Ultracold few-body systems

B.D. Esry
Y. Wang, N. Guevara, J.P. D'Incao

Department of Physics
Kansas State University

KITP

February 27, 2013

Three-body physics

Efimov effect

Three-body physics
Inelastic processes
Four-body Efimov effect

Beyond Efimov

Separable
Non-separable
???2?? Effect
?????? vs Efimov
Deeply-bound two-body states
Other symmetries
Four-body Efimov?
Summary

Efimov Effect

Three bodies with short-range interactions can have an infinity of three-body bound states even when no two of them are bound

Conditions for Efimov effect:

$$
\frac{|a|}{r_{0}} \rightarrow \infty
$$

and no two-body bound states

Three-body physics

Efimov effect

Three-body physics Inelastic processes

Four-body Efimov effect

Beyond Efimov

Efimov Effect

Three bodies with short-range interactions can have an infinity of three-body bound states even when no two of them are bound

Conditions for Efimov effect:

$$
\frac{|a|}{r_{0}} \rightarrow \infty
$$

and no two-body bound states

Three-body physics

Efimov effect

Three-body physics Inelastic processes

Four-body Efimov effect

Beyond Efimov
Separable
Non-separable
???2?? Effect
?????? vs Efimov
Deeply-bound two-body states
Other symmetries
Four-body Efimov?
Summary

Efimov Effect

Three bodies with short-range interactions can have an infinity of three-body bound states even when no two of them are bound

Conditions for Efimov effect:

$$
\frac{|a|}{r_{0}} \rightarrow \infty
$$

and no two-body bound states

Three-body physics

Efimov effect

Three-body physics Inelastic processes

Four-body Efimov effect

Beyond Efimov
Separable
Non-separable
???2?? Effect
?????? vs Efimov
Deeply-bound two-body states Other symmetries Four-body Efimov?

Efimov Effect

Three bodies with short-range interactions can have an infinity of three-body bound states even when no two of them are bound

Why?

Effective three-body potential:

$$
U=-\frac{s_{0}^{2}+\frac{1}{4}}{2 \mu R^{2}}
$$

Solutions are known analytically...
$s_{0}^{2} \sim 1>0$ is supercritical, giving an infinity of states with

$$
E_{n}=E_{0} e^{-2 \pi n / s_{0}}
$$

Geometric spacing!

Three-body physics

Efimov effect

Three-body physics Inelastic processes

Four-body Efimov effect

Beyond Efimov
Separable
Non-separable
???2?? Effect
?????? vs Efimov

Efimov Effect

Three bodies with short-range interactions can have an infinity of three-body bound states even when no two of them are bound

Why?

Effective three-body potential:

$$
U=-\frac{s_{0}^{2}+\frac{1}{4}}{2 \mu R^{2}}
$$

Solutions are known analytically...
$s_{0}^{2} \sim 1>0$ is supercritical, giving an infinity of states with

$$
E_{n}=E_{0} e^{-2 \pi n / s_{0}}
$$

Geometric spacing!

Three-body spectrum

Efimov effect

Three-body physics
Inelastic processes
Four-body Efimov effect

Beyond Efimov
Separable
Non-separable
??23?? Effect
?????? vs Efimov
Deeply-bound two-body states
Other symmetries
Four-body Efimov?

Three-body behavior summarized:

Ferlaino and Grimm, Physics 3, 9 (2010)
V. Efimov, Phys. Lett. B 33, 563 (1970)

Ultracold recombination

Efimov effect

Three-body physics Inelastic processes

Four-body Efimov effect

Beyond Efimov

Separable

- Efimov physics underlies all ultracold scattering, leaving imprint of Efimov states on ultracold observables

Recombination $B+B+B \longrightarrow B_{2}+B$

- Universality allows us to derive analytic expressions for observables:

Broad resonance From many sources
Nielsen\&Macek; Esry, Greene\&Burke; Braaten et al.
High energies Wang et al., PRL 104, 113201 (2010) Wang\&Esry, NJP 13, 032703 (2011)
Narrow resonance Wang et al., PRA 83, 042710 (2011) In trap Meyer\&Esry

Four-body Efimov effect?

Efimov effect

Three-body physics

 Inelastic processesIs there an N-body Efimov effect?

- Amado and Greenwood showed in 1973 that there is no Efimov effect for four identical bosons Amado and Greenwood, PRD 7, 2517 (1973)
- Recent calculations have confirmed this directly von Stecher et al., Nat. Phys. 5, 417 (2009)
Platter et al., PRA 70, 052101 (2004)
- How about in heteronuclear systems?

