MOT and Evaporative cooling for polar molecules

The Cold Molecule Team

Alejandra Collopy Ben Stuhl Mark Yeo Dave Reens Matt Hummon Hao Wu

3/15/2013

Cold Polar Molecules

Applications

Techniques

Cold Polar Molecules

Applications

Techniques

Outline

- Introduction to the OH molecule
 - Level Structure
 - Magnetic trapping apparatus
 - Internal state manipulation
- Collisions in OH
 - E-field induced inelastic 2-body loss
 - Elastic collisions and evaporation of OH

The OH molecule, Two Dipoles! $X^2\Pi_{3/2}$, v = 0, J = 3/2

KITP, New Science with Ultracold Molecules

The OH apparatus

Magnetic Field Contours

Magnetic trap loading

Magnetic trap loading

Evaporation of OH

- What do you need for Evaporation?
 - Selectively remove hot OH molecules from a trapped sample
 - Elastic collisions \rightarrow rethermalization
 - Rethermalization rate >> loss rates
 - Characterize molecule number, temperature,
 - We can't just turn our molecules back into atoms.
 - Microwave depletion spectroscopy

Outline

- Introduction to the OH molecule
 - Level Structure
 - Magnetic trapping apparatus
 - Internal state manipulation
- Collisions in OH
 - E-field induced inelastic 2-body loss
 - Elastic collisions and evaporation of OH

Controlling internal States

What happens to |e> molecules in the magnetic trap?

BKS, M. Yeo, B. C. Sawyer, M. Hummon, and J. Ye, Phys. Rev. A 85, 033427 (2012)

KITP, New Science with Ultracold Molecules

Landau-Zener vs. | e>-state molecules

Thermometry through state control (I)

Thermometry through state control (II)

Thermometry through state control (III)

Evaporation of OH

- What do you need for Evaporation?
 - Selectively remove hot OH molecules
 - Elastic collisions \rightarrow rethermalization
 - Rethermalization rate >> loss rates

— Characterize molecule number, temperature,

- We can't just turn our molecules back into atoms.
- Microwave depletion spectroscopy

Outline

- Introduction to the OH molecule
 - Level Structure
 - Magnetic trapping apparatus
 - Internal state manipulation
- Collisions in OH
 - E-field induced inelastic 2-body loss
 - Elastic collisions and evaporation of OH

Electric field induced inelastic collisions

f>-state two-body loss parameter β is independent of total number – but varies with electric field

Outline

- Introduction to the OH molecule
 - Level Structure
 - Magnetic trapping apparatus
 - Internal state manipulation
- Collisions in OH
 - E-field induced inelastic 2-body loss
 - Elastic collisions and evaporation of OH

Evaporative cooling of OH

Transfer molecules from f, $3/2 \rightarrow e$, 3/2 state.

e state molecules lost from trap.

Sweep MF frequency to low temperature.

Evaporative cooling of OH

3/15/2013

Efficiency of cooling

Why is the evaporative cooling so efficient?

Repulsive van der Waals interaction

Quéméner and Bohn

Conclusions for OH

- Internal state control of OH key for manipulation
- Evaporative cooling from 50 mK \rightarrow 5 mK
- 100x increase in phase space density
- Repulsive van der Waals suppresses inelastic loss
- Collisions rates of ~300 s⁻¹
- Inferred initial OH density 5 x 10¹⁰ cm⁻³
- Inferred initial phase space density 3x10⁻¹⁰
- Why stop at 5 mK?

Limitation to current evaporation

Future Directions for OH

- Evaporate to < 5mK
 - Investigate Majorana loss
 - Plug the hole with transverse electric field

- Multi-step evaporation
- Optical depletion spectroscopy
- Lower temperatures should be possible

Multi-step evaporation

Optical Zeeman depletion spectroscopy

YO MOT apparatus

A cycling transition for YO

electric dipole moment: 4.5 D magnetic dipole moment: 1 μ_B rotational constant: 0.39 cm⁻¹

YO beam velocity: 120 m/s

YO vibronic structure

photon recoils to stop: $\sim 10^4$

YO rotational structure

Remix Zeeman Dark States

Polarization modulation

1-D Doppler cooling of YO

Generating a position dependent force

The Resonant 2D Mot Coils

Resonant LC Drive

YO MOT results

Atomic MOTs vs Molecule MOT

 $F/m = -(Γ/2) v - ω^2 x$

	ΥΟ ΜΟΤ	Atomic MOTs
ω	2 π *155 Hz	Several kHz
Г	5*10 ³ s ⁻¹	~10 ⁵ s ⁻¹
V _{caputre}	10 m/s	~ 50 m/s

Torward a 3D MOT

2-Stage, Slow buffer gas beam (collaboration w/ J. Doyle, Harvard)

In vacuum 3D Resonant MOT coils

Conclusion

Evaporative cooling of OH
- 50 mK → 5 mK
- 100x increase in phase space density

• A 2D MOT for YO

- $-25 \text{ mK} \rightarrow 2 \text{mK}$ 1D transverse cooling
- Interaction time limited temperature
- 10 m/s capture velocity expected for 3D MOT

The Slowing Cell

N.R. Hutzler, H. Lu and J. M. Doyle, *Chem. Rev. In press* (2012) H. Lu, J. Rasmussen, M.J. Wright, D. Patterson and J.M. Dolye, PCCP, 2011.13.18986-18990

Cooling lasers for YO

Experimental sequence for evaporation

What's that funky line shape?

If the |e>-state molecule can't escape the trap, we don't see the loss!

 $N(B)dB \propto B^{2} dB e^{-\mu B/kT} \times \begin{cases} 1 \text{ if } B > X_{-3/2}, \\ e^{-\mu(X_{-3/2} - B)/kT} \text{ else} \end{cases}$