(a,=0) 67.10 . 2 . Hi
K3"™ 7 =——1s1n”| s ln + 2.5 |+ sinh“npt—, (6)
n a’f n

[ 1

4590 sinh(27) a*

*—Xf ] la,<<0) __ §
[ﬂaﬁ d*f 8' l ’ sin’[sq In( l“ ) +0.92] + sinh?n M

HE‘;“} (l 46 + 2.15 c:m|: S0 ln(f ) + 0.86 + ”}'])
dg

(8)

a0 20.3 sinh(27n) g
“ sin®[soIn(3) + 0.86] + sinh?y m’

(9)

Note that this K; describes processes like AB+AB+AB ->A,B,+AB



Summary of what we’ve found so far about the 3-dipole problem:

2. For three polar fermions, there is NO Efimov effect, but there is
precisely ONE universal state, and again it has a barrier that makes it
comparatively long-lived and independent of the short-range interactions

UL(R), (1 /mr}]

JIG. 1 (color onling). A typical set of adiabatic hyperspherical
potentials I/, (R) for three fermionic dipoles with d,/r0) = 58.2

_ 4

Ky = Ik and E,; — 0. The inset shows rescaled, diabatized potentials
exhibiting universal behavior for a few values of d; at a dipole-

Cy = \V17/2 d;?’w 2 dipole resonance. The horizontal dashed line in the diabatic

potential wells indicates the position of the universal three-
dipole states.



Now, what about the universality of the 3-body parameter for
homonuclear systems of 3 bosonic atoms? The 3-body
parameter enters Efimov theory because the -1/R? potential must
be terminated at small R somehow. Before the summer of 2011,
it was thought to be more or less “random” for different systems.

To understand the Efimov effect, look at the effective potential
energy curve at unitarity, as a function of the hyperradius:

Potential 5 20

15
energy _oos! Hyperradius, R

The “Efimov
“Fallto the potential curve”
varies like:

center” -015¢}
\ 1.25...

025 | 2mR2

Mathematical Detail. Once you have this “effective dipole-type
attractive potential curve”, the rest is ‘TRIVIAL’!

=01

Here, ‘trivial’ means that the solutions are simply Bessel functions (of
imaginary order, and imaginary argument).



PRL 108, 263001 (2012)

Origin of the Three-Body Parameter Universality in Efimov Physics

Jia Wang,' J.P. D’Incao,' B.D. Eb;rj,f,2 and Chris H. Greene'

=An Interpretation of the unexpected
BOMBSHELL paper of 2011, by:

M. Berminger, A. Zenesini, B. Hﬁang, W. Hann,'H. C.
Nigerl, F. Ferlaino, R. Grimm, P.S. Juhenne, and J. M.
Hutson, Phys. Rev. Lett. 107, 120401 (2011).

Other relevant theoretical work to interpret this result:
Cheng Chin’s toy model (arXiv 2011)

And detailed hyperspherical calculations by Naidon, Endo, & Ueda:

“"Physical Origin of the Universal Three-body Parameter in Atomic
Efimov Physics" Pascal Naidon, Shimpei Endo, and Masahito Ueda
arXiv:1208.3912 (largely confirms our interpretation)



The “three-body parameter” controlling the first
Efimov resonance location had been thought to
be more or less “random?”, but there
experimental evidence strongly suggests that it
must be approximately universal:

1) 133Cs (Berninger et al.) PRL 107, 120401 (2011) :
|a-|/ L,gy= 9.4, 11.1, 10.4, and 10.3

2) ‘Li (Hulet) Science 326, 1683 (2009) : |a-|/ L 4= 10.0
3) ‘Li (Khaykovich) PRL 103, 163202 (2009) : |a-|/ L 4= 8.9
4) 'Li (Khaykovich) PRL 105, 103203 (2010) : |a-|/ L ,gy= 9.0

5) 39K (Modungno) Nat. Phys. 5, 586 (2009): |a-|/ L, gy= 25.4 or
(revised interpretation, still speculative): |a-|/ L 4,= 11.0

6) °Rb(Cornell-Jin group at JILA) 2012 PRL: |a-|/ L gyw=9.7(1)



3-body hyperspherical potential curves based on 2-body Lennard-Jones
Interaction potential with 10 s-wave bound states, around 100 total
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Figure 5.12: This figure shows the three-body potentials obtained using the v§(A = A};) model
supporting a total of 100 bound states. Roughly speaking, the potential of Eq. (5.18) [16] (black
solid line) can be seen as a diabatic potential since it passes near one of the series of avoided
CTossIings.



