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[M. Greiner et al., Nature 415, 39 (2002)]

Bose-Hubbard 

Hamiltonian
[Fisher et al., PRB 40, 546 (1989) ;

Jaksch et al., PRL 81, 3108 (1998)]
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Resemble spin models, 

e.g. hard-core bosons (n=0,1)

Bose-Hubbard 

Hamiltonian
[Fisher et al., PRB 40, 546 (1989) ;

Jaksch et al., PRL 81, 3108 (1998)]
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Dipolar lattice gases: intersite effects
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For a dipolar gas inter-site interactions become important
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Dipolar interactions have been 

shown already to play an important 

role in dipolar Chromium BECs in 

optical lattices (Stuttgart)

Inter-site destabilization

Time-of-flight-induced collapse 

of in-lattice stable BECs

[Müller et al., PRA 84, 053601 

(2011)]

[Billy et al., PRA 86, 051603(R) (2012)]

Also in recent works on spin dynamics of Chromium in lattices (Talk of B. Laburthe)
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Supersolid, density-waves, 

self-assembled crystals, 

metastable states, interlayer 

superfluids and more…
[Baranov et al, Chemical Reviews 112, 5012 (2012)]

Density wave

Supersolid

Interlayer SF
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U1

1D polar gases

• Devil‘s staircase [Burnell et al., PRB 80, 174519 (2009)]

• Haldane insulator [Dalla Torre et al., PRL 97, 260401 (2006)]

• Disorder [Deng et al., arXiv (2012)]

• Simulation of spin-orbital models [Sun et al., PRB 86, 

155159 (2012)]

• More... see. [Chemical Reviews 112, 5012 (2012]

The intersite 

interactions 

lead to a very 

rich physics 

for 1D chains 

and ladders
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Disorder in optical lattices

Speckle
[Billy et al., Nature 453, 891 

(2008)]
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In 1958, P.W. Anderson predicted the exponential 

localization
1
 of electronic wave functions in disordered 

crystals and the resulting absence of diffusion. It has been 

realized later that Anderson localization (AL) is 

ubiquitous in wave physics
2
 as it originates from the 

interference between multiple scattering paths, and this 

has prompted an intense activity. Experimentally, 

localization has been reported in light waves
3,4,5,6,7

, 

microwaves
8,9

, sound waves
10

, and electron
11

 gases but to 

our knowledge there is no direct observation of 

exponential spatial localization of matter-waves (electrons 

or others). Here, we report the observation of exponential 

localization of a Bose-Einstein condensate (BEC) released 

into a one-dimensional waveguide in the presence of a 

controlled disorder created by laser speckle
12

. We operate 

in a regime allowing AL:  i) weak disorder such that 

localization results from many quantum reflections of 

small amplitude; ii) atomic density small enough that 

interactions are negligible. We image directly the atomic 

density profiles vs time, and find that weak disorder can 

lead to the stopping of the expansion and to the formation 

of a stationary exponentially localized wave function, a 

direct signature of AL. Fitting the exponential wings, we 

extract the localization length, and compare it to 

theoretical calculations. Moreover we show that, in our 

one-dimensional speckle potentials whose noise spectrum 

has a high spatial frequency cut-off, exponential 

localization occurs only when the de Broglie wavelengths 

of the atoms in the expanding BEC are larger than an 

effective mobility edge corresponding to that cut-off. In 

the opposite case, we find that the density profiles decay 

algebraically, as predicted in ref 13. The method 

presented here can be extended to localization of atomic 

quantum gases in higher dimensions, and with controlled 

interactions. 

The transport of quantum particles in non ideal 

material media (e.g. the conduction of electrons in an 

imperfect crystal) is strongly affected by scattering from the 

impurities of the medium. Even for weak disorder, semi-

classical theories, such as those based on the Boltzmann 

equation for matter-waves scattering from the impurities, 

often fail to describe transport properties
2
, and fully quantum 

approaches are necessary. For instance, the celebrated 

Anderson localization
1
, which predicts metal-insulator 

transitions, is based on interference between multiple 

scattering paths, leading to localized wave functions with 

exponentially decaying profiles. While Anderson's theory 

applies to non-interacting particles in static (quenched) 

disordered potentials
1
, both thermal phonons and repulsive 

inter-particle interactions significantly affect AL
14,15

. To our 

knowledge, no direct observation of exponentially localized 

wave functions in space has been reported in condensed 

matter. 