FFFX: Castin et al., PRL 105, 223201 (2010)
BBBX? Adhikari\&Fonseca PRD 24, 416 (1981) (No)
Naus\&Tjon FBS 2, 121 (1987) (Yes)

Four-body Efimov effect?

Efimov effect

Three-body physics

 Inelastic processesIs there an N-body Efimov effect?

- Amado and Greenwood showed in 1973 that there is no Efimov effect for four identical bosons Amado and Greenwood, PRD 7, 2517 (1973)
- Recent calculations have confirmed this directly von Stecher et al., Nat. Phys. 5, 417 (2009)
Platter et al., PRA 70, 052101 (2004)
- How about in heteronuclear systems?

FFFX: Castin et al., PRL 105, 223201 (2010)
BBBX? Adhikari\&Fonseca PRD 24, 416 (1981) (No)
Naus\&Tjon FBS 2, 121 (1987) (Yes) Conflicting conclusions...

Efimov effect in $B B B X$

Efimov effect
Three-body physics Inelastic processes

Four-body Efimov effect

Beyond Efimov

Consider $B B B X$ with $m_{B} \gg m_{X}$ (HHHL). Can approximately solve using Born-Oppenheimer:

- Integrate out light particle (X) motion
- Produces effective potential for heavy particle (B) motion
- Reduces problem to three-body: BBB!
- We understand three-body problems, just need to know the two-body $(B+B)$ scattering length

We can use $a_{H L}$ to tune $a_{H H}$! $B B B X$ Efimov physics, but no Efimov effect! $\left|a_{H L}\right| \rightarrow \infty$, BBX Efimov effect...

Efimov effect in $B B B X$

Efimov effect
Three-body physics Inelastic processes

Four-body Efimov effect

Beyond Efimov

Consider $B B B X$ with $m_{B} \gg m_{X}$ (HHHL). Can approximately solve using Born-Oppenheimer:

- Integrate out light particle (X) motion
- Produces effective potential for heavy particle (B) motion
- Reduces problem to three-body: $B B B$!
- We understand three-body problems, just need to know the two-body $(B+B)$ scattering length

We can use $a_{H L}$ to tune $a_{H H}$! BBBX Efimov physics, but no Efimov effect! $\left|a_{H L}\right| \rightarrow \infty$, BBX Efimov effect...

Efimov effect in $B B B X$

Efimov effect
Three-body physics Inelastic processes

Four-body Efimov effect

Beyond Efimov

Consider $B B B X$ with $m_{B} \gg m_{X}$ (HHHL). Can approximately solve using Born-Oppenheimer:

- Integrate out light particle (X) motion
- Produces effective potential for heavy particle (B) motion
- Reduces problem to three-body: BBB!
- We understand three-body problems, just need to know the two-body $(B+B)$ scattering length

We can use $a_{H L}$ to tune $a_{H H}$!
BBBX Efimov physics, but no Efimov effect!
$\left|a_{H L}\right| \rightarrow \infty$, BBX Efimov effect...

Efimov effect in $B B B X$

Efimov effect
Three-body physics Inelastic processes

Four-body Efimov effect

Beyond Efimov

Consider $B B B X$ with $m_{B} \gg m_{X}$ (HHHL). Can approximately solve using Born-Oppenheimer:

- Integrate out light particle (X) motion
- Produces effective potential for heavy particle (B) motion
- Reduces problem to three-body: $B B B$!
- We understand three-body problems, just need to know the two-body $(B+B)$ scattering length

We can use $a_{H L}$ to tune $a_{H H}$! BBBX Efimov physics, but no Efimov effect!
$\left|a_{H L}\right| \rightarrow \infty, B B X$ Efimov effect...
$B B B X$ spectrum

Efimov effect
Three-body physics Inelastic processes

Four-body

 Efimov effectBeyond Efimov

Separable

Non-separable
?????? Effect
?????? vs Efimov
Deeply-bound two-body states
Other symmetries
Four-body Efimov?

BBBX behavior summarized:

Wang, Laing, von Stecher, Esry, PRL (2012)

Efimov effect Three-body physics Inelastic processes

Four-body Efimov effect

Beyond Efimov
Separable
Non-separable
???2?? Effect
?????? vs Efimov
Deeply-bound two-body states
Other symmetries
Four-body Efimov?
Summary

Four-body Efimov

Efimov effect

Three-body physics Inelastic processes

Four-body

 Efimov effectBeyond Efimov

Separable

Non-separable
??2??? Effect
?2??2?? vs Efimov
Deeply-bound two-body states Other symmetries Four-body Efimov?

