Long-range ultracold atom-dimer photoassociation
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Why is there so much enthusiasm
about cold and ultracold molecules?

High resolution spectroscopy, test of fundamental theories, quantum simulators of
condensed phase phenomena, anisotropy in quantum degenerate gases,
quantum information, (other (crazy) ideas)...

a novel « (ultra-)cold photo-physical chemistry »:

Understanding elementary reactions at the single quantum state level,
Role of excited states, quantum resonances,
Control of energy deposition in a molecular system
Reactivity at short/large distances...

PCCP special issue 2011 (eds 0D, R. krems, M. Weidemiiller, S. Willitsch): about 55 papers!
Chemical review 2012 (eds J. Ye, D. Jin): 9 review papers!

The hope: to achieve full control of internal and external degrees of freedom of quantum systems

The need: To fully understand the details of molecular structure, i.e. to solve a N-body problem,
strongly depending on the value of N



Cold chemistry: enthusiasm or desperation?
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& : Incoming / cutgeing channel: Compared to purely atomic collisions, ultracold molecular collisions potentially support a much larger number

rovibrational ground state

v=n=0 of Fano-Feshbach resonances due to the enormous number of rovibrational states available. In fact, for alkali-metal

dimers we find that the resulting density of resonances cannot be resolved at all, even on the sub-pK temperature
scale of ultracold experiments. As a result, all observables become averaged over many resonances and can
“ effectively be described by simpler, nonresonant scattering calculations. Two particular examples are discussed:
noenchemically reactive RbCs and chemically reactive KRb. In the former case, the formation of a long-lived
collision complex may lead o the gjection of molecules from a trap. In the latter case, chemical reactions broaden
the resonances so much that they become unobservable.




The vision of an expert...
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The vision of an expert...
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ing diatomic molecule.’ From a chemical physics

PeLspe

jrelatively arcane objectsy with mean Dond lengths of many
thousands of angstroms and energies only a few megahertz (i.e.,
a few nano eV) below the dissociation limit.”*'® However, the
fact that such pairs of separated atoms are formed with cente
of mass velocities corresponding to sub-microkelvin temper

atures and therefore essentially stationary in the laborato
frame is both extremely elegant and intellectually compellin
Indeed, this novel experimental platform of molecules near the
dissociation limit offers a fundamentally new and exciting arena
for studying three body interactions and ultra low energy
atomic collision dynamics.

Although such ultraweakly chemically interacting species
might not seem an obvious fit for a Chemical Reviews thematic
issue, recent advances in this rapidly emerging field of ultracold
molecules are now providing a critical change in this way of

thjnkjng.l?_zﬁ In particular, there have been pioneering efforts
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f Weakly Bound Molecular
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Perspective,

'bindjng interactions to engineer molecular

approach is not a new idea. In the chemical physics literature,
this is what has been referred to as the “half-collision” regime
(see Figure 1), whereby the intermolecular potential is used to

thousands of angstroms and energies only
a few nano eV) below the dissociation li

prenrient two reagent SPECiES pricrr to injﬁaﬁng some physica]
and/or chemical collision event, thereby avoiding the more
normal samp]jng over a broad distribution of scattering ang]es

tact that such pajrs ot separated atoms ar
of mass velocities cnrrespnndjng to sub
atures and therefore essentia]]y station

frame is both extremely elegant and int and collision energies from a “full-collision” perspec-

tive.3#006667 The point of key relevance to the present work
is that any light source with sufficient resolution to spectrally
isolate individual rotational, vibrational, and possibly fine/
hyperfine transitions in these weakly bound complexes is often
able to select and probe a single pure quantum state out of a hot
(at least from an ultracold 300 nK perspective) distribution of
internal states. Thus, high-resolution spectroscopy permits
access to elastic, inelastic, and even chemically reactive
dynamics arising from pure quantum states of the complex,

Indeed, this novel experimental platform (¢
dissociation limit offers a fundamentally ng
for studying three body interactions an
atomic collision dynamics.

