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Outline 

• s-wave pseudopotentials: 
§ Application to two and three trapped atoms. 
§ Connection to many-body system. 

• Dipolar pseudopotentials: 
§ Finite-range pseudopotential. 
§ Zero-range pseudopotential. 



Pseudopotentials 
§  Why? 

• Mathematically convenient.  
• Some few-body calculations become tractable 

analytically. 
• Some many-body calculations become tractable 

analytically or simplify. 

§  Why not? 
• Details of the interactions may get lost or be difficult to 

put in. 
• The math can get nasty. 

 
§  Dipoles: Anisotropic and long-range interactions. 
§  Throughout this talk: aligned dipole = point particle. 

Long-range  
potential: 
d2 (1-3cos2θ) / r3 
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z 
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Replace Atom-Atom Interaction by 
Zero-Range Pseudopotential   

• Start with ab initio atom-atom potential.   
• Coupled channel calculation provides phase shifts δl(k). 
• Construct zero-range pseudo-potential with same as 

(outside solution): 

• Works if λdB (and |as|) >> r0 (for alkalis, van der Waals 
length). 

Huang and Yang, Physical Review 105, 767 (1957).  
Without regularization operator, Fermi (1934). 
 

Cures 1/r divergence of 
radial function: 
jl~rl and nl~r-l-1  

Analytical treatments 



Two s-Wave Interacting Particles in 
External Spherically Harmonic Trap 
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Eni=(2n+3/2)hν Eunit=(2n+1/2)hν 

Analytical treatment:  
Busch et al., Found. 
of Phys. (1998). 

Finite angular 
momentum: 
Enl=(2n+l
+3/2)hν 

s 



Comparison of Pseudopotential 
Solution and Full Solution 

•  Two-particle energy spectrum 
known semi-analytically: Simple 
transcendental equation [Busch et 
al., Found. of Physics (1998)]. 

•  Self-consistent solution when 
as=as(E) [Blume and Greene, PRA 
65,043613 (2002); see also Bolda et al., 
PRA 66, 013403 (2002)]. 

 
•  Energy-independent pseudo-

potential, I.e., use of as(0), works 
if |as|<<aho. 

•  Energy-dependent pseudo-
potential, I.e., use of as(E), works 
if rvdW<<aho. 

 

 

PP with as(0) 

PP with as(0) 

PP with as(E), exact 

PP with as(E), exact 

as/aho 

as/aho 

rvdW/aho=0.39 

rvdW/aho=0.1 



PP Treatment of Three Harmonically 
Trapped Fermions (s-Wave Interaction) 

•  Two spin-up fermions and one impurity with interspecies 
zero-range s-wave interactions: 

• Determine bound state wave function in relative 
coordinates using Lippmann-Schwinger equation:  

1 

2 3 

See work by Mora et al., Petrov et al., Kestner et al.,… 



Elongated Trap: Aspect Ratio η=2 and 
“Projection” Quantum Number M=0 

Πz=+1 

Πz=-1 

Atom-atom- 
atom states 

Atom-dimer 
states 

S.E. Gharashi,  
K.M. Daily,  
D. Blume, PRA 86,  
042702(2012). 



Fermions in 
Strictly 1D: gδ(zjk) 

up-up 
up-down 

S.E. Gharashi and D. Blume, unpublished. 



Non-regularized PP + Hartree Wave 
Function = GP equation 

• Many-body Hamiltonian for N bosons under confinement: 

• Hartree product (restricted Hilbert space): 

•  ZR atom-atom potential: 

• Gross-Pitaevskii (GP) equation for “single atom”: 

Single atom feels effective  
potential/mean-field created  
by the other N-1 atoms. 

SW, HS,… 

∝ 

Esry, PRA 55, 1147 (1997).  



Finite-Range Pseudo-Potential For Two 
Interacting Dipoles 
• Pseudo-potential needs to account for dipole-dependent 

s-wave scattering length [Yi and You, PRA 61, 041604 (2000)]: 

• Does this pseudo-potential work if used in conjunction 
with Hartree wave function? Will show: Yes, if dipole 
length not too large. 

s-wave scattering  
(determined by interplay 
between SR and dipole 

potential) 

Mixing between  
different partial 
waves (goes all 
the way to zero) 



Mean-Field Gross-Pitaevskii 
Description of Dipolar Bose Gas 

[ ] 

Mean-field interaction: 
contact s-wave (SR) + dipole-dipole (LR) 

Compare with results from many-body Schroedinger 
equation that uses model potential (hardwall + Vdd) as input. 