Our study of hyperspherical potentials in the bosonic A+A+A
system, showing that any two atoms “go over the van der Waals
cliff” when they approach within their vdW radius, and this rise in
Kinetic energy produces arepulsive hyperspherical potential barrier
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Summary of our extensive numerical tests and analysis. Thereis a
universal Efimov potential curve that includes a universal short range
barrier that fixes the 3-body parameter, shown here:
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FIG. 3 (color online). (a) Efimov potential obtained from the
different two-body potential models used here. The reasonably

Note that this barrier arises from a classical suppression of the wavefunction




PRL 201{% Jia Wang, D’Incao, Esry, CHG
I

(b) (c)
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FIG. 4: Values for the three-body parameter (a) k. and (b) ag, as functions of the number n of two-body s-wave bound states
for each of the potential model studied here. (c¢) Experimental values for ag, for 30 (3] (red: x, 4, O, and =), K [4]
(magenta: ), "Li [5] (blue: o) and [6, 7] (green: M and o), °Li [8, 9] (cyan: A and V) and [10, 11] (brown: ¥ and ¢), and

**Rb [12] (black: #). The gray region specifies a band where there is a £15% deviation from the vygw results. The inset of

Another finding: This property of 3-atom states is not expected to hold for
nuclear systems, which have no van der Waals tail and few bound states.



Note that our detailed hyperspherical calculations have all
assumed a single-channel interaction between each pair of
atoms, which means that our conclusions are presumably valid
for BROAD Fano-Feshbach resonances, but most likely
Inapplicable to NARROW resonances

But very recently, this point has been tested experimentally

Universality of the three-body Efimov parameter for closed-channe dominated Feshbach resonances

SaUktaiRey Al elandiniSAndieastlenkiialersAntieaiSimonisassimoinguseioshlarcolkattoniana Gioyannihocugno

This experiment by Sanjukta Roy, Giovanni
Modugno, et al. has seen 7 Efimov resonances
in 39K, ranging from resonance width parameters:

=0.1 (narrow) up to s,..=2.8 (broad)

SI’ES res
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Preliminary 3°K experimental 3-body parameter data,

Roy, Modugno, et al. not yet submitted for publication
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Next, what can theory PREDICT for the heteronuclear Efimov effect?

Universal three-bud}r parameter in

heteronuclear atomic systems

Yujun Wangq, Jia Wangq, J. P. D'Incao, & CHG
PRL 109, 243201 (2012)

Main result: we see that the Efimov physics is also universal
for the case of 2 identical bosonic atoms (AA) and 1
distinguishable atom (X), but the parameter space is larger
and more complicated. This is because the universality
values predicted depend on the mass ratio, M,/My, and on
the background A-A scattering length, and on TWO different
vdW radii (A-X and A-A).

arxiv:1207.6439



http://arxiv.org/find/physics/1/au:+Wang_Y/0/1/0/all/0/1
http://arxiv.org/find/physics/1/au:+Wang_J/0/1/0/all/0/1
http://arxiv.org/find/physics/1/au:+DIncao_J/0/1/0/all/0/1
http://arxiv.org/abs/1207.6439

The Efimov effect: universality

For three particles with two
or three resonant interactions
(scattering length a — o),

an infinite series of three-body
bound states emerge with

E" - Eoe——anr/sU [1]

Heteronuclear system AAX:
Efimov-favored when mu /mx > 1
such thatsg > 1;
Efimov-unfavored when ma /my <
1 such that sy < 1.

Efimov spectrum

Three-body parameter can be expressed in three-body recombination observ-
ables a* (first Efimov resonance) or a; (first interference minimum).

For identical bosonic atoms, 2* = —9.1r,qw [Fvaw = (212Cs)'*/2].

Universal three-body parameter for AAX?




