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1. Introduction: 
The Yb-Rb system
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Why Ytterbium and Rubidium?

Yb + Rb as a mixture

YbRb

paramagnetic diamagnetic

•heteronuclear
• 21/2 ground state
•electric and magnetic dipole
• „toolbox“ for spin lattice

models1

•unexplored interactions

• independent manipulation

•optical and (possibly) magnetic
Feshbach resonances

•5 stable bosonic and 2 stable
fermionic Yb isotopes 
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YbRb as a molecule

1) Micheli et al., Nature Physics 2, 341 (2006)



Properties of Yb-Rb mixtures

Bosons: 168Yb, 170Yb,
172Yb, 174Yb,
176Yb 

Fermions: 171Yb, 173Yb
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 Wide range of interaction properties expected



Yb
Rb del

µmag

YbRb-Molecules

Ab-initio potentials:

De ~ 865 cm-1

Re ~ 8.85 a0

Sorensen et al., J. Phys. Chem. A 113, 12607 (2009)
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electric dipole
moment: 
~ 1 Debye
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2. Yb + Rb: Interactions 
in a conservative trap
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The hybrid trap
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Bichromatic optical dipole trap

U532 (r = 0) = U1064 (r = 0)
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Bichromatic optical dipole trap
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„Real“ potential:



Collisions at µK-temperatures
Pure s-wave collisions (p-wave threshold ~ 60 µK)

defined spatial overlap
between Yb and Rb cloud

Yb
BIODT

Rb
MT
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… between 170Yb, 172Yb, 173Yb, 174Yb, 176Yb and 87Rb
 strong istotope dependence

Thermalization
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… between 170Yb, 172Yb, 173Yb, 174Yb, 176Yb and 87Rb

quantitative analysis:

Thermalization

in this trap geometry:

nYbRb hard to control

 only relative values for YbRb
can be reliably deduced

thermalization rate              Yb-Rb scattering cross section

overlap integral

YbRbYbRbTh   n
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Thermalization

170Yb does not thermalize at all 

 (extremely) small elastic
scattering cross section for this
isotope

… between 170Yb, 172Yb, 173Yb, 174Yb, 176Yb and 87Rb
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Thermalization
… between 170Yb, 172Yb, 173Yb, 174Yb, 176Yb and 87Rb

nRb 1010…1011 cm-3 nRb 1013…1014 cm-3

P1064  90 mW P1064  120 mW
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Thermalization
… between 170Yb, 172Yb, 173Yb, 174Yb, 176Yb and 87Rb
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nRb 1010…1011 cm-3 nRb 1013…1014 cm-3

P1064  90 mW P1064  120 mW



Thermalization
… between 170Yb, 172Yb, 173Yb, 174Yb, 176Yb and 87Rb
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nRb 1010…1011 cm-3 nRb 1013…1014 cm-3

P1064  90 mW P1064  120 mW

better control of nYbRb

 YbRb = 4  a2

 scattering length:

|a170-87| ~ 10 a0



Thermalization

174Yb thermalizes instantaneously

 (extremly) large elastic
scattering cross section for this
isotope

… between 170Yb, 172Yb, 173Yb, 174Yb, 176Yb and 87Rb
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174Yb – 87Rb mixture at large nRb

nRb  1010…1011 cm-3 nRb  1013…1014 cm-3

174Yb thermalized with 87Rb

trap frequencies:

r ~ 1 kHz, z ~ 10 Hz

?
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174Yb – 87Rb mixture at large nRb

 fast loss of 174Yb attributed to large 3-body loss
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Spatial separation of 174Yb and 87Rb

T  3 µK

NYb  105

NRb 

(a) 7 x 105

(b) 3 x 106

(c) 7 x 106

increasing Rb density
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Spatial separation of 174Yb and 87Rb

T  3 µK

NYb  105

NRb 

(a) 7 x 105

(b) 3 x 106

(c) 7 x 106

increasing Rb density

• separation of the 174Yb-cloud and the (smaller) 87Rb-cloud located in 
the trap center observed at temperatures 1.5 … 7 µK

• due to NYb « NRb, no detectable effect on 87Rb
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 unusually strong interactions between 87Rb and 174Yb 