Integro-differential equation solved following Ronen et al., PRA 74, 
013623 (2006): 
Take advantage of cylindrical symmetry and perform Fourier transform in 
z and Hankel transform in ρ. 



Spherical Confinement (N=10, b=0.0137aho): 
GP versus Many-Body DMC Energies 

GP: 
a=a00 

GP: a=b 

Excellent 
agreement 
between GP and 
DMC many-
body energies! 
…but GP results 
w/ and w/o LR 
part are 
very similar! 
 
s-wave induced 
instability. 

DMC 

GP: a00, LR=0  
(contact potential  
only) 

increasing E-field / dipole moment 

Bortolotti, Ronen,  
Bohn, Blume, PRL  
97, 160402 (2006) 

x 

Instability! 



z 

Size X=√<x2> 
Size Z=√<z2> 

DMC 
GP,a00 

GP, a00. 
LR part = 0 
(isotropic). 
 
Validation of 
mean-field 
treatment! 
 

Aspect ratio Z/X 

Structural properties depend on dipole moment! 

Spherical Confinement (N=10, b=0.0137aho):  
Size and Aspect Ratio  

x 



Zero-Range Pseudopotential for Dipole-
Dipole Interactions 

Born approximation (ml=0): 

Here, ml=ml’=0 (generalizes to any ml). 

Pseudopotential proposed 
by Derevianko, PRA 67, 
033607 (2003). 

System (even l): 



Scattering Lengths for Two Aligned 
Identical Bosonic Point Dipoles 

Scattering length all’ for 
each partial wave: 
 
all’=limk→0 -tan[δll’(k)]/k 
 
all’ constant as E→0. 
 
a00 depends on SR and LR 
part of potential. 
 
all’ ∝ D* for l,l’ > 0 (except 
near resonance). 
 
[dipole length D* = µd2/ħ2.  
SR cutoff rc] 
 

Tuning SR or LR physics. 

Hard wall at rc plus Vdd.  

Kanjilal and Blume, PRA 78, 040703 (2008) 



Model Potential with Large Dipole 
Length: Energy-Dependence 

• Toy model 
for OH-OH: 

• m=17amu 
• rc=105a.u. 
• d=0.66a.u. 
• D*/rc=128 

• BA breaks 
down è PP 
breaks 
down 

BA, 24 

BA, 02 

00 

Ronen, Bortolotti, Blume, and Bohn, PRA, 2007. 



Energy Spectrum of Two Dipoles Under 
Spherical Harmonic Confinement 

 
1) 

2) l=0 

l=0,2 

l=0,2,4 

Kanjilal, Bohn, Blume, PRA 75, 052705 (2007) 

Hamiltonian H = T1 + T2 + Vtrap(1) + Vtrap(2) + Vint(r,θ) 

1)  Finite range potential: 
“Brute force” numerical 
solution to 2d S.E.. 

2)  Zero-range pseudo-
potential that depends all’: 
Analytical treatment. 

System (even l): 

Good agreement indicates that scattering 
lengths do determine energy spectrum. 



Energy Spectrum of Two Dipoles Under 
Spherical Harmonic Confinement 

 
1) 

2) l=0 

Kanjilal, Bohn, 
Blume, PRA 75, 
052705 (2007) 

Hamiltonian H = T1 + T2 + Vtrap(1) + Vtrap(2) + Vint(r,θ) 

1)  Finite range potential: 
“Brute force” numerical 
solution to 2d S.E.. 

2)  Zero-range pseudo-
potential that depends all’.  

Good agreement indicates that scattering 
lengths do determine energy spectrum. 



Inclusion of Energy-Dependence 

Model potential 
PP with E-dep. 

PP 

Here, rc fixed 
and d chosen 
such that 
a00(E=0)=0. 

Accounting for energy-dependence greatly improves 
validity regime of pseudopotential.  
Need D*/aho somewhat smaller than 1. 



What Needs Fixing? 
What Doesn’t Work? 

• Eigenequation for spherically symmetric confinement with 
pseudopotential interaction possesses unphysical root in 
low energy regime (for even l, at around E~0.05ħω): 
§  Test: Unphysical root goes away for SR potential. 
§  Fix: If we only use l=0 or l=1 part of pseudopotential, 

spectrum is described fairly well. 

• Eigenequation for anisotropic confinement (using 
regularization operators proposed by Idziaszek and 
Calarco) shows more of these unphysical roots 
(unpublished work by Kanjilal and Blume). 

• Modify energy-dependence of dipolar pseudopotential? 