Key finding: Our numerical evidence suggests that the 3-body
parameter is UNIVERSAL for heteronuclear AAX systems also, but
this universality depends on the AA scattering length, the mass ratio,

the two van der Waals lengths, etc, and must be mapped out

Efimov-favored AAX systems — universal three-body parameter
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Predictions of first Efimov resonance (negative a) and destructive
Interference Stueckelberg minimum (positive a)

80 8 @aAbg (A0) aj (au) a” (au)
YYho®Li 2246 2.382 104 [32, 33] 1.3 x 10° —8.4 x 10°
199080 L1 1.983 2.155 2000 [34] 9.6 x 10° —1.4 x 10°
*"Rbo°Li  1.633 1.860 100 [35] 3.8 x 10* —1.6 x 10°
HK.°Li 1154 1477 62 [36] 3.7 x 10° —2.4 x 10°
Nag°Li  0.875 1.269 100 [37] 1.5 x 10° —1.3 x 10*
"TRbo"K  0.653 1.125 100 2.8 x 10° < —3 x 10
193Cs,""Rb 0.535 1.060 2000 2.3 x 10° < —4 x 10
“K>"Rb  0.246 0.961 62 > 7% 10° < —1x 10°

TABLE I: The universal Efimov scaling constants sg, s5 and
the 3BPs aax = a, and aax = a” obtained by keeping a4
fixed at its background value (@14 15).
Predictions for Rb,K and K,Rb appear not to agree with the
Barontini et al. experiment (. Barontini, C. Weber, F. Rabatti, J. Catani, G. Thal-

hammer, M. Inguscio, and F. Minardi, Phys. Rev. Lett.
103, 043201 (2009).



Something came out of Jia Wang’s PhD thesis work —
d-wave resonance features in 3-body recombination

Typically near threshold, we have come to expect that s-wave physics is
always quite dominant, or more generally, the lowest partial wave, because
centrifugal barriers increasingly suppress higher-L physics

But a resonance in a higher partial wave can overturn this expectation.

So consider one of the insights we've learned from Bo Gao’s deep insights
Into scattering in a potential with a van der Waals tail. He pointed out that if
you have a zero energy resonance state in one partial wave, L, there will
also be another one close to zero energy in the partial wave L,+4.

In other words, if you have a pole in the S-wave scattering length, there will
usually be a near-threshold bound state or resonance in the G-wave. But
midway between S-wave and G-wave is the D-wave, and so you might
expect to be able to turn this around, and say that when the S-wave
scattering length is SMALL, you could be close to a D-wave 2-body
resonance near zero energy.



This observation led us to the following insights, in the paper
PHYSICAL REVIEW A 86, 062511 (2012) (arXiv:1209.4553)

Universal three-body recombination via resonant d-wave interactions

Jia Wang,!:2 J. P. D'Incao,! Yujun Wang,!:* and Chris H. Greene!:®

Value of the S-wave 2-body
scattering length at which
there is a zero energy D-

wave dimer (L=2) just
bound or an |-wave (L=6)
just bound

Note: these values of a
where one expects a D-
wave or |-wave dimer to
hit zero energy are for a
single-channel broad
resonance model only
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FIG. 1: The value of the two-body s-wave scattering length
aj at the point where a d-wave (I = 2) dimer (black curve
with square symbols) or an i-wave (I = 6) dimer just becomes
bound (red curve with circular symbols), shown as functions
of the number of two-body s-wave bound states.
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FI1G. 5: Energy of the three-body bound state associated with
a d-wave dimer as a function of scattering length a, both in

van der Waals units.
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FIG. 6: The enhancements for the total three-body recombi-
nation rates at about a = 0.995r 4w for Lennard-Jones po-
tential with 2 and 3 s-wave bound states. K3 is convert to

«cmﬂ‘rr s by using van der “Tq,als length rygw = 101.0 bohr and
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How Efimov physics extends to more than 3 particles. This figure shows
the schematic entrance channel potential curve expected for N particles at
negative 2-body scattering length, From Mehta et al., 2009 PRL
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FIG. 1 (color online). A schematic representation of the
N-boson hyperradial potential curves is shown. When a meta-
stable N-boson state crosses the collision energy threshold at
E = 0, N-body recombination into a lower channel with N — 1
atoms bound plus one free atom is resonantly enhanced.