Efimov effect
Three-body physics Inelastic processes

Four-body Efimov effect

Beyond Efimov
Separable
Non-separable
?????? Effect
?????? vs Efimov
Deeply-bound two-body states Other symmetries Four-body Efimov?

Efimov's effect addresses short-range two-body interactions.
Q: What about long-range two-body interactions?
of three-body states - but also infinity of two-body states
But, what about attractive r^{-2} potential...
Recall that for

$$
v(r)=-\frac{\alpha^{2}+\frac{1}{4}}{2 \mu r^{2}}
$$

$\alpha^{2}>0$ supercritical ∞ of bound states
$\alpha^{2} \leq 0$ subcritical no bound states

What about other interactions?

Efimov effect

Three-body physics Inelastic processes

Efimov's effect addresses short-range two-body interactions.
Q: What about long-range two-body interactions?
A: We know long-range potentials (like Coulomb) have infinity of three-body states - but also infinity of two-body states

But, what about attractive r^{-2} potential...
Recall that for

$\alpha^{2}>0 \quad$ supercritical $\alpha^{2} \leq 0 \quad$ subcritical no bound states

What about other interactions?

Efimov effect

Three-body physics Inelastic processes

Four-body Efimov effect

Beyond Efimov

Separable

Non-separable
???2?? Effect
?????? vs Efimov
Deeply-bound two-body states

Efimov's effect addresses short-range two-body interactions.
Q: What about long-range two-body interactions?
A: We know long-range potentials (like Coulomb) have infinity of three-body states - but also infinity of two-body states
But, what about attractive r^{-2} potential...
Recall that for

$$
v(r)=-\frac{\alpha^{2}+\frac{1}{4}}{2 \mu r^{2}}
$$

$\alpha^{2}>0$ supercritical ∞ of bound states
$\alpha^{2} \leq 0 \quad$ subcritical no bound states

What about other interactions?

Efimov effect

Three-body physics Inelastic processes

Four-body Efimov effect

Beyond Efimov

Separable

Non-separable
???2?? Effect
?????? vs Efimov
Deeply-bound two-body states

Efimov's effect addresses short-range two-body interactions.
Q: What about long-range two-body interactions?
A: We know long-range potentials (like Coulomb) have infinity of three-body states - but also infinity of two-body states
But, what about attractive r^{-2} potential...
Recall that for

$$
v(r)=-\frac{\alpha^{2}+\frac{1}{4}}{2 \mu r^{2}}
$$

$\alpha^{2}>0$ supercritical ∞ of bound states
$\alpha^{2} \leq 0 \quad$ subcritical no bound states
Let's see!

New class of weakly bound systems

Efimov effect
Three-body physics Inelastic processes

Four-body

Efimov effect
Beyond Efimov
Separable
Non-separable
??2?3? Effect
?????? vs Efimov
Deeply-bound two-body states Other symmetries Four-body Efimov?

The adiabatic hyperspherical equation

$$
\left[\frac{\Lambda^{2}}{2 \mu R^{2}}-\sum_{i<j} \frac{\alpha^{2}+\frac{1}{4}}{2 \mu_{i j} r_{i j}^{2}}\right] \Phi_{v}=U_{v}(R) \Phi_{v}
$$

is separable, guaranteeing

$$
U_{v}(R)=-\frac{\alpha_{v}^{2}+\frac{1}{4}}{2 \mu R^{2}}
$$

Q: Is U subcritical or supercritical when α^{2} is subcritical?!
A: Supercritical, sort of... $\alpha_{0}^{2} \rightarrow-\infty$!
Three-body fall-to-the-center!

Efimov effect

Three-body physics Inelastic processes

Four-body Efimov effect

Beyond Efimov
Separable
Non-separable
??23?? Effect
?????? vs Efimov
Deeply-bound two-body states Other symmetries Four-body Efimov?

The adiabatic hyperspherical equation

$$
\left[\frac{\Lambda^{2}}{2 \mu R^{2}}-\sum_{i<j} \frac{\alpha^{2}+\frac{1}{4}}{2 \mu_{i j} r_{i j}^{2}}\right] \Phi_{v}=U_{v}(R) \Phi_{v}
$$

is separable, guaranteeing

$$
U_{v}(R)=-\frac{\alpha_{v}^{2}+\frac{1}{4}}{2 \mu R^{2}}
$$

Q: Is U subcritical or supercritical when α^{2} is subcritical?!
A: Supercritical, sort of... $\alpha_{0}^{2} \rightarrow-\infty$! Three-body fall-to-the-center!

