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Magnetoassociation to form alkali dimers
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Tune directly from atomic state (separated atoms) to molecular
state by sweeping the magnetic field slowly (adiabatically) over an

avoided crossing (Feshbach resonance)

Magnetoassociation makes molecules in a single state, so a good
starting-point for STIRAP to reach absolute ground state

Alkali-metal dimers all have singlet ground states: no electron spin
We would like to extend magnetoassociation to molecules with

electron spin as well as electric dipole

Molecules formed from an alkali-metal atom (25)
and a closed-shell atom (1S, e.g. Sr, Yb) are a good option



Magnetoassociation to form alkali-metal dimers

*  For alkali dimers, there is a complicated pattern of near-dissociation
molecular levels below each atomic threshold, which can be tuned across

threshold with magnetic fields

- A zero-energy Feshbach resonance occurs where each level crosses
threshold. For example, for 8’Rb!33Cs below the lowest (aa) threshold:
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Magnetoassociation to form alkali-metal dimers

For alkali dimers, there is a complicated pattern of near-dissociation
molecular levels below each atomic threshold, which can be tuned across
threshold with magnetic fields

A zero-energy Feshbach resonance occurs where each level crosses
threshold. For example, for 8/Rb!33Cs below the lowest (aa) threshold:

Alkali-metal atoms all have
non-zero huclear spin i and s=3

Atomic quantum numbers are

f=i+3 (at low field) and m,

Alkali dimers (25+2S) have 2 potential
curves, singlet (S=0) and triplet (S=1)
Collision Hamiltonian is

H=T+ aia'sa + Ebib.Sb v HZeeman

+2 IS> VS(R) <SI +vdipolar(R)
S

Molecular states have different % o} | fa ol [
spin character to atomic states T st | gl
Hamiltonian couples molecular states il

to atomic states
=> Feshbach resonances




The need for theory

Need potential curves that reproduced energy levels to understand
level patterns and avoided crossings for full control

For two 2S atoms there are 5 sources of angular momentum:
- 2 electron spins
- 2 nuclear spins (I=7/2 for 133Cs)
- Mechanical rotation (L or N)
In a magnetic field only M, is conserved (not total angular momentum)
Basis set (s,i f)(SpSpfr)FMeLM M, ; or fully decoupled:
labels suc& as 8)9((§)binb icate Ft(MFT) [s, p,yd... for PL:O,1,2...]

Homonuclear dimer is a special case: Far from avoided crossings, F, M¢
and L are nearly conserved, and a small basis set is adequate

Near avoided crossings, nothing but M, is conserved:
over 200 spin basis functions
(channels) sometimes needed.

Hamiltonian couples everything:
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Use coupled-channel expansion for molecular wavefunction
= ZCb-i(SIL)'U)i(R)

where ®,(SIL) are basis functions for (all the) angular momenta.
Substitute in Schrédinger equation to produce coupled radial equations:

d2¢"jn.
= Z [‘v]A(R) Eno ]A] ‘*’AH(R)
k

dR2

For scattering, propagate coupled equations from short range (R ~ 5 ag)

to long range (1000 to 10000 a,) and match to Bessel functions fo get S-matrix;
then scattering length a(k) = (ik)! (1-Sgo)/(1+Sg0)

MOLSCAT program can converge on resonances [poles and zeroes in a(B)]
Bound-state calculations (BOUND program) also use coupled-channel propagation

appr'oach not radial basis set S — :
Time /inear in number of steps: e riment (areen)
no problem handling 200+ channels M2012 potential (blue)

201" m2004 potential (grey)

- Can propagate quickly to very long
(Airy-based log-derivative propagator)

- Can easily find bound states
within 10 kHz of dissociation
BOUND and MOLSCAT implement many
different collision systems (alkali-alkali,
atom-molecule, molecule-molecule):
can plug in new subroutines for new cases.

E/h (kHz)

60




What is different for alkali (3S) + 'S atom systems?

Only one molecular electronic state: %

The molecular Hamiltonian
. H.: T+ V(f‘) N §|S + HZeeman
is diagonal in atomic quantum numbers

Curves correlating with different atomic hyperfine / Zeeman states are
essentially parallel to one another (shifted by atomic energy)
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What is different for alkali (3S) + 'S atom systems?

Only one molecular electronic state: %

The molecular Hamiltonian
. H.: T+ V(r‘) N §|S + HZeeman
is diagonal in atomic quantum numbers

Curves correlating with different atomic hyperfine / Zeeman states are
essentially parallel to one another (shifted by atomic energy)

The molecular states lie parallel
to the atomic thresholds

(as a function of field)

and have the same character

There are crossings between
molecular levels with f=i+5 and
atomic thresholds with f=i-3

but no coupling

=> Feshbach resonances have
zero width (i.e. do not exist)

For'Tu.na’re.?{, this is an
oversimplification!
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What makes magnetoassociation allowed?