But before we could actually calculate the rate of 4-body recombination
In an ultracold gas, we had to develop some scattering theory:

PRL 103, 153201 (2009)

A general theoretical description of N-body recombination

N. P. Mehta.'*# Seth T. Rittenhouse,! J. P. D'Incaon,! J. wvon Stecher,! and Chris H. Greene!

! Department of Physics and JILA, Undversity of Colorado, Boulder, €0 80309
*Grinnell College, Department of Physics, Grinnell, TA 50112*
( Dated: March 24, 2009)

We present a formula for the cross section and event rate constant describing recombination of
N particles in terms of general S-matrix elements. Cur result immediately vields the generahzed
Wigner threshold scaling for the recombination of N bosons. We find that four-boson recombination
1= resonantly enhanced by the presence of metastable states in the entrance channel. Hence, recom-
bination into a trimer-atom channel could be an effective mechanism for the formation of Efimov

trimers.

And here it is, THE FORMULA for N-body

recombination, i.e. for the process:
A+A+A+...+. .A 2> A +A or A ,+A+A +...etc.

= 2rh 2\ TR T (3N — 3)/2) ‘ 5,D+‘E

K0T = 2T Ny
Y uw k IraN—3)/z | fo




Four-Bosons J. von Stecher and C. H. Greene, arXiv:0904.1405

Hyperspherical Picture of 4-body recombination

... think Born Oppenheimer Fragmentation
thresholds

Y ':’:::*‘E:i’,
-— 0" 1+1+1+1
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How to tackle 5-body recombination for 5 free bosonic
atoms with pairwise additive forces?

l.e. the reaction A+A+A+A+A—> A;+A, or A,+Aor...

Start with the time-independent Schroedinger equation:

py? pr? p3 P p3
1 2 3 : g
H= + + o i

2mi 2m» 2ms; 2my 2ms;

o V(I“lz) C o V(7‘13) + V(I‘14) G V(I‘15) % o V(l‘gg) 2 V(I‘34) o V(I"35) + V(I‘34) b V(I‘35) + V(l“45)

After eliminating the center-of-mass degree of freedom,
we’'re left with a 12-dimensional PDE to solve, which
can be reduced to a mere 9 dimensions for J=0 states
after going to the body frame.



Resonant five-body recombination in an ultracold gas of bosonic atoms
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Our “recent” preprint with the Innsbruck group: arXiv:1201.4310, defeated
“in combat” with the editors and referees of PRL

Resonant Five-Body Recombination in an Ultracold Gas
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rel. losses

FIG. 1. (color online) N-body scenario in the region of negative two-
body scattering length a. The lower panel shows the N-body binding
energies as a function of the inverse scattering length. EY = (7ix)? /m
15 the trimer binding energy for resonant interaction. The dotted,
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FAST TRACK COMMUNICATION

Weakly bound cluster states of Efimov

MORE THAN 4 BOSONS: von Stecher’s J. Phys. B
CharaCter article in 2010: combined study using correlated

Gaussians, and diffusion Monte Carlo
Javier von Stecher
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von Stecher - arXiv:0909.4056
and 2010 JPB

TABLE I: Energies at unitarity and scattering-length ratios that char-
acterize weakly bound cluster states. The scattering length ratios can
be transformed to an absolute scale using 1/(koasp) ~ 0.64.

N|Ex/Es5 any /(N1 || N Ex/E3

41 4.66(4) 0.42(1) 91 49.9(6)
0.60(1) 10} 60.2(6)
0.71(1) 1| 70.1(7)
0.78(1) 121 79.9(3)
0.82(1) 13| 88.0(7)

e

0.46(1) 0.65(2) 0.73(1) are latest
revised/improved values from von Stecher, Javier von Stecher

PRL 107, 200402 (2011) Remarkable prediction, that all larger cluster
resonances are determined once the 3-body
parameter is known!

Five- and Six-Body Resonances Tied to an Efimov Trimer



count for the experimental observations. Remarkably. the res-
onance position as _ = 0.64(2) a4 _ is in agreement with the
theoretical predictions 0.65(1)ag _ [37. 38]. However, quan-
titatively, the experimental values for Ls are about 15 times
larger than the calculated ones. To account for this. we intro-
duce a corresponding scaling factor. We find that this devia-
1.0 . : : , : : tion may be explained by a small error in the WKB phase y of

about 10%, which remains in a realistic uncertainty range of
our theory.
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FIG. 4. (color online) Calculated and measured fraction of loss atoms
from an atomic sample of initially 5 x 10* atoms at a temperature of
80nK after a hold time of 100 ms. The red dotted line corresponds

to the losses predicted for three-body recombination only, while the
dashed green line and the blue solid line mclude also contributions