Efimov effect

Three-body physics Inelastic processes

Four-body Efimov effect

Beyond Efimov
Separable
Non-separable
??23?? Effect
?????? vs Efimov
Deeply-bound two-body states

The adiabatic hyperspherical equation

$$
\left[\frac{\Lambda^{2}}{2 \mu R^{2}}-\sum_{i<j} \frac{\alpha^{2}+\frac{1}{4}}{2 \mu_{i j} r_{i j}^{2}}\right] \Phi_{v}=U_{v}(R) \Phi_{v}
$$

is separable, guaranteeing

$$
U_{v}(R)=-\frac{\alpha_{v}^{2}+\frac{1}{4}}{2 \mu R^{2}}
$$

Q: Is U subcritical or supercritical when α^{2} is subcritical?!
A: Supercritical, sort of... $\alpha_{0}^{2} \rightarrow-\infty$! Three-body fall-to-the-center!

New class of weakly bound systems

Efimov effect

Three-body physics Inelastic processes

Four-body Efimov effect

Beyond Efimov

Separable

Non-separable
???2?? Effect
?2??2? vs Efimov

If it occurs in nature, then it will probably look more like

$$
v(r)=-\frac{\alpha^{2}+\frac{1}{4}}{2 \mu r^{2}}, \quad r \geq r_{0}
$$

This "regularizes" the singularity, but also removes separability.
Empirically, for $J^{\pi}=0^{+}$bosons with subcritical α^{2}

$$
U_{v}(R)=-\frac{\sqrt{\beta \ln \left(R / r_{0}\right)+\delta}}{2 \mu R^{2}}
$$

But, this falls off slower than R^{-2}, still an infinity of states!

New class of weakly bound systems

Efimov effect

Three-body physics Inelastic processes

Four-body Efimov effect

Beyond Efimov

Separable

Non-separable

?????? Effect
?????? vs Efimov
Deeply-bound two-body states Other symmetries Four-body Efimov? Summary

If it occurs in nature, then it will probably look more like

$$
v(r)=-\frac{\alpha^{2}+\frac{1}{4}}{2 \mu r^{2}}, \quad r \geq r_{0}
$$

This "regularizes" the singularity, but also removes separability.

Empirically, for $J^{\pi}=0^{+}$bosons with subcritical α^{2}

$$
U_{v}(R)=-\frac{\sqrt{\beta \ln \left(R / r_{0}\right)+\delta}}{2 \mu R^{2}}
$$

But, this falls off slower than R^{-2}, still an infinity of states!

New class of weakly bound systems

Efimov effect

Three-body physics Inelastic processes

Four-body Efimov effect

Beyond Efimov

Separable

Non-separable

???2?? Effect
?????? vs Efimov

If it occurs in nature, then it will probably look more like

$$
v(r)=-\frac{\alpha^{2}+\frac{1}{4}}{2 \mu r^{2}}, \quad r \geq r_{0}
$$

This "regularizes" the singularity, but also removes separability.
Empirically, for $J^{\pi}=0^{+}$bosons with subcritical α^{2}

$$
U_{v}(R)=-\frac{\sqrt{\beta \ln \left(R / r_{0}\right)+\delta}}{2 \mu R^{2}}
$$

But, this falls off slower than R^{-2}, still an infinity of states!

New class of weakly bound systems

Efimov effect
Three-body physics Inelastic processes

Four-body Efimov effect

Beyond Efimov
Separable Non-separable ?????? Effect ?????? vs Efimov

Let's compare...

Efimov Effect

Three bodies with short-range interactions can have an infinity of three-body bound states even when no two of them are

$$
\text { bound, if } \frac{|a|}{r_{0}} \rightarrow \infty
$$

Efimov Effect

Three bodies with short-range interactions can have an infinity of three-body bound states even when no two of them are

$$
\text { bound, if } \frac{|a|}{r_{0}} \rightarrow \infty
$$

New class of weakly bound systems

Efimov effect
Three-body physics Inelastic processes

Four-body Efimov effect

Beyond Efimov
Separable Non-separable ?????? Effect ?????? vs Efimov

Let's compare...

Efimov Effect

Three bodies with short-range interactions can have an infinity of three-body bound states even when no two of them are

$$
\text { bound, if } \frac{|a|}{r_{0}} \rightarrow \infty
$$

Effect

Three bodies with short-range interactions can have an infinity of three-body bound states even when no two of them are

$$
\text { bound, if } \frac{|a|}{r_{0}} \rightarrow \infty
$$

New class of weakly bound systems

Efimov effect
Three-body physics Inelastic processes

Four-body Efimov effect

Beyond Efimov
Separable Non-separable ?????? Effect ?????? vs Efimov

Let's compare...