What is there in the collision Hamiltonian that can couple states with
the same L and m; but different f? Usual Hamiltonian would be

H=T+ V(R) i §|S + Bz(giiz+gssz)

The atomic hyperfine interaction does not provide such a coupling:

f is not a good quantum number at finite field, but the atomic and
molecular states are nondegenerate eigenfunctions of &i.s + B,(g;i,*g.S,)
so are orthogonal => no coupling from an R-independent ¢

But the atomic hyperfine 4
coupling is actually modified

significantly at short range by
the presence of the 2" atom %0

This provides a coupling that g ol
does mix the atomic and
molecular states and can
cause Feshbach resonances
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Scattering lengths and masses

As for the alkali-metal atoms, no ab /nitio potential is good enough to
predict the absolute values of scattering lengths / binding energies:
experimental measurements are essential.

But once a binding energy is known for one isotopic combination, the ab
initio potentials are good enough to predict mass-scaling.

For heavier alkalis, binding energies (and thus crossing positions) depend
substantially on isotope. E.g. for 8’RbYb:

Axel Gorlitz's group (Disseldorf) has .
now measured binding energies for a
several isotopologues of 87Rb*xYb.

These allow fitting to produce potential  rmse
curves to estimate resonance positions \%
for any 85RbYb or 87RbYb species. e P

But what are the widths?
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How wide are the Feshbach resonances?

Initial work on RbSr (using coupled-channel calculations)
[PRL 105, 153201 (2010)] found resonance widths from 0.3 pG to 100 mG
at fields between 30 G and 5000 &

The numbers are right, but they don't provide much understanding!

We have now developed a quantitative model based on Fermi Golden Rule
that gives both insight and quantitative predictions of widths

The Golden Rule gives a resonance width I (in energy) as
=2m | fwbound* H L'}free dT | °
This allows the magnetic field width A to be expressed as
A=m [Im_f(B)]2 (Inkz/k) / (abg 6“res)
I, ¢(B)is a purely atomic matrix element of i.s between the two (field-dressed)
states with a given f m

I, is a purely radial matrix element of A{(R) between the bound state and the
continuum function at wavevector k
(and I, 2/k is independent of k at low energy)

ay, iS the background scattering length (for 1-channel scattering)

OH,.< is the magnetic moment difference between the bound and free states
(relative slope of the crossing states)



Atomic spin part gives strong field-dependence

A= []:mf(B)]2 (Inkz/k) / (abg 6“res)
mf(B) = <a;m¢|i.s|a, m; > (between purely atomic field-dressed states)

At limitingly high B, m, and m; are good quantum numbers and this reduces to
[T,.+(B)]? = 4[|(|+1) mf2+4] (from raising and lowering operators i,f_etc.)

But the zero-field atomic states are eigenfunctions of i.s
=> I, ¢(B) is zero at zero field and increases linearly with field
=> resonances that occur at low field have widths proportional to B2.

Consequences for experiment:

Low-field resonances are probably not a good bet:
Need to design experiments to work at high field

High-spin alkali metals have intrinsic advantages over low-spin ones

n

s off-diagonal coupling
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Radial integral is dominated by short range

A= []:mf(B)]2 (Inkz/k) / (abg 6“r'es)
T = JWoound AE(R) Y. dR (between 1-d radial functions on same potential)

Atomic and molecular states are orthogonal so R-independent term in §(R) does not
couple them; only Ag(R) contributes and short range dominates

Molecular state bound by < 10 GHz so stays almost in-phase with continuum

(a)
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Radial integral is dominated by short range

A =

IInk

m []:mf(B)]2 (Inkz/k) / (abg 6“res)
= JWoouna™ AE(R) Y4, dR (between 1-d radial functions on same potential)

Atomic and molecular states are orthogonal so R-independent term in §(R) does not
couple them; only Ag(R) contributes and short range dominates
Molecular state bound by < 10 GHz so stays almost in-phase with continuum

AE(R) is roughly proportional to § so heavy alkali metals give greater widths
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Other factors

A proportional to | JWpound” AE(R) Weree AR |2/ ay

Large widths for very small a,, are not really useful (a,,A more relevant than A)
But continuum normalisation at short range is proportional to [1+(1-a,,/a(bar))?]/

=> Width is proportional to |ay,,| when |a,,|» a(bar)

Systems with large scattering length give the broadest resonances
(but beware phase separation, as in 174Yb + 8’Rb (Baumer et al.)

Molecular states that “kiss"

the threshold (small dy,...)
also give broad resonances
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How wide are the Feshbach resonances in RbYb?

85YbRb has some resonances below 1000 G but they are very narrow
85Rb174Yb 1.5 p6 near 100 6
85Rb176Yb 0.9 mG near 900 G

This illustrates the general B2 dependence of widths at low field!

