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Li+Rb mixtures



~ 4.7 Debye

RbLi is a polar molecule

Long term goal: production of dense, 
ultracold ensembles of polar molecules



Additional features not available with 
atoms:	



Rich internal structure:
- rotational, vibrational

Dipolar interactions: 
- large and long range 
- angular dependence (anisotropic)

19

Figure 2.1: Schematic energy level structure of a molecule. The vibrational and ro-
tational structure is drawn in the internuclear (Morse) potential for a ground (X) and
excited (A) electronic state. Labels to the right of the potential curves are the rotational
quantum number, R.
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Dipolar interactions - how strong?

Inter-particle interactions between RbLi dimers (4.7 Debye)*
~1000x larger than mean field interaction in a BEC
~10,000x larger than magnetic dipolar interactions in Cr

* fully polarized
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We propose a novel physical realization of a quantum computer. The qubits are electric dipole mo-
ments of ultracold diatomic molecules, oriented along or against an external electric field. Individual
molecules are held in a 1D trap array, with an electric field gradient allowing spectroscopic addressing of
each site. Bits are coupled via the electric dipole-dipole interaction. Using technologies similar to those
already demonstrated, this design can plausibly lead to a quantum computer with *104 qubits, which
can perform !105 CNOT gates in the anticipated decoherence time of !5 s.

DOI: 10.1103/PhysRevLett.88.067901 PACS numbers: 03.67.Lx, 33.55.Be, 33.80.Ps

It was recently shown that a computer based on quan-
tum mechanical systems can perform certain calculations
with exponentially fewer steps than would be necessary on
a classical computer, and moreover that such calculations
can in principle be stabilized with efficient error correction
methods [1]. These breakthroughs have led to great inter-
est in the possibility to actually build such a quantum com-
puter (QC). However, there is still no widely agreed-upon,
clearly viable route to constructing a QC of scale large
enough to outperform existing classical computers on sig-
nificant computational tasks [2].

Motivated by this problem, we describe a new technical
approach to the design of a QC. The basic architecture is
shown in Fig. 1. The qubits consist of the electric dipole
moments (EDMs) of diatomic molecules, oriented along
or against an external electric field. Bits are coupled by
the electric dipole-dipole interaction. Individual molecules
are held in a 1D trap array, with an electric field gradient
allowing spectroscopic addressing of each site. Loading
with ultracold molecules makes it possible to use a weak
trapping potential, which should allow long decoherence
times for the system. This design bears various features in
common with other recent proposals which employ EDM
couplings [3–5]. However, our design has very favorable
technical parameters, and seems to require only reasonable
extensions of demonstrated techniques in order to build a
QC of unprecedented size.

We describe the molecular qubits as EDMs oriented
along (j0") or against (j1") an external electric field ( !Eext).
(This model reproduces the exact behavior well in a cer-
tain regime.) Lattice sites are equally spaced in the x di-
rection and each contains one molecule, prepared initially
in its ground state j0". The external field is perpendicu-
lar to the trap axis and consists of a constant bias field
plus a linear gradient: !Eext#x$ " %E0 1 x#≠E&≠x$'ẑ. The
Hamiltonian for bit a at position xa is H 0

a " H0 2 !da ?
!Ea, where H0 is the internal energy of a bit, !da is the
electric dipole moment of bit a, and !Ea " !Eext#xa$ 1
!Eint#xa$ is the total electric field at xa. The internal field
!Eint is created by the electric dipole moments of neighbor-

ing bits: !Eint#xa$ "
P

bfia
2 !db

jxa2xb j3 . For reasonable operat-
ing parameters, Eext ¿ Eint.

The scheme for gate operations is as outlined for the
EDMs of quantum dots in Ref. [3]. Transitions between
qubit states can be driven by electric resonance, either
directly in the microwave region or indirectly by an
optical stimulated Raman process. Resonant drive pulses
are tuned to frequency na " n0 1 deffEa&h, where hn0
is the difference in internal energies between states j0"
and j1" in zero field; the effective dipole moment deff "
j !dj0" 2 !dj1"j, where !dj0" #j1"$ is the EDM in state j0"#j1"$;
and h is Planck’s constant. Pulses of sufficient temporal
length to resolve the energy splitting due to Eint can be
used for CNOT gates; shorter pulses suffice for one-bit
rotations. The coupling between bits cannot be switched
off locally, and non-nearest-neighbor interactions are not
negligible. However, these effects can be effectively
eliminated [6] by a “refocusing” procedure similar to
that used to control couplings of identical form in NMR
quantum computation [7]. Note that, unlike recent pro-
posals for quantum logic gates using ultracold atoms, our
technique requires neither mechanical motion [4,8] nor
coupling to short-lived excited states [4,9].

