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• Introduction to the OH molecule

– Level Structure

– Magnetic trapping apparatus

– Internal state manipulation

• Collisions in OH

– E-field induced inelastic 2-body loss

– Elastic collisions and evaporation of OH
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The OH molecule, Two Dipoles!

X2Π 3/2, v = 0, J = 3/2

μe = 1.67 D
≈ 0.66 ea0

μm = 2 μB



The OH apparatus
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Electric Field lines
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Magnetic trap loading
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Magnetic trap loading

Background gas (Kr) limited



• What do you need for Evaporation?

– Selectively remove hot OH molecules from a 
trapped sample

– Elastic collisions  rethermalization

• Rethermalization rate >>  loss rates

– Characterize molecule number, temperature,

• We can’t just turn our molecules back into atoms.

• Microwave depletion spectroscopy
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Controlling internal States
f|f>→|e> = 1.667 GHz – 2.66 MHz/kG
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What happens to |e> molecules in the magnetic trap?

BKS, M. Yeo, B. C. Sawyer, M. Hummon, and J. Ye, Phys. Rev. A 85, 033427 (2012)



Landau-Zener vs. |e>-state molecules



Thermometry through state control (I)

|f>-state depletion



Thermometry through state control (II)



Thermometry through state control (III)
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Evaporation of OH

✔
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Electric field induced inelastic collisions

|f>-state two-body loss parameter β is independent 
of total number – but varies with electric field
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Evaporative cooling of OH

MW

f, +

e, -

Transfer molecules from 
f, 3/2 -> e, 3/2 state.

e state molecules lost 
from trap.

Sweep MF frequency to 
low temperature.
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Evaporative cooling of OH

MW
f, +

e, -

Magnetic field (T)
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45 mK

12 mK18 mK

9.8 mK 5.1 mK



Efficiency of cooling
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Why is the evaporative 
cooling so efficient?



Repulsive van der Waals interaction
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|f,+>

|e,->

|J=5/2,->

(Far away)

r

Quéméner and Bohn

σel>1012 cm2



• Internal state control of OH key for manipulation

• Evaporative cooling from 50 mK 5 mK

• 100x  increase in phase space density

• Repulsive van der Waals suppresses inelastic loss

• Collisions rates of ~300 s-1

• Inferred initial OH density 5 x 1010 cm-3

• Inferred initial phase space density 3x10-10

• Why stop at 5 mK?
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Conclusions for OH



Limitation to current evaporation

MW

f, +

e, -
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e-state molecules not 
ejected from trap



• Evaporate to < 5mK
– Investigate Majorana loss

– Plug the hole with transverse 
electric field

• Multi-step evaporation

• Optical depletion spectroscopy

• Lower temperatures should be 
possible
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Future Directions for OH

B
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Bmin



Multi-step evaporation
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Optical Zeeman depletion spectroscopy

J’’=3/2

308 nm

J’=3/2

J’=1/2

B
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T = 43 mK

Depletion of 282 nm fluorescence
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YO MOT apparatus
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A cycling transition for YO
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Remix Zeeman Dark States

1-D Doppler cooling of YO
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Generating a position dependent force
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The Resonant 2D Mot Coils
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YO MOT results



Atomic MOTs vs Molecule MOT

YO MOT Atomic MOTs

ω 2 π *155 Hz Several kHz

Γ 5*103 s-1 ~105 s-1

vcaputre 10 m/s ~ 50 m/s
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F /m = - (Γ/2) v – ω2 x
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Torward a 3D MOT

2-Stage, Slow buffer gas beam
(collaboration w/ J. Doyle, Harvard)

In vacuum 3D Resonant MOT coils



• Evaporative cooling of OH

– 50 mK 5 mK

– 100x increase in phase space density

• A 2D MOT for YO

– 25 mK 2mK  1D transverse cooling

– Interaction time limited temperature

– 10 m/s capture velocity expected for 3D MOT
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Conclusion



The Slowing Cell

N.R. Hutzler, H. Lu and J. M. Doyle, Chem. Rev. In press (2012)
H. Lu, J. Rasmussen, M.J. Wright, D. Patterson and J.M. Dolye, PCCP, 2011.13.18986-18990

nHe ~1015 cm-3 nHe ~1014 cm-3
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Cooling lasers for YO



Experimental sequence for evaporation

RF input
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What’s that funky line shape?

If the |e>-state molecule 
can’t escape the trap, we 

don’t see the loss!