Efimov Effect

Three bodies with short-range interactions can have an infinity of three-body bound states even when no two of them are

$$
\text { bound, if } \frac{|a|}{r_{0}} \rightarrow \infty
$$

?????? Effect

Three bodies with long-range interactions can have an infinity of three-body bound states even when no two of them are

$$
\text { bound, if } \frac{|a|}{r_{0}} \rightarrow \infty
$$

New class of weakly bound systems

Efimov effect
Three-body physics Inelastic processes

Four-body Efimov effect

Beyond Efimov

Separable

Non-separable
?????? Effect
?????? vs Efimov
Deeply-bound two-body states Other symmetries Four-body Efimov?

Let's compare...

Efimov Effect

Three bodies with short-range interactions can have an infinity of three-body bound states even when no two of them are

$$
\text { bound, if } \frac{|a|}{r_{0}} \rightarrow \infty
$$

Effect

Three bodies with long-range interactions can have an infinity of three-body bound states even when no two of them are bound, if $\alpha^{2} \geq 0$

Three-body spectrum

Efimov effect

Three-body physics Inelastic processes

Four-body

Efimov effect
Beyond Efimov

Separable

Non-separable
?????? Effect
?2??2? vs Efimov
Deeply-bound two-body states
Other symmetries
Four-body Efimov?
Summary

Adiabatic hyperspherical potentials

$$
U_{v}(R)=-\frac{\sqrt{\beta \ln \left(R / r_{0}\right)+\delta}}{2 \mu R^{2}}
$$

Three-body spectrum

$E_{n+1} / E_{n}=\exp \left(-\frac{2 \pi}{\left[\left(\beta \ln \frac{\langle R\rangle_{0}}{r_{0}}-\frac{\beta}{2} \ln \frac{E_{n}}{E_{0}}\right)^{1 / 2}-\frac{1}{4}\right]^{1 / 2}}\right)$

Three-body spectrum

Efimov effect

Three-body physics Inelastic processes

Four-body

 Efimov effectBeyond
Efimov
Separable
Non-separable
?????? Effect
?2??2? vs Efimov
Deeply-bound two-body states
Other symmetries
Four-body Efimov?
Summary

$$
U_{v} \rightarrow E_{v l}-\frac{\alpha_{\text {eff }}^{2}+1 / 4}{2 \mu R^{2}}
$$

$$
\alpha_{\mathrm{eff}}^{2}=\frac{8}{3} \alpha^{2}+\frac{5}{12}-\ell(\ell+1)
$$

Three-body spectrum

Efimov effect

Three-body physics Inelastic processes

Four-body Efimov effect

Beyond Efimov

Separable
Non-separable
?????? Effect
????2? vs Efimov
Deeply-bound two-body states
Other symmetries
Four-body Efimov?
Summary

$$
U_{v} \rightarrow E_{v l}-\frac{\alpha_{\mathrm{eff}}^{2}+1 / 4}{2 \mu R^{2}} \quad \alpha_{\mathrm{eff}}^{2}=\frac{8}{3} \alpha^{2}+\frac{5}{12}-\ell(\ell+1)
$$

$\alpha_{\text {eff }}^{2}$ always supercritical!

Three-body spectrum

Efimov effect

Three-body physics Inelastic processes

Four-body

 Efimov effectBeyond Efimov

Separable
Non-separable
?????? Effect
?2??2? vs Efimov
Deeply-bound two-body states
Other symmetries
Four-body Efimov?
Summary

$$
U_{v} \rightarrow E_{v l}-\frac{\alpha_{\mathrm{eff}}^{2}+1 / 4}{2 \mu R^{2}} \quad \alpha_{\mathrm{eff}}^{2}=\frac{8}{3} \alpha^{2}+\frac{5}{12}-\ell(\ell+1)
$$

$\alpha_{\text {eff }}^{2}$ always supercritical!

Three-body spectrum

Efimov effect
Three-body physics Inelastic processes

Four-body

 Efimov effectBeyond
Efimov
Separable
Non-separable
?????? Effect
?????? vs Efimov
Deeply-bound two-body states
Other symmetries
Four-body Efimov?
Summary

Compare again...