The efficient creation of ultracold diatomic molecules
by photoassociation of laser cooled atoms was recently
demonstrated [10–13]. Electronically excited neutral
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FIG. 1. Schematic depiction of the polar molecule quantum
computer. Qubit states correspond to electric dipole moments
up or down relative to the applied E-field.

067901-1 0031-9007&02&88(6)&067901(4)$20.00 © 2002 The American Physical Society 067901-1

few and many body QM



Polar molecules: scientific motivation

• 2002, Quantum logic gates [DeMille]

VOLUME 88, NUMBER 6 P H Y S I C A L R E V I E W L E T T E R S 11 FEBRUARY 2002

Quantum Computation with Trapped Polar Molecules

D. DeMille
Department of Physics, P.O. Box 208120, Yale University, New Haven, Connecticut 06520

(Received 27 October 2001; published 24 January 2002)

We propose a novel physical realization of a quantum computer. The qubits are electric dipole mo-
ments of ultracold diatomic molecules, oriented along or against an external electric field. Individual
molecules are held in a 1D trap array, with an electric field gradient allowing spectroscopic addressing of
each site. Bits are coupled via the electric dipole-dipole interaction. Using technologies similar to those
already demonstrated, this design can plausibly lead to a quantum computer with *104 qubits, which
can perform !105 CNOT gates in the anticipated decoherence time of !5 s.

DOI: 10.1103/PhysRevLett.88.067901 PACS numbers: 03.67.Lx, 33.55.Be, 33.80.Ps

It was recently shown that a computer based on quan-
tum mechanical systems can perform certain calculations
with exponentially fewer steps than would be necessary on
a classical computer, and moreover that such calculations
can in principle be stabilized with efficient error correction
methods [1]. These breakthroughs have led to great inter-
est in the possibility to actually build such a quantum com-
puter (QC). However, there is still no widely agreed-upon,
clearly viable route to constructing a QC of scale large
enough to outperform existing classical computers on sig-
nificant computational tasks [2].

Motivated by this problem, we describe a new technical
approach to the design of a QC. The basic architecture is
shown in Fig. 1. The qubits consist of the electric dipole
moments (EDMs) of diatomic molecules, oriented along
or against an external electric field. Bits are coupled by
the electric dipole-dipole interaction. Individual molecules
are held in a 1D trap array, with an electric field gradient
allowing spectroscopic addressing of each site. Loading
with ultracold molecules makes it possible to use a weak
trapping potential, which should allow long decoherence
times for the system. This design bears various features in
common with other recent proposals which employ EDM
couplings [3–5]. However, our design has very favorable
technical parameters, and seems to require only reasonable
extensions of demonstrated techniques in order to build a
QC of unprecedented size.

We describe the molecular qubits as EDMs oriented
along (j0") or against (j1") an external electric field ( !Eext).
(This model reproduces the exact behavior well in a cer-
tain regime.) Lattice sites are equally spaced in the x di-
rection and each contains one molecule, prepared initially
in its ground state j0". The external field is perpendicu-
lar to the trap axis and consists of a constant bias field
plus a linear gradient: !Eext#x$ " %E0 1 x#≠E&≠x$'ẑ. The
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FIG. 1. Schematic depiction of the polar molecule quantum
computer. Qubit states correspond to electric dipole moments
up or down relative to the applied E-field.
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Hamiltonian for bit a at position xa is H 0

a " H0 2 !da ?
!Ea, where H0 is the internal energy of a bit, !da is the
electric dipole moment of bit a, and !Ea " !Eext#xa$ 1
!Eint#xa$ is the total electric field at xa. The internal field
!Eint is created by the electric dipole moments of neighbor-

ing bits: !Eint#xa$ "
P

bfia
2 !db

jxa2xb j3 . For reasonable operat-
ing parameters, Eext ¿ Eint.

