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Energy scales of physics and chemistry
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Why are cold molecules interesting?

Kinetic energy is so small that molecules can be trapped

Optical lattice: molecules trapped in a periodic laser field

V(x) = −
α E 2

4
sin2 2π
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Laser intensity: trapping depth

Laser wavelength: distance between the molecules

Electrostatic field: tuning intermolecular interactions
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Molecules in an optical lattice: toolbox for quantum simulation

• Many ‘real world’ problems are not understood

(high-Tc superconductivity, quantum magnetism, transport in chemistry and biology. . . )

• Often even the simplest possible models are challenging to solve theoretically

• Quantum simulation: using controllable quantum systems to mimic the behavior

of more complex quantum systems (Feynman, 1982)
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Molecules in an optical lattice: toolbox for quantum simulation

electrons in a crystal
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electrons in a polymer excitons in a photosynthetic complex

molecules in an optical lattice

engineering realistic model Hamiltonians
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Simulating spin crystals with cold polar molecules

M. Lemeshko, R. Krems, H. Weimer, Phys. Rev. Lett. 109, 035301 (2012)



What are spin crystals?

Linear chain of spins in transverse and longitudinal magnetic fields (Ising model)
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How to simulate spin crystals with cold molecules?

LiCs molecules on a 1D optical lattice
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Effective two-level system

Excited state has a dipole moment

(interactions Vdd ∼ 1/r3)

Ground state has no dipole moment

(no interactions)
0

2 + 3
J
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Spin crystal ⇒ molecular crystal
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How to prepare phases of molecular crystals?

Adiabatic preparation is challenging: energy levels cross at phase transitions
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Nonadiabatic preparation of molecular crystals is possible
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Dipole blockade

Molecules close to each other cannot be excited at the same time:

Dipole blockade

Distance-selective excitations!
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Assembling molecular crystals out of “Lego-bricks”

No single-site addressing!

• Start: all molecules in the ↓ state

• Nucleate the phase: a far detuned pulse
(flips one molecule somewhere in the lattice)

• Dipole blockade:
preparing a few crystal cells

• Continuous microwave field:
propagating the phase boundary

Size grows linearly in time!

In experiment (LiCs molecules) it’s possible:

• ↑↓↑↓↑↓ phase consisting of 1700 molecules

• ↑↓↓↑↓↓ phase consisting of 1000 molecules
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Summary: quantum simulation of spin crystals

• One can simulate spin-crystals with cold polar molecules

• Long lifetimes of rotational states allow to prepare large crystals nonadiabatically

(& 1000 molecules!)

• Experimental proposal: LiCs molecules on a 266 nm – spaced optical lattice

• Another possibility: microwave transitions between atomic Rydberg states

(Charles Adams)

M. Lemeshko, R. V. Krems, H. Weimer, Phys. Rev. Lett. 109, 035301 (2012)

Misha Lemeshko (Harvard/ITAMP) Engineering quantum states KITP workshop 15 / 29



Can we study open systems as well?
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Dissipation leads to decoherence!

Usual approach in control of quantum processes:
decouple the system from the environment

Alternative approach:
can we use dissipation to achieve more control?



Using dissipation to prepare quantum states
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Diehl et al., Nature Phys. 4, 878 (2008);
Verstraete et al. Nature Phys. 5, 633 (2009)

(1) engineer the system and the environment
(2) obtain the required quantum state
     as a steady state of dynamics

Experimental realization:
This is possible in controllable systems!

Theoretical proposal:

(entangled states; ground states of spin Hamiltonians, . . .)

Barreiro et al., Nature 470, 486 (2011) (cold trapped ions)
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Dissipative preparation of quantum states:
new, rapidly developing field in physics

Can we use engineered dissipation to control

bonds between atoms and molecules?



“Binding” of atoms by engineered dissipation

M. Lemeshko, H. Weimer, arXiv:1211.4035 (2012)



Binding of atoms and molecules

Conservative forces that result in a potential with a minimum at the equilibrium distance
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Can repulsive interactions plus dissipation keep atoms or molecules together?
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A single atom: dark states

Open quantum system: atoms interacting with laser light

Dissipation: spontaneous emission of photons
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Interference leads to Coherent Population Trapping: |dark state〉 = |1〉 − |3〉

If ∆ = 0 atoms do not interact with lasers!
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Two atoms in a 1D trap: distance-dependent dark states
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1 We provide state |1〉 with a dipole moment, atoms in |1〉 interact: ∆ = ∆(r)

2 We choose the “dark distance” rd by tuning laser frequencies (∆(rd) = 0)

3 Population is accumulated at rd – “dissipative bond” is forming
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Example: Rydberg-dressed Cs atoms

Master equation is solved using the Stochastic Wavefunction Monte-Carlo Method

N2-dimensional density matrix⇒ N -dimensional wavefunctions

Atoms bound at rd = 500 nm after ∼ 10 µs:
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Lifetimes of ∼ 0.1 s can be achieved. Similar results for ultracold SrF molecules
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What happens in two and three dimensions?

2D: confinement to a ring
rd

3D: confinement to a surface r3 = r3d(1− 3 cos2 ϑ); Jz – good quantum number
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2D and 3D rotation can be studied spectroscopically!
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Summary: “binding” by engineered dissipation

• Atoms or molecules can be “bound” using a combination of the repulsive

dipole-dipole interaction and dissipation

M. Lemeshko, H. Weimer, submitted (2012), arXiv:1211.4035

• Future directions: self-organization in many-body systems

• Dissipative formation of “complexes” and “crystals”
• Direct cooling atoms or molecules into strongly-interacting phases

1D 2D 3D
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Reviews that will appear soon:

M. Lemeshko, R. Krems, J. Doyle, S. Kais,

Manipulation of molecules with electromagnetic fields

(in the special issue of Molecular Physics that we are editing)

M. Lemeshko, J. Otterbach, H. Weimer,

Dissipative state preparation in open quantum systems

(in Journal of Physics B)



Other things we are thinking about

Quantum phases of quadrupolar Fermi gases

S. Bhongale, L. Mathey, E. Zhao, S. Yelin, ML, arXiv:1211.3317S. Alyabyshev, ML, R. Krems, PRA 86, 013409 (2012)

Field-sensing with cold molecules

E
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Thank you for your attention!
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