Ferlaino and Grimm, Physics 3, 9 (2010)
V. Efimov, Phys. Lett. B 33, 563 (1970)

Three-body spectrum

Efimov effect

Three-body physics Inelastic processes

Four-body Efimov effect

Beyond Efimov

Separable
Non-separable
???2?? Effect
?2??2?? vs Efimov
Deeply-bound two-body states
Other symmetries
Four-body Efimov?
Summary

$$
\alpha_{D}^{2}=\frac{3}{8} \ell(\ell+1)-\frac{5}{32}
$$

Other symmetries?

Efimov effect
Three-body physics Inelastic processes

Four-body Efimov effect

Beyond Efimov
Separable
Non-separable
?????? Effect
?2???? vs Efimov
Deeply-bound two-body states Other symmetries
Four-body Efimov?
Summary

Effect exists for 0^{+}bosons, what else?
We checked 1^{+}identical, spin-polarized fermions... No Efimov effect...

Consider effective two-body potential for $r \geq r_{0}$

$$
v_{\mathrm{eff}}(r)=-\frac{\alpha^{2}+\frac{1}{4}}{2 \mu r^{2}}+\frac{\ell(\ell+1)}{2 \mu r^{2}}
$$

For identical fermions $\ell=1, \alpha^{2}=2$ is critical

Other symmetries?

Efimov effect
Three-body physics Inelastic processes

Four-body
Efimov effect
Beyond Efimov

Separable Non-separable ?????? Effect ?2???? vs Efimov Deeply-bound two-body states Other symmetries
Four-body Efimov?
Summary

Effect exists for 0^{+}bosons, what else?
We checked 1^{+}identical, spin-polarized fermions... No Efimov effect...

Consider effective two-body potential for $r \geq r_{0}$

$$
v_{\mathrm{eff}}(r)=-\frac{\alpha^{2}+\frac{1}{4}}{2 \mu r^{2}}+\frac{\ell(\ell+1)}{2 \mu r^{2}}
$$

For identical fermions $\ell=1, \alpha^{2}=2$ is critical

Other symmetries?

Efimov effect
Three-body physics Inelastic processes

Four-body
Efimov effect
Beyond Efimov

Separable
Non-separable
?????? Effect
?????? vs Efimov
Deeply-bound two-body states

Effect exists for 0^{+}bosons, what else?
We checked 1^{+}identical, spin-polarized fermions... No Efimov effect...

Consider effective two-body potential for $r \geq r_{0}$

$$
v_{\mathrm{eff}}(r)=-\frac{\alpha^{2}+\frac{1}{4}}{2 \mu r^{2}}+\frac{\ell(\ell+1)}{2 \mu r^{2}}
$$

For identical fermions $\ell=1, \alpha^{2}=2$ is critical

Other symmetries?

Efimov effect

Three-body physics Inelastic processes

Effect exists for 0^{+}bosons, what else?
We checked 1^{+}identical, spin-polarized fermions... No Efimov effect...

Consider effective two-body potential for $r \geq r_{0}$

$$
v_{\mathrm{eff}}(r)=-\frac{\alpha^{2}+\frac{1}{4}}{2 \mu r^{2}}+\frac{\ell(\ell+1)}{2 \mu r^{2}}
$$

For identical fermions $\ell=1, \alpha^{2}=2$ is critical

Other symmetries?

Efimov effect
Three-body physics Inelastic processes

Four-body Efimov effect

Beyond Efimov
Separable Non-separable ???2?? Effect
?????? vs Efimov
Deeply-bound two-body states

Solve for adiabatic hyperspherical potentials with $\alpha^{2} \leq 2$, find empirically

$$
U_{0}(R) \rightarrow-\frac{\alpha_{\mathrm{eff}}^{2}+1 / 4}{2 \mu R^{2}}-\frac{\gamma}{2 \mu \ln \left(R / r_{0}\right) R^{2}}
$$

with

$$
\alpha_{\mathrm{eff}}^{2}=5.24 \quad \gamma=4.19
$$

Other symmetries?

Efimov effect
Three-body physics Inelastic processes

Four-body Efimov effect

Beyond Efimov

Solve for adiabatic hyperspherical potentials with $\alpha^{2} \leq 2$, find empirically

$$
U_{0}(R) \rightarrow-\frac{\alpha_{\mathrm{eff}}^{2}+1 / 4}{2 \mu R^{2}}-\frac{\gamma}{2 \mu \ln \left(R / r_{0}\right) R^{2}}
$$

with

$$
\alpha_{\mathrm{eff}}^{2}=5.24 \quad \gamma=4.19
$$

?????? Effect for fermions

$\alpha_{\text {eff }}^{2}$ supercritical! An infinity of three-body 1^{+}fermion bound states with no two-body bound states Effect persists down to $\alpha_{c}^{2}=1.6$, where

Other symmetries?