Diffusion model
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optical trapRb cloud
• large YbRb

 motion of Yb is slowed

• large K3

 loss of Yb due to
Rb+Rb+Yb collisions
primarily in trap center

• Slowed, spatially
dependent Yb loss
 „hole“ in Yb distribution



Diffusion model

Calculated axial density distribution for 1D diffusion model

Assumption: unitarity-limited YbRb, nRb = 3 x 1014 cm-3
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3. YbRb: Photoassociation
Spectroscopy
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Photoassociative production of YbRb*
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1-Photon photoassociation



Experimental scheme

Continuously loaded
simultaneous MOTs:

• Yb – „green“ MOT:
~ 106 atoms (loaded directly 
from slower)

• Rb - Dark Spot MOT: 
~ 109 atoms; n ~ 1010-1011 cm-3

• PA-laser induces loss

• Rb-loss  Rb2 formation

• Yb-loss  YbRb* formation PA
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Photoassociative production of YbRb*

Rb D1-line
@ 795 nm

176Yb87Rb
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YbRb* photoassociation
Resolved structure of vibrational level:

hyperfine splitting

rotational splitting
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YbRb* photoassociation

Splitting of rotational levels:

explanation: coupling of F‘ to R‘       (Hund‘s case (e))

Rb total angular 
momentum

nuclear
rotation
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Interpretation of results:
Leroy-Bernstein Fit

Fit to Leroy-Bernstein 
formula1

 C6-coefficient for 
YbRb*:
C6 = 5684 a.u. 

 176Yb87Rb*
 174Yb87Rb*
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Nemitz et al., PRA 79, 061403 (2009)

assuming potential:
V(r)  = - C6/R6

1) R. J. LeRoy and R. B. Bernstein, J. Chem. Phys. 52, 
3869 (1970).



2-Photon PA-spectroscopy

PA – Probe = E()/h 
(+ Hyperfine) 

binding energy
of ground state level
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Probe laser only couples to
transitions with R = R-R‘ =0



Experimental scheme

• PA laser frequency set to
single photon resonance
[PA = D1- E(‘)/h]
 continuous trap loss

• if probe = PA- E()/h
 reduced trap loss due to
light shift of probe beam on 
molecular transition  ‘

PA

Probe
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2-Photon PA-spectroscopy
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v‘ = -9 v‘ = -11

Single-photon PA resonances used:

R‘=0 R‘=1 R‘=0 R‘=1
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2-Photon PA-spectroscopy

v = vmax - v
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(ground state)
hyperfine splitting

F=1
F=2

Münchow et al., Phys.Chem.Chem.Phys. 13,18734 (2011)

176Yb87Rb
v‘ = - 9

•PA laser is fixed
•probe laser is scanned



Binding energies:
LeRoy-Bernstein Fit

 C6 ~ 2600 a.u.
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176Yb87Rb

Assuming
Long-range potential:
V(R) = -C6/R6



Binding energies of xYb87Rb
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•binding energy of
high-lying levels detected
with ±10 MHz inaccuracy

•vD adjusted for each Yb
isotope (corresponding to
mass scaling)



Scattering lengths
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*M. Borkowski et al., (in preparation)

Theoretical modelling by M. Borkowski, P. Zuchowski, 
R. Ciurylo, P. Julienne*

Binding energies are fit by:

ab-initio potential

Fit parameters:C6, C8, d (corresponding to De)

switching function
scaling parameter



Scattering lengths
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*M. Borkowski et al., (in preparation)

Best fit:
C6 = 2813 a.u.
C8 = 4.37 x 105 a.u.
De = 761 cm-1



Scattering lengths

Torun                                     18th September 2012

*G. F. Gribakin and V. V. Flambaum, PRA 48, 546 (1993).

 scattering length given by*

with background scattering length:

and phase:



Scattering lengths
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From best fit:

 a87,170 ~ -14.5 a0

a87, 174 ~ 840 a0

 good agreement with 
thermalization measurements



Autler-Townes Spectroscopy
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Ultracold Group 2 Atoms                       Tokyo                                  12th October 2012
S. H. Autler and C. H. Townes, Phys. Rev. 100, 703 (1955).