 

Figure 1. Observation of exponential localization. a) A 
small BEC (1.7 x 10

4
 atoms) is formed in a hybrid trap, which 

is the combination of a horizontal optical waveguide ensuring 
a strong transverse confinement, and a loose magnetic 
longitudinal trap. A weak disordered optical potential, 
transversely invariant over the atomic cloud, is superimposed 
(disorder amplitude VR small compared to the chemical 

potential µin of the atoms in the initial BEC). b) When the 
longitudinal trap is switched off, the BEC starts expanding and 
then localises, as observed by direct imaging of the 
fluorescence of the atoms irradiated by a resonant probe. On 
a and b, false colour images and sketched profiles are for 
illustration purpose, they are not exactly on scale. c-d) 
Density profile of the localised BEC, 1s after release, in linear 
or semi-logarithmic coordinates. The inset of Fig d (rms width 
ot the profile vs time t, with or without disordered potential) 

shows that the stationary regime is reached after 0.5 s. The 

diamond at t=1s corresponds to the data shown in Fig c-d. 
Blue solid lines in Fig c are exponential fits to the wings, 
corresponding to the straight lines of Fig d. The narrow profile 
at the centre represents the trapped condensate before 
release (t=0). 

 

[Roati et al., Nature 453, 

895 (2008)]
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1D polar bosons in optical lattices
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1D polar bosons in optical lattices

U1

The system resembles to a 

large extent an AF spin-1 

chain with uniaxial single-

ion anisotropy
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AF spin-1 chains
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[Chen, Hida and Sanctuary, PRB 67, 104401 (2003)]


Néel phase …+-+-+-+-+-+-+-+-…

Large-D phase …0+-0…0-+0…0-+0…

Haldane phase 

(„diluted AF order“)

…0+0…0-0…0+0…0-0…

D



1D polar gases in optical lattices: Haldane-insulator phase
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Density wave …0202020202020202…

Mott-insulator …1021…1201…1200…

[Dalla-Torre, Berg and Altman, PRL 97, 260401 (2006)]

Haldane-

insulator
…101…121…101…121…
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Parity order

„fluid of AF ordered defects“
dni =1- ni

For the Mott insulator OS

2 = 0 OP

2 ¹ 0
[Endres et al., 

Science 334, 

200 (2011)]

…1101…121…101…121…

…1011…211…011…211…

…0111…112…110…112…
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String and parity order
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For non-polar bosons: Bose-

Glass (gapless, compressible 

insulator)
[Giamarchi and Schulz, PRB 37, 325 (1988); 

Fisher et al., PRB 40, 546 (1989); 

Rapsch, Schollwöck and Zwerger, EPL 46, 559 (1999)]

/U0

t/U0

1-/U0

/U0

/U0

[From PRB 40, 546 (1989)]

-D <ei < DBounded box disorder:
(similar to speckle)
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For non-polar bosons: Bose-

Glass (gapless, compressible 

insulator)
[Giamarchi and Schulz, PRB 37, 325 (1988); 

Fisher et al., PRB 40, 546 (1989); 

Rapsch, Schollwöck and Zwerger, EPL 46, 559 (1999)]

[From EPL 46, 559 (1989)]
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[From EPL 46, 559 (1989)]
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-D <ei < DBounded box disorder:

SF vanishes for growing NN 

interactions (SF-BG at K=3/2)
[Giamarchi and Schulz, EPL 3, 1287 (1987)]

BG goes all the way to zero at 

the MI-HI for K<3/2
[Deng et al., arXiv:1302.0528]
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-D <ei < DBounded box disorder:

DW disappears even for very 

small disorder.
(Imry-Ma argument)
[Imry and Ma, PRL 35, 1399 (1975)]

U1/t



Imry-Ma argument

…0202020202020202…

Gap for flipping a spin

[Imry and Ma, PRL 35, 1399 (1975)]