Although such ultraweakly chemaicall
might not seem an obvious fit for a Chem

issue, recent advances in this rapidly emer
molecules are now providing a critical

thjnkjng.l?_zﬁ In particular, there have be

=== corresponding in a very real sense to a snapshot of an
intermolecular collision for a rigorously well-defined angular

momentum state, partial wave, and total parity. Stated
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...associate a pair of ultracold atoms,
to form an ultracold molecule!

PhotoAssociation

Photon 2% Cb,

Collision froide ~ K@ Dissociation
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Formation d’une molécule
Froide et stable

Well-known at thermal energies
Marvet&Dantus, Chem. Phys. Lett. 245, 393 (1995)

Cold atoms: “quasibound”-bound transition
Thorsheim et al, PRL, 58, 2420 (1987)

Creates a giant ultracold molecule, or

a “long-range molecule”

Stwalley&Wang, J. Mol. Spectrosc. 195, 194, (1999)
Weiner et al, Rev. Mod. Phys. 71, 1 (1999)
Masnou&Pillet, Adv. At. Mol. Opt. Phys. 47, 53 (2001)
Jones et al, Rev. Mod. Phys., 78 (2006)

eLi,, Na,, K, Rb,, Cs; H; Ca,, He,, Sr,,Yb,...
*NaCs' RbCs, KRb, LiCs, LiK,YbRb, NaK...

Short-lived ultracold molecules,
stabilization process needed...



UltraCold Molecule Formation through 1-step PA+radiative decay

transfer density of probability inwards, to produce stabilized ultracold molecules

Double-well mechanism
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PHOTOASSOCIATION OF
A and BC
« the way of desperation »?© s,



Dense samples of ultracold molecules and atoms are under reach

Orsay, PRL 96, 023202 (2006) Freiburg, PRL 96, 023201 (2006) Yale, PRL 100, 203201 (2008)
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Long-range interactions between atoms or/and molecules

1 f fgm
. . _ Lafgm
Standard multipolar long-range expansion V(R) = - > i At —-=—Q7 Q.
0 £lgm
- 4 Coxsm
See for instance: Multlpolar moments QmA Y, Z LAY, ((9i,¢) A—B,i—> ]
B. Bussery-Honvault, et al, J. Chem. Phys. 129, 234302 (2008). A +1ia
D.V. M. R. Flannery and V. N. Ostrovsky, J. Phys. B 38, S279 (2005). ,
G. C. Groenenboom, et al, J. Chem. Phys. 126, 204306 (2007). f ( ) ® (f +/ B)'
g
17 T M, —m)I(Cy +m)(Ly —m)!
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DOMINANT TERMS
ofhorder: ¢) =E,+E; et ‘¢8>:‘(DA>‘(DB>

1%t order:
Quadrupole moment of the atom: <n€/1'

QY ne.2) = (1 )Cl0xC iy #0 si £21

Quadrupole moment of the molecule: <AVOI ‘ﬁ;"AVd > =0, => C./ RS

2nd grder:

Dimer transitions: X'Z* — 1% *, 11,
Atom transitions: 2P — 2§, 2D

=> C;/ R®

Note: necessitates the knowledge of MANY PESs and TDMs, calculated on our own

For every N and £(=1), (2N+1)x(2 £ +1) long-range potential curves

C(i) C(i)
gp,i(R):BXVdN(N +1)+ R55 n R66

Lepers , Dulieu, Kokoouline Phys. Rev. A, 82, 042711 (2010),
Lepers, Vexiau, Bouloufa, Dulieu, Kokoouline Phys. Rev. A 83,
042707 (2011)

Lepers, Dulieu, Eur. Phys. J. D 65, 113 (2011)

Lepers, Dulieu, Phys. Chem. Chem. Phys. 13, 19106 (2011)



TABLE 1. The C; coefficients of the Cs.( X' E;’,vd =0+

= . Cs(675) long-range interaction calculated for j = 0 to 4. In analogy

LO n g - ra n g e C O effl C I e nts to a diatomic molecule, the Cy are sorted by projections of the total
orbital quantum number m; = m ; on the Z axis (note that 4. = ) and

the parity & through the reflection symmetry with respect to a plane

containing the axis. This yields the £+, [T, A, &, I symmetries for

my =0, X1, £2, £3,

+4, respectively.