transition dressed by
coupling laser



splitting of line



Autler-Townes Spectroscopy

• probe laser couples to a 
bound-bound transition

• PA laser scanned over
1-Photon-PA resonance
(free – bound)
 observation of splitting
 determination of Rabi 

frequency

Ultracold Group 2 Atoms                       Tokyo                                  12th October 2012



Autler-Townes Spectroscopy

1-photon PA spectrum
without coupling laser
(v= - 6 -> v‘ = -11)

Ultracold Group 2 Atoms                       Tokyo                                  12th October 2012

R‘=0 R‘=1



Autler-Townes Spectroscopy

relevant levels for coupling laser
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Autler-Townes Spectroscopy
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1-photon PA spectrum
with coupling laser

coupling laser
(v=-6 -> v‘=-11)





Autler-Townes Spectroscopy
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1-photon PA spectrum
with coupling laser

coupling laser
(v=-6 -> v‘=-11)





Autler-Townes Spectroscopy
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Autler-Townes Spectroscopy
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 coupling laser couples R=1 and R= 0 transitions

R ~ R‘
similar classical outer turning points for

ground and excited state

v‘ = -9

v = -5



Autler-Townes Spectroscopy
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coupling laser
(v=-7 -> v‘=-11)

Intensity-dependent splitting



Autler-Townes Spectroscopy
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coupling laser
(v=-7 -> v‘=-11)

Rabi frequency:



Autler-Townes Spectroscopy

Franck-Condon factor
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4. YbRb in the ground state: 
Feshbach resonances and/or

Photoassociation
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Back to the conservative trap
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Hybrid trap
+ independent manipulation
+ similar trap dephts for Yb
and Rb

- imperfect overlap
- hard to control
experimentally



Back to the conservative trap
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or simple optical trap?

+ experimentally simple
+ automatic overlap of
atomic clouds (for tight
confinement)

- 5 x deeper trap for Rb
- no independent
manipulation



Back to the conservative trap
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1st try: simple optical trap

1st goal: Find Route to create vibrationally excited molecules

Feshbach Photoassociation



Feshbach resonances in YbRb
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Predictions for SrRb

P. Zuchowski et al., PRL 105, 153201 (2010)
for YbLi see D. Brue et al., PRL 108, 043201 (2012).

B (G) abg B (mG)
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Feshbach resonances in XYb87Rb 
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174Yb87Rb

open 
channel

closed
channel
(v = -4)

bosonic Yb:
 IYb = 0
 only mF =0

resonances



Feshbach resonances in XYb87Rb 
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172Yb87Rb

open 
channel

closed
channel
(v = -4)

168Yb ~ 850 G
170Yb ~ 1250 G
172Yb ~ 1650 G
174Yb ~ 2000 G
176Yb ~ 2500 G

*lowest resonances
with 87Rb:

171Yb ~ 1150 G
173Yb ~ 1550 G

* values derived from simplified model



Feshbach resonances in XYb85Rb 
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172Yb85Rb

open 
channel

closed
channel
(v = -3)

closed
channel
(v = -2)

◊ lowest resonances
with 85Rb :

◊ from model potential

Isotope B (G) F, mF

168Yb 1078 2, 2 (a)
170Yb 1323 2, 2 (a)
172Yb 348 2, -2 (e)
174Yb 98 2, -2 (e)
176Yb 111 2, 2 (a)
171Yb 539 2, -2 (e)
173Yb 215 2, -2 (e)



Searching Feshbach resonances
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174Yb and 85Rb in single-beam optical trap

+ tunable magnetic field

 Feshbach loss spectroscopy



Searching Feshbach resonances
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85Rb + 85Rb Feshbach resonance

theoretical width1:
 ~ 1.8 mG

1 C.Blackley et al. , arXiv:1212.5446



Searching Feshbach resonances
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Search for 85Rb + 174Yb Feshbach resonance

 No Yb-Rb resonances observed so far



Alternative Route:
1-Photon PA + spontaneous decay
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•Excitation of YbRb* (or Yb*Rb) 
by single-photon PA

•Make use of large FC-Factors to
poulate only few vibrational
levels of the ground state



Final Step:
STIRAP to lowest vibrational level
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•STIRAP to v=0 by choice of
appropriate intermediate level

•YbRb is not chemically stable

• Possible environment: optical
lattice @ 2 µm
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