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* s-wave pseudopotentials:
= Application to two and three trapped atoms.

= Connection to many-body system.

* Dipolar pseudopotentials:
* Finite-range pseudopotential.
= Zero-range pseudopotential.



Long-range

Pseudopotentials potential.

d?(1-3cos20) / r3

= Why?

y 4

It

0

r

 Mathematically convenient.

 Some few-body calculations become tractable
analytically.

« Some many-body calculations become tractable
analytically or simplify.

* Why not?

 Details of the interactions may get lost or be difficult to

put in.
 The math can get nasty.

* Dipoles: Anisotropic and long-range interactions.

* Throughout this talk: aligned dipole = point particle.




Replace Atom-Atom Interaction by
e Start with ab initio atom-atom potential.

* Coupled channel calculation provides phase shifts §,(k).
* Construct zero-range pseudo-potential with same a,

(outside solution):

Voe(rip) = dnh*a, (")5(3J( k),f) . | radial function:
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Analytical treatments

* Works if Ajg (and |a.|) >> r, (for alkalis, van der Waals

length).

Cures 1/r divergence of

2 (rysp(F))
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Huang and Yang, Physical Review 105, 767 (1957).

Without regularization operator, Fermi (1934).




Two s-Wave Interacting Particles in
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Comparison of Pseudopotential

Solution and Full Solution
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Two-particle energy spectrum
known semi-analytically: Simple
transcendental equation [Busch et
al., Found. of Physics (1998)].

Self-consistent solution when

a.=a_(E) [Blume and Greene, PRA
65,04§613 (2002); see also Bolda et al.,
PRA 66, 013403 (2002)].

Energy-independent pseudo-
potential, l.e., use of a,(0), works
if Ias|<<ah0'

Energy-dependent pseudo-
potential, l.e., use of a_(E), works
if ryqw<<ap,.



PP Treatment of Three Harmonically

* Two spin-up fermions and one impurity with interspecies
zero-range s-wave interactions:

3
1n _ v'3D ‘/3[)
H:ZHO(rjs ) + Vint ' (r31) + Vps~(ra2)

J=1 1
_hQ 2 1 2_2 2 2
Ho(rj, M) = 52 Vi, + g M(w; 25 +wppj) 3

* Determine bound state wave function in relative
coordinates using Lippmann-Schwinger equation:

U(r,R) = /(,(Egb r, R, R Vi (v, R))U(r, R’) dr'dR’

See work by Mora et al., Petrov et al., Kestner et al.,...



Elongated Trap: Aspect Ratio n=2 and

“Projection” Quantum Number M=0

n,=+1
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K.M. Daily,

D. Blume, PRA 86,
042702(2012).



Fermions in

Strictly 1D: g6(z;)
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Non-regularized PP + Hartree Wave

* Many-body Hamiltonian for N bosons under confinement:
N 2 N

H = Z [—fz“ VZ + lmw‘ng‘?‘] + ZI‘"'},“{FJ- — ) SW, HS,...

2m 1 2 1
i=1 i<k

* Hartree product (restricted Hilbert space):

N
’ ‘FN) - Hq‘.)a(’_:x)
i=1

* ZR atom-atom potential: 112 g
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* Gross-Pitaevskii (GP) equation for “single atom”:
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Single atom feels effective
potential/mean-field created

Esry, PRA 55, 1147 (1997). by the other N-1 atoms.



Finite-Range Pseudo-Potential For Two

Interacting Dipoles

* Pseudo-potential needs to account for dipole-dependent
s-wave scattering length [Yi and You, PRA 61, 041604 (2000)]:

s Amhta(d) . | —3cos? 8
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s-wave scattering Mixing between

(determined by interplay different partial
between SR and dipole  waves (goes all

potential) the way to zero)

* Does this pseudo-potential work if used in conjunction
with Hartree wave function? Will show: Yes, if dipole
length not too large.



Mean-Field Gross-Pitaevskii

Description of Dipolar Bose Gas

L oY(r, 1) h? M w?
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Mean-field interaction:
contact s-wave (SR) + dipole-dipole (LR)

Integro-differential equation solved following Ronen et al., PRA 74,

013623 (2006):
Take advantage of cylindrical symmetry and perform Fourier transform in

z and Hankel transform in p.