The scheme for gate operations is as outlined for the
EDMs of quantum dots in Ref. [3]. Transitions between
qubit states can be driven by electric resonance, either
directly in the microwave region or indirectly by an
optical stimulated Raman process. Resonant drive pulses
are tuned to frequency na " n0 1 deffEa&h, where hn0
is the difference in internal energies between states j0"
and j1" in zero field; the effective dipole moment deff "
j !dj0" 2 !dj1"j, where !dj0" #j1"$ is the EDM in state j0"#j1"$;
and h is Planck’s constant. Pulses of sufficient temporal
length to resolve the energy splitting due to Eint can be
used for CNOT gates; shorter pulses suffice for one-bit
rotations. The coupling between bits cannot be switched
off locally, and non-nearest-neighbor interactions are not
negligible. However, these effects can be effectively
eliminated [6] by a “refocusing” procedure similar to
that used to control couplings of identical form in NMR
quantum computation [7]. Note that, unlike recent pro-
posals for quantum logic gates using ultracold atoms, our
technique requires neither mechanical motion [4,8] nor
coupling to short-lived excited states [4,9].

The efficient creation of ultracold diatomic molecules
by photoassociation of laser cooled atoms was recently
demonstrated [10–13]. Electronically excited neutral

-V 

+V 

Standing-wave trap laser beam 

Strong  
E-field 

Weak  
E-field E-field due to each 

dipole influences 
its neighbors 

FIG. 1. Schematic depiction of the polar molecule quantum
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       spin lattice model :1D xyz, 2D Ising, 3D Heisenberg, Kitaev model*, etc...
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FIG. 1. Schematic depiction of the polar molecule quantum
computer. Qubit states correspond to electric dipole moments
up or down relative to the applied E-field.
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       spin lattice model :1D xyz, 2D Ising, 3D Heisenberg, Kitaev model*, etc...
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for this, you need paramagnetic, polar molecules !
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for some of these proposals, you need paramagnetic, polar molecules !

Polar molecules: scientific motivation
from Alexey V. Gorshkov’s Jan. 24th talk, “Topological Phases in Polar-Molecule Quantum Magnets”



Quantum degenerate polar molecules 
from cold atoms: state of the art



222 The European Physical Journal D

lower levels, where the thermal dissociation can be turned
off by ultracold temperatures [2,32]. More recently, at-
tention has also focused on “the BEC-BCS Crossover”,
where “Cooper pairs” of resonant unbound Fermi atoms
undergo BEC [33–35] and give rise to superfluidity [36].
Very recently, an optically tuned Feshbach resonance in
87Rb2 has also been observed [37], as proposed in [38] and
further discussed in [39,40].

Thus there is great excitement and rapid progress
in producing Feshbach-resonance-related ultracold alkali
dimer molecules, particularly 6Li2 and 40K2. However, the
conversion of these molecules to X 1Σ+

g v = 0, J = 0
molecules and a “stable” molecule BEC is not straight-
forward. Ignoring hyperfine, a stimulated Raman process
would not work efficiently to convert a predominantly
triplet ungerade Feshbach-resonance-related state into a
singlet gerade ground state. The hyperfine terms in the
Hamiltonian do mix u and g symmetries and would al-
low some conversion, but the Franck-Condon factors for
X 1Σ+

g (vmax) → A 1Σ+
u (various v) → X 1Σ+

g (v = 0)
are quite small. Nevertheless, weak transitions to pri-
marily triplet levels very near dissociation have been ob-
served [41]; thus a stimulated Raman (e.g. STIRAP [42])
conversion of such levels to X 1Σ+

g (v = 0, J = 0) remains
a challenging possibility. Moreover, there is a large poten-
tial barrier if the B 1Πu state replaces the A 1Σ+

u state
as the intermediate state. There are similar problems for
other higher energy 1Σ+

u and 1Πu states as well.