Symmetry i Cs (au.) Symmetry i Cy (a.u.)
z+ 0 —12101 1 4 — 12587
1 —1298]1 A 2 —11473
2 —12729 3 —12101
3 — 12688 4 —12330
4 —12672 O 3 —11369
I 1 —11662 4 —11902
2 —12415 r 4 —11302
Lepers, Vexiau, Bouloufa, Dulieu, Kokoouline Phys. Rev. A 83, 042707 (2011) 3 —1254]

TABLE II. The Cs and Cs coefficients of the Csai X' E;’.v‘f =0, j+Cs(6” P) long-range interaction calculated for j = 0 to 4. In analogy
to a diatomic molecule, the states are sorted by projections of the total orbital quantum number m; = m; + A on the Z axis and by the parity =
after the reflection symmetry through any plane containing this axis. The values for Cs are taken from paper 1.

Symmetry J Cy (@.u.) Cp (a.u.) Symmetry i Cs (au.) Cy (a.u.)
Ef ] 0 —42704 I1 4 —739 671
l —1674 51249 4 108 — 15884
l 0 —21562 4 522 —47279
2 —913 12128 A 1 —279 — 18694
2 116 — 16885 2 — 140 —21244
3 —T96 4923 2 1136 —95614
3 145 — 15420 3 —R35 —1624
4 —T755 2251 3 —87 — 19563
4 157 — 14835 3 736 —635454
BT l 0 —43920 4 —T21 —2643
2 309 —45131 4 —11 —17153
3 465 —45333 4 623 —56200
4 489 —45407 i 2 —399 — 16589
I1 0] 0 —23605 3 —245 — 18030
l 0 —20303 3 1175 —103161
l 1116 —T9756 4 —T83 —5057
2 —964 7305 4 —161 —17444
2 —19 —22061 4 835 —T6003
2 584 —50736 r 3 —465 — 13420
3 —T783 2496 4 —320 —16392
3 64 —17295 4 1208 — 107555
3 532 —48103 H 4 —507 — 14676

Lepers , Dulieu, Kokoouline Phys. Rev.
A, 82, 042711 (2010),



500

Around 100 a.u.: electrostatic energy
and rotational energy of the same
magnitude

Energy (cm_1)

2"d order degenerate perturbation
theory which will couple various N of
the same parity

Energy (cm_1)

Atom-dimer distance R (a.u.)
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5543

554.2

554.1

554

554.4

554.2

554

100
Atom-dimer distanca R (a.L.)

Q] = 1/2,j = 3/2.

Energy fcm_1)

Eneargy {cm"']

554.3

5h4.2

5h4.1

aod

45

554.4 lf
ER4 2

004

100 150
Atom-dimer distance R (a.L.)

Q| = 3/2,j = 3/2.




Funny (desperated) cases

N \// Li*+Li, Q=1/2
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042707 (2011), EPID 2011 05¢ Q= 1/2 B
Lepers, Dulieu, Eur. Phys. J. D 65, 113 (2011) N , , , , , A
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Cs+Cs,(X,v=0,N)+hv—Cs."

e Consider long-range PESs: CS3* = CS*...CS2

e Match to a short-range LJ potential at R ;=45a.u.

e Compute radial wave functions

e Use standard expression of PA rate for a pair of particles

E anIASe—A/kBT QZK‘PE ‘\Pb >‘2

P. Pillet, A. Crubellier, A. Bleton, O. Dulieu, P. Nosbaum, I. Mourachko and F. Masnou-Seeuws, J. Phys. B 30, 2801 (1997).

e Normalize the rate for the sake of comparison with other
cases: Kp,=Rp, /N, 0; (in cm?)



Normalized PA rate

o T =500 nK
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The scenario of ultracold photochemistry could be:

Selection of a particular level as the entrance channel

This level is probably coupled to many resonances, but could
have a decent probability density at large distances

Something happens in the inner zone, but the complex
probably survives long enough to decay radiatively

The stabilization could occurin bound levels osz3

The product could be « immediately » detected as chemically
distinct from the reactants

...now it's time to talk to our best experimental friends....
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