Efimov effect
Three-body physics Inelastic processes

Four-body Efimov effect

Beyond Efimov

Solve for adiabatic hyperspherical potentials with $\alpha^{2} \leq 2$, find empirically

$$
U_{0}(R) \rightarrow-\frac{\alpha_{\mathrm{eff}}^{2}+1 / 4}{2 \mu R^{2}}-\frac{\gamma}{2 \mu \ln \left(R / r_{0}\right) R^{2}}
$$

with

$$
\alpha_{\mathrm{eff}}^{2}=5.24 \quad \gamma=4.19
$$

?????? Effect for fermions

$\alpha_{\text {eff }}^{2}$ supercritical! An infinity of three-body 1^{+}fermion bound states with no two-body bound states Effect persists down to $\alpha_{c}^{2}=1.6$, where

$$
v_{\mathrm{eff}}(r)=-\frac{1.6-2+\frac{1}{4}}{2 \mu r^{2}}=+\frac{0.15}{2 \mu r^{2}}!
$$

Four-body ?????? Effect

Efimov effect

Three-body physics Inelastic processes

Four-body Efimov effect

Beyond Efimov
Separable
Non-separable
???2?? Effect
?2???? vs Efimov
Deeply-bound two-body states
Other symmetries
Four-body Efimov?

PRL 105, 223201 (2010)
PHYSICAL REVIEW LETTERS
week ending 26 NOVEMBER 2010

Four-Body Efimov Effect for Three Fermions and a Lighter Particle

Yvan Castin, ${ }^{1}$ Christophe Mora, ${ }^{2}$ and Ludovic Pricoupenko ${ }^{3}$

Found that for 1^{+}FFFX and $a_{F X}=\infty$, there is an Efimov effect for $13.384 \leq m_{F} / m_{X} \leq 13.607$:

$$
U_{0}(R)=-\frac{s^{2}+1 / 4}{2 \mu R^{2}}
$$

Four-body ?????? Effect

Efimov effect
Three-body physics Inelastic processes

Four-body

 Efimov effectBeyond Efimov Separable Non-separable ?????? Effect ?????? vs Efimov

Deeply-bound two-body states Other symmetries
Four-body Efimov?
Summary

How does this relate to our three-body effect?!

- Integrate out light particle (X) motion
- Produces effective potential for heavy pa ticle (F) motion
- Reduces problem to three-body: FFF!

For simplicity, approximate FFF Born-Oppenheimer surface with pairwise sum of $F F X$ potentials... which are, for $a_{F X}=\infty$, Efimov potentials:

$$
\begin{aligned}
v_{F+F}(r) & =-\frac{p_{0}^{2}+1 / 4}{2 \mu r^{2}} \\
& =-\frac{\alpha^{2}+1 / 4}{2 \mu r^{2}}+\frac{\ell(\ell+1)}{2 \mu r^{2}}
\end{aligned}
$$

Four-body ?????? Effect

Efimov effect Three-body physics Inelastic processes

Four-body Efimov effect

Beyond Efimov

Separable
Non-separable
?????? Effect
?????? vs Efimov

How does this relate to our three-body effect?!
Consider FFFX with $m_{F} \gg m_{X}$. Can approximately solve using Born-Oppenheimer:

- Integrate out light particle (X) motion
- Produces effective potential for heavy particle (F) motion
- Reduces problem to three-body: FFF!

For simplicity, approximate FFF Born-Oppenheimer surface with pairwise sum of $F F X$ potentials... which are, for $a_{F X}=\infty$, Efimov potentials:

$$
\begin{aligned}
v_{F+F}(r) & =-\frac{p_{0}^{2}+1 / 4}{2 \mu r^{2}} \\
& =-\frac{\alpha^{2}+1 / 4}{2 \mu r^{2}}+\frac{\ell(\ell+1)}{2 \mu r^{2}}
\end{aligned}
$$

Efimov effect

 Three-body physics Inelastic processesFour-body Efimov effect

Beyond Efimov

Separable

Non-separable
???2?? Effect
?????? vs Efimov

How does this relate to our three-body effect?!
Consider FFFX with $m_{F} \gg m_{X}$. Can approximately solve using Born-Oppenheimer:

- Integrate out light particle (X) motion
- Produces effective potential for heavy particle (F) motion
- Reduces problem to three-body: FFF!