Compare with results from many-body Schroedinger
equation that uses model potential (hardwall + V) as input.



Spherical Confinement (N=10, b=0.0137a,):

GP versus Many-Body DMC Energies

E/N (units of Eho)

1.6 : . Excellent
1 agreement
between GP and
1.5 DMC many-
z DMC body energies!
1.4+ { ...but GP results
GP: w/ and w/o LR
1 3 a:aoo | part dare
‘ very similar!
GP: a,,, LR=0
1.2 (contact potential s-wave induced
only) instability.
» (tabHD Y
0 0. 04 0,08 0.12
Dipole length D, (units of a ) Bortolottl. Ronen,

= Bohn, Blume, PRL
increasing E-field / dipole moment 97, 160402 (2006)



Spherical Confinement (N=10, b=0.0137a, ):
Slze and Aspect Ratio

2
44
© 09 Aspect ratio Z/X
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’ 0.7 | | TGP, a,.
' 0 0.05 0.1 LR part =0
(isotropic).
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Structural properties depend on dipole moment! treatment!



Zero-Range Pseudopotential for Dipole-

Dipole Interactions
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Hard wa

Scattering Lengths for Two Alignhed
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Scattering length a,- for

Il at r_ plus V4.

| M\ each partial wave:
a"’=|imk_>0 'tan[6|l’(k)]lk

a, constant as E—0.

a,, depends on SR and LR
part of potential.

I

| . | ; a, « D.forl,I’ >0 (except
near resonance).

7 [dipole length D. = nd?/h2.
1 SR cutoffr]
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20 430/4»6Tuning SR or LR physics.
D,/r, Kanijilal and Blume, PRA 78, 040703 (2008)



Model Potential with Large Dipole

Length: Energy-Dependence

Ronen, Bortolotti, Blume, and Bohn, PRA, 2007.
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Reduced T-matrix elements [au]

°* Toy model
for OH-OH:

* m=17amu
*r.=105a.u.
* d=0.66a.u.
* D*/r.=128

* BA breaks
down = PP
breaks
down



Energy Spectrum pf Two Dipoles Under

Hamiltonian H=T, + T, + V, . (1) + V. ,(2) +I V; .(r,0) |

Kanjilal, BOhI‘I, Blume, PRA 75, 052705 (2007) 1) Finite range potentia|:

“Brute force” numerical
solution to 2d S.E..

2) Zero-range pseudo-
potential that depends a;; :
Analytical treatment.

System (even I):

0 | | | |
0 0.02 0.04 0.06

D'/a,, O ®
Good agreement indicates that scattering
lengths do determine energy spectrum.




Energy Spectrum of Two Dipoles Under

Spherical Harmonic Confinement

Kanjilal, Bohn,
Hamiltonian H=T, + T, + V,. (1) + V,,.,(2) * V, (1,0 Blume, PRA 75,
1 2 trap( ) trap( ) | mt( ’ ) | 052705 (2007)
6\. - - -
- ' Finite range potential:
= 4 +  “Brute force” numerical
< 2 solution to 2d S.E..
[ of Zero-range pseudo-
)l potential that depends a, .
I x
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0 0.02 0.04 0.06
D*/aho

Good agreement indicates that scattering
lengths do determine energy spectrum.



Inclusion of Energy-Dependence

Here, r_ fixed
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Accounting for energy-dependence greatly improves
validity regime of pseudopotential.
Need D*/a,, somewhat smaller than 1.



What Needs Fixing?
What Doesn’t Work?

* Eigenequation for spherically symmetric confinement with
pseudopotential interaction possesses unphysical root in
low energy regime (for even |, at around E~0.05hw):

* Test: Unphysical root goes away for SR potential.

* Fix: If we only use I=0 or I=1 part of pseudopotential,
spectrum is described fairly well.

* Eigenequation for anisotropic confinement (using

regularization operators proposed by ldziaszek and
Calarco) shows more of these unphysical roots
(unpublished work by Kanjilal and Blume).

* Modify energy-dependence of dipolar pseudopotential?