…0202020202020202…

Energy of the domain 

coming from the noise:  <> ~  L1/2 

Formation of domains of size L~(V/)1/2

Domain formation destroys the order

The gap is destroyed because now the excitations are simply moving 

walls, not creating them   

Energy of the domain walls ~ V

…0202002020202202…

L
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-D <ei < DBounded box disorder:

5/0 tU The HI phase survives, but 

its character changes

OS

2 ¹ 0

OP

2 ¹ 0

0 2 4
0

2

4

V/t


/t

MI HI

BG

(c) disordered

SF
5/0 tU

U1/t



„Glassy“ Haldane insulator at finite disorder

Disorder leads to the localization of defects reducing their 

mobility (while still keeping their AF ordering)

2 0 02

Parity becomes non-zero due to the glassy defects

OP

2 º lim
i- j®¥

exp ip dnl
l=i+1

j-1

å
é

ëê
ù

ûú
= 0

Parity order was zero in the HI due to 

the „fluid“ character of the defects

dni =1- ni

…1101…121…101…121…

…1011…211…011…211…

…0111…112…110…112…
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1D gases in quasi-periodic optical lattices

Extra phase: incommesurate density wave (ICDW)
[Roscilde PRA 77, 063605 (2008); Roux et al, PRA 78, 023628 (2008)]

[From PRA 78, 023628 (2008)]

Super-wells develop over a 

characteristic length scale 

1/(1-r) („super site“) due to 

the beating between the two 

periods of the two lattices. 

e j = Dcos 2prj +j( )Bichromatic lattices
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[From PRA 78, 023628 (2008)]
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A ICDW phase for <n>=1-r may 

be interpreted as filling each 

„super-site“ with one particle.

For n=r it is like having one 

hole siting at each „super-site“
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Extra phase: incommesurate density wave (ICDW)
[Roscilde PRA 77, 063605 (2008); Roux et al, PRA 78, 023628 (2008)]
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A ICDW phase for <n>=1-r may 

be interpreted as filling each 

„super-site“ with one particle.

For n=r it is like having one 

hole siting at each „super-site“

[From PRA 78, 023628 (2008)]

<n>
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Extra phase: incommesurate density wave (ICDW)
[Roscilde PRA 77, 063605 (2008); Roux et al, PRA 78, 023628 (2008)]
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[From PRA 78, 023628 (2008)]

<n>=r=0.77145245

As a result a gapped 

ICDW appears with a 

structure factor peaking 

at the beating periodicity
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[From PRA 78, 023628 (2008)]

Away from these fillings 

the ICDW disappears

<n>=0.5
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Extra phase: incommesurate density wave (ICDW)
[Roscilde PRA 77, 063605 (2008); Roux et al, PRA 78, 023628 (2008)]

[From PRA 78, 023628 (2008)]

For a filling <n>=1 a possible 

gapped phase may occur as 

well  (generalized ICDW)

GAP?

r=0.77145245

e j = Dcos 2prj +j( )Bichromatic lattices
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<n>=1
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e j = Dcos 2prj +j( )
Bichromatic lattices
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appears for <n>=1 for a 

sufficiently large 2nd lattice
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5/0 tU
The DW phase survives 

for a small disorder (no 

Imry-Ma argument here)
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Bichromatic lattices
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5/0 tU
„Glassy“ HI phase due to the 

pinining of defects

e j = Dcos 2prj +j( )
Bichromatic lattices
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1D polar gases in disordered optical lattices

5/0 tU
The „glassy“ HI phase connects 

adiabatically with the ICDW 

(which has also OS
2, OP

2 >0)

e j = Dcos 2prj +j( )
Bichromatic lattices
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This may open an 

interesting route (protected 

by a gap) for the creation of 

the HI phase
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Polar gases behave very 

differently in uniformly 

disordered lattices and 

quasi-periodic lattices

Uniform disorder: glassy HI 

(dissapearing into a BG) and rapidly 

vanishing DW

Quasi-disorder: finite DW, glassy-HI 

and ICDW adiabatically connected 
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