87YbRb has much wider resonances but at higher field
87Rb168Yb 0.6 mG near 800 G (low abundance)
87Rb!70Yb 6 mG near 2100 6
87Rb174Yb 5 mG near 3000 G

None of the 8’RbYb isotopologues is

“lucky” enough to give double crossings s .. —
that would result in enhanced widths 6

oy /| GHz




What about LiYb? (Gupta, Washington: Takahashi, Kyoto)
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Very little mass-scaling with Yb isotope
Scattering length measured as |a| = 8(2) A
Widths are tiny for bosonic Yb (e.g. 2 uG for 6Li74Yb near 1000 G)

But there is another possibility: bond formation transfers spin density
from Li to Yb, so Lil”'¥b and Li73Yb have hyperfine coupling from iy,

AE(R) is considerably larger for Yb => wider resonances
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What about LiYb? (Gupta, Washington: Takahashi, Kyoto)

Very little mass-scaling with Yb isotope
Scattering length measured as |a| = 8(2) A

Widths are tiny for bosonic Yb (e.g. 2 uG for 6Li74Yb near 1000 G)

But there is another possibility: bond formation transfers spin density
from Li to Yb, so Lil”'¥b and Li73Yb have hyperfine coupling from iy,
AE(R) is considerably larger for Yb => wider resonances

Yb resonances have different selection rules: Am, = -Amy, = +3

These are decaying resonances, / : T el
but still pole-like o= | — =12
Widths are around 0.2 mG P 3/2}

This mechanism wi// give additional © | _
resonances for other alkalis, v i ) [
but not dramatically wider ones. : G
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Conical intersections with ultracold molecules

For a molecule with both an electron spin and an electric dipole
moment, e.g. KRb (3%) or RbSr(%%)

Two levels of different parity (different rotational quantum number)
may cross as a function of magnetic field

For polar molecules, an electric field can mix these two states
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Conical intersections with ultracold molecules

For a molecule with both an electron spin and an electric dipole
moment, e.g. KRb (3%) or RbSr(%%)

Two levels of different parity (different rotational quantum number)

may cross as a function of magnetic field
For polar molecules, an electric field can mix these two states

Could create a
conical intersection
between eigenstates
at the point where
the Zeeman states
are degenerate and
the electric field
passes through zero
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Conical intersections with ultracold molecules

»  For a molecule with both an electron spin and an electric dipole
moment, e.g. KRb (3%) or RbSr(%%)

*  Two levels of different parity (different rotational quantum number)
may cross as a function of magnetic field

»  For polar molecules, an electric field can mix these two states

- Could create a
conical intersection
between eigenstates
at the point where
the Zeeman states
are degenerate and
the electric field
passes through zero

- Adding an optical potential
produces a potential minimum that
IS nearly isotropic around a ring

- For bosonic #1K87Rb, fields here are:
B,=-1876G
dB./dX = 5 6/cm
dF/dY = 6.7 kV/cm?
optical trap depth 7 uK at 30 pym.

Y (um)




Vortices with half-integer quantisation

BEC is stable all around the ring if a;;> 0, a,,> 0 and 2a;, > -(a;1*+a,,).

A conical intersection produces a Berry phase: along a path that
encircles the intersection once, the internal molecular wavefunction
(molecular rotation + spin) adiabatically changes sign.

The r'esul’rinrq twisted boundary condition (p+21) = -B(9)
produces half-integer quantisation for a particle on a ring.

In the Gross-Pitaevskii equation, persistent flow with half-integer
angular momentum occurs if the chemical

potential is large enough to overcome

any residual anisotropy around the ring.

The path around the conical intersection
is originally slanted (because the crossin
states have different magnetic moments
but this can be compensated with a small
offset of the optical trap.

PRL 103, 083201 (2009)

A variant based on microwave dressing could
be applied to 87Rb: PRA 84, 051402(R?(2011).

Cute... But what is it good for?



Conclusions

Atom pairing methods (magnetoassociation followed b}/ STIRAP)
can already produce ground-state alkali dimers below 1 pK
[so far, KRb (JILA), Cs, (Innsbruck) + others by incoherent approaches].

Magnetoassociation may be possible for alkali + Yb, alkali + Sr, etc.
Widest resonances occur for heavy alkali metals at high fields

Careful choice of Yb or Sr isotope is very important, and requires measurement
of binding energy or scattering length for one isotopic combination

Conical intersections may produce intriguing new physical effects

Other topics we're working on:
- Sympathetic cooling with ultracold H atoms (Maykel Leonardo Gonzdlez-Martinez)
- MQDT for molecular collisions (James Croft)
- Molecule formation in 87RbCs (Ruth LeSueur with Innsbruck etc.)
- Feshbach resonances in 8RbCs and 8°Rb, (Caroline Blackley with Simon Cornish)
- Cs-Cs potentials for Efimov physics (with Rudi Grimm & Paul Julienne)
- Li-Li potentials for Fermi gases at unitarity (with Selim Jochim & Paul Julienne)
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