For simplicity, approximate FFF Born-Oppenheimer surface with pairwise sum of $F F X$ potentials... which are, for $a_{F X}=\infty$, Efimov potentials:

$$
\begin{aligned}
v_{F+F}(r) & =-\frac{p_{0}^{2}+1 / 4}{2 \mu r^{2}} \\
& =-\frac{\alpha^{2}+1 / 4}{2 \mu r^{2}}+\frac{\ell(\ell+1)}{2 \mu r^{2}}
\end{aligned}
$$

Four-body ?????? Effect

Efimov effect
Three-body physics Inelastic processes

Four-body Efimov effect

Beyond Efimov

Separable
Non-separable
?????? Effect
?????? vs Efimov
Deeply-bound two-body states
Other symmetries
Four-body Efimov?
Summary

This is exactly our three-body fermion effect! We thus know

$$
U_{0}(R) \rightarrow-\frac{\alpha_{\mathrm{eff}}^{2}+1 / 4}{2 \mu R^{2}}-\frac{\gamma}{2 \mu \ln \left(R / r_{0}\right) R^{2}}
$$

We found an infinity of three-body states for

$$
1.6 \leq \alpha^{2} \leq 2
$$

corresponding to

$$
\begin{aligned}
11.58 & \leq m_{F} / m_{X} \leq 13.607 \\
(13.384 & \left.\leq m_{F} / m_{X} \leq 13.607\right)
\end{aligned}
$$

Four-body ?????? Effect

We thus argue that the FFFX states are better labeled ?????? states than Efimov states

Efimov effect
Three-body physics Inelastic processes

Four-body Efimov effect

Beyond Efimov
Separable
Non-separable
?????? Effect
?????? vs Efimov
Deeply-bound two-body states
Other symmetries
Four-body Efimov?
Summary

This is exactly our three-body fermion effect! We thus know

$$
U_{0}(R) \rightarrow-\frac{\alpha_{\mathrm{eff}}^{2}+1 / 4}{2 \mu R^{2}}
$$

We found an infinity of three-body states for

$$
1.6 \leq \alpha^{2} \leq 2
$$

corresponding to

$$
\begin{aligned}
11.58 & \leq m_{F} / m_{X} \leq 13.607 \\
(13.384 & \left.\leq m_{F} / m_{X} \leq 13.607\right)
\end{aligned}
$$

Four-body ?????? Effect

We thus argue that the FIFX states are better labeled ?????? states than Efimov states

Efimov effect
Three-body physics Inelastic processes

Four-body Efimov effect

Beyond Efimov

Non-separable
???2?? Effect
?2????? vs Efimov
Deeply-bound two-body states Other symmetries Four-body Efimov?

This is exactly our three-body fermion effect! We thus know

$$
U_{0}(R) \rightarrow-\frac{\alpha_{\text {eff }}^{2}+1 / 4}{2 \mu R^{2}}
$$

We found an infinity of three-body states for

$$
1.6 \leq \alpha^{2} \leq 2
$$

corresponding to

$$
\begin{aligned}
11.58 & \leq m_{F} / m_{X} \leq 13.607 \\
(13.384 & \left.\leq m_{F} / m_{X} \leq 13.607\right)
\end{aligned}
$$

Four-body ?????? Effect

We thus argue that the FFFX states are better labeled ?????? states than Efimov states

Efimov effect
Three-body physics Inelastic processes

Four-body Efimov effect

Beyond Efimov

Four-body ?????? Effect

This is exactly our three-body fermion effect! We thus know

$$
U_{0}(R) \rightarrow-\frac{\alpha_{\mathrm{eff}}^{2}+1 / 4}{2 \mu R^{2}}
$$

We found an infinity of three-body states for

$$
1.6 \leq \alpha^{2} \leq 2
$$

corresponding to

$$
\begin{aligned}
11.58 & \leq m_{F} / m_{X} \leq 13.607 \\
(13.384 & \left.\leq m_{F} / m_{X} \leq 13.607\right)
\end{aligned}
$$

Four-body ?????? Effect

We thus argue that the FFFX states are better labeled ?????? states than Efimov states

Summary

Efimov effect

Three-body physics Inelastic processes

Four-body Efimov effect

Beyond Efimov

- We have identified an effect that gives an infinity of three-body bound states in the absence of any two-body bound states - that is not the Efimov effect
- There are an infinity of such states even in the presence of two-body bound states
- Curious new "fall-to-the-center" problem
- Many other interesting questions to explore with these systems!
- "A new class of three-body states," N. Guevara, Y. Wang, and B.D. Esry, PRL (2012)

