Old and New Physics with Ultracold ⁸⁸Sr₂ Molecules

Tanya Zelevinsky

B. H. McGuyer, C. B. Osborn, M. McDonald, G. Reinaudi

Columbia University

Pathway to dipolar gas of SrAlkali, SrYb

- Pathway to dipolar gas of SrAlkali, SrYb
- All-optical ultracold molecules in known quantum state
- High-Q study of quantum chemistry
- Anomalously large magnetizability

- Pathway to dipolar gas of SrAlkali, SrYb
- All-optical ultracold molecules in known quantum state
- High-Q study of quantum chemistry
 Anomalously large magnetizability

 - QED in heavy molecules
 - nm scale test of Newtonian gravity

- Pathway to dipolar gas of SrAlkali, SrYb
- All-optical ultracold molecules in known quantum state
- High-Q study of quantum chemistry
 - Anomalously large magnetizability
- QED in heavy molecules
 - nm scale test of Newtonian gravity
 - molecular clock based test of m_e/m_p variations
 - Bridging time metrology gap between RF and optical

molecule creation

molecule creation

molecule imaging

molecule imaging

Photoassociation Spectroscopy

Two-Photon Photoassociation

 $X^1\Sigma_a^+$ bound states & FCFs

Two-Photon Photoassociation

 $X^{1}\Sigma_{a}^{+}$ bound states & FCFs

Reinaudi *et al., PRL* **109**, 115303 (2012) ט. ש

 $X^1\Sigma_g^+$ bound states & FCFs

R. Moszynski et al.

molecule creation

molecule imaging

Molecule Imaging in the Lattice high-Q

broadband

from v = -2, J = 2

broadband

Ultracold Photodissociation

Ultracold Photodissociation

R. Moszynski et al.

 $\frac{1}{S_0} - \frac{3P_1}{S_1}$ Sr transition *g* = 1.5 $\chi \approx 0.4 \text{ Hz/G}^2$ T 3 2 1 MHz 0 -1 -2 -3 -4 -1 0 G

10⁶ enhancement !

$1S_0 -$	<u>³P₁</u>	<u>Sr</u>	trar	<u>nsitior</u>
<u> </u>	<u> </u>			

g = 1.5

<u> $X - 0_{\mu} + Sr_2$ transition (near ${}^1S_0 + {}^3P_1$)</u>

g = 0.2 - 0.7!

χ ≈ 0.4 Hz/G²

10⁶ enhancement !

$$\frac{1}{S_0} - \frac{3}{P_1}$$
 Sr transition

g = 1.5

 $X - 0_{\underline{u}}^{+} \operatorname{Sr}_{2}$ transition (near ${}^{1}S_{\underline{0}} + {}^{3}P_{\underline{1}}$)

g = 0.2 - 0.7!

χ ≈ 0.4 Hz/G²

 $\chi \approx 0.4 \text{ MHz/G}^2 !$

10⁵ enhancement

 $\frac{1}{S_0} - \frac{3P_1}{S_1}$ Sr transition

g = 1.5

g = 0.2 - 0.7!

χ ≈ 0.4 Hz/G²

χ ≈ 0.04 MHz/G² (10÷)

10⁶ enhancement !

- Pathway to dipolar gas of SrAlkali, SrYb
- All-optical ultracold molecules in known quantum state
- High-Q study of quantum chemistry
 - Anomalously large magnetizability
- QED in heavy molecules
 - nm scale test of Newtonian gravity
 - molecular clock based test of m_e/m_p variations
 - Bridging time metrology gap between RF and optical

Lab Tour

Lab Tour

Lab Tour

Columbia Ultracold Team

HYSICS LABORA

ES

Theory collaborations:

- R. Moszynski,
- S. Kotochigova,
- R. Ciuryło, et al.

Support: Columbia University, ARO, **Sloan Foundation**