from four- and five bodv recombination. as quantified in this work. A



Schematic qualitative
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FIG. S1: (color online) (a) The lowest two eigenenergies of a trapped five body system are shown as functions of
the scattering length for different trapping frequencies. Different colors represent different trapping frequencies. The
combination of these states essentially describes the energy of the five-body state in the inner region of the potential
Ernoi(a) (the diagonal curve). Here E,, = h? / {m?ﬁ) and rp is the characteristic range of the two-body model
potential that can be tuned to obtain the five-body resonance (i.e. g9 ~ 1.7rydw where ry4,, is the van der Waals
length). (b) The near-threshold behavior of A. The fitting of the lowest energy points leads implies that A oc AE®.
The lowest three points lead to b = 5.004 as expected from the known threshold behavior [4].
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FIG. 3. (color online) Effective four- (a) and five-body recombina-
tion rates (b). The green dashed curve and the blue solid line fol-
low the theoretical model for Ly and Ls, respectively, with additional
scaling factor for Ls; see text. The error bars include the statistical
uncertainties from the fitting routine, the temperature and the trap

frequencies.

Position of the
predicted 4-body
resonance and
now the 5-body
resonance is in

_—" agreement with

experiment!
Kewl!

arXiv:1205.1921,
Zenesini et al.



Summary

Universal states of 3 polar molecules
predicted, including an Efimov effect for 3
iIdentical bosonic dipoles

Three-body parameter universality is now

understood, though not valid for all 3-body

systems, e.g. probably not universal for 3
nucleons

Cluster resonances with N>3 atoms have
been predicted and seen experimentally now
up to N=5 atoms, i.e. a regime has been
identified where the dominant loss process in
the gas is from 5-body recombination






Efimov-favored AAX systems (m4 > my)

A
Hyperspherical vs Born-Oppenheimer (BO) | A ;.f A
r'

T TV (le+5]) +vae (Jo-3))]
_—v2_ v v ) v _Z|}| v =Ew
- Vr Aty Vo +Vaalr)+Vax | |p+ 5| ) TVax{|p—3

In adiabatic hyperspherical representation ¥ = Z F.e(R)®, (R; Q2):

@ Coupled hyperradial equations for solving F, .
@ Adiabatic hyperspherical potentials L, (R) characterize the energy
landscape for fixed hyperradius R (uR? = Imar? + ;4% g?),

2ma+myx
In BO approximation ¥ = F, ¢ (r) &, (r; p):

@ Single-channel potential U;.° (r) characterizes effective interaction
between A atoms.



Efimov-favored AAX systems — Efimov potentials and solutions

Hyperspherical p-:-tential reduces to BO potential when ma = my:

B

L P wda Hyperspherical

o Bom-Oppenkcimer @ BO potential < diabatic hyper-
R | spherical potential.
= e - ‘-L.;-.'
- - @ Long-range Efimov behavior
=7 N UBO(r) ~ —x3/2mxr* (x0==0.57).
r -1 i ‘H Lo 4
£ TR _ @ Short-range van der Waals be-
= Il ! Foand Pawa=0.57, 288 - o — _
) T | havier UR() > V() =
- il 'ill'l . 1K1 | 5lh iy 1] 254) A0 _CE‘H&A; )
r, K (aw)

Efimov state in hyperspherical and BO representations:

1

@ Good agreement between hy- = T fTomian=057
perspherical and BO solutions. = 85O
b Hypersphencal
@ Efimov states can be studied in '}
the BO approximation. -
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ry determines the ground Efimov state energy (5§ = xgtia /2mx — 1/4):
Eo, analytic = —ﬁ exp (—%{ﬂrg[f‘(l — i80)] — ‘.ﬂ'}), r4+ can be found by

’%m,u ’Edw AA ’Edw,u

o (252 ) N (2352 =N (2592 o (25922)

J"E I'is/4 J"E
Ny (2% ) = [1- V2 e Fal g, (28 ) @x2

An approximate analytical model for Efimov ground state.



Efimov-unfavored AAX systems — un iversal pmtentiﬂls

When |aax| > aaa 3> ro, the effective adiabatic hyperspherical potentials
show different universal Efimov scaling for two-resonant-interaction channel
(AX + A) and three-resonant-interaction channel (A; + X):
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Effective adiabatic hy perspherical potentials for CsCsRb (acry = o0) [1]