2 Heteronuclear alkali dimers

The progress on photoassociation [43], formation of ul-
tracold molecules [1,44], determination of Feshbach reso-
nances, etc. for heteronuclear alkali dimer molecules is well
behind that for homonuclear alkali dimer molecules. Ul-
tracold polar alkali dimer molecules have been observed
for NaCs+ [45], RbCs [46,47], and KRb [48–50]. Pho-
toassociative spectra have only been recently observed for
RbCs [51] and KRb [49,50]. However, accurate ab initio
calculations and limited molecular spectra are available
for all polar alkali dimers (excluding those containing Fr).
The non-polar 6Li7Li molecule has also been observed by
photoassociation [52]. Very recently Feshbach resonances
have been experimentally observed for LiNa [53] and
KRb [54], opening the way for copious production of near-
dissociation levels of heteronuclear polar molecules and
formation of quantum degenerate gases of such molecules.
What we wish to emphasize here is that we believe such
molecules can be efficiently converted to v = 0, J = 0,
ground X 1Σ+ state molecules by a stimulated Raman
process (e.g. STIRAP [42]) via b 3Π ∼ A 1Σ+ mixed
levels.

Five examples of heteronuclear polar alkali dimers are
shown in Figures 1–5. In each case, the potential curves
plotted are based on high quality ab initio calculations,
but experimentally-based RKR potentials are virtually
identical, e.g. for NaK for which the greatest amount of
spectroscopic data is available. In each case, the proposed
initial state is a very slightly bound state correlating to a

Fig. 1. Ab initio potential energy curves of KRb [55]. The hor-
izontal lines represent the three levels involved in the proposed
stimulated Raman transition: the initial a 3Σ+ level near dis-
sociation created via a Feshbach resonance; the intermediate
level of mixed singlet-triplet character (b(1) 3Π ∼ A(2) 1Σ+)
with four important turning points (see text); and the final
true ground state level, X 1Σ+ v = 0, J = 0. The PUMP
“triplet” transition excites the initial level up to the interme-
diate level and the DUMP “singlet” transition de-excites the
intermediate level to the final level.

quasibound Feshbach-resonance-related state of predom-
inantly triplet character (especially near its inner turn-
ing RFR−). A vertical excitation from RFR− in accord
with the Franck-Condon Principle will efficiently reach
an outer turning point of the b(1) 3Π state, Rvb+. How-
ever, especially for the heteronuclear alkali dimers includ-
ing a Rb or Cs atom, levels of the b 3Π state will be
strongly mixed with levels of the A(2) 1Σ+ state. Such
mixed upper levels will be sparse in LiNa (as in Li2),
dense in NaRb, KRb and RbCs, and intermediate in NaK.
Such levels will have four turning points, two associated
with the b 3Π state (Rvb±) and two associated with the
A 1Σ+ state (RvA±). By a somewhat fortunate coinci-
dence, the appropriate RvA− turning points are directly
above the ground X 1Σ+ Re region, i.e. between the turn-
ing points R0X±. Such turning point matches imply large
transition moment/Franck-Condon factors for both the
PUMP step (a 3Σ+ → b 3Π ∼ A 1Σ+) and the DUMP
step (b 3Π ∼ A 1Σ+ → X 1Σ+) of a stimulated Raman
transition.

3 Specific heteronuclear alkali dimers

Let us begin a more detailed discussion with KRb, as
shown in Figure 1, a case for which both photoassocia-
tive spectra [49,50] and Feshbach resonance data [54] are
available. There are three sets of high quality ab initio cal-
culations available [55–57] as well as an accurate descrip-
tion of the long-range portion of the potential in terms
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lower levels, where the thermal dissociation can be turned
off by ultracold temperatures [2,32]. More recently, at-
tention has also focused on “the BEC-BCS Crossover”,
where “Cooper pairs” of resonant unbound Fermi atoms
undergo BEC [33–35] and give rise to superfluidity [36].
Very recently, an optically tuned Feshbach resonance in
87Rb2 has also been observed [37], as proposed in [38] and
further discussed in [39,40].

Thus there is great excitement and rapid progress
in producing Feshbach-resonance-related ultracold alkali
dimer molecules, particularly 6Li2 and 40K2. However, the
conversion of these molecules to X 1Σ+

g v = 0, J = 0
molecules and a “stable” molecule BEC is not straight-
forward. Ignoring hyperfine, a stimulated Raman process
would not work efficiently to convert a predominantly
triplet ungerade Feshbach-resonance-related state into a
singlet gerade ground state. The hyperfine terms in the
Hamiltonian do mix u and g symmetries and would al-
low some conversion, but the Franck-Condon factors for
X 1Σ+

g (vmax) → A 1Σ+
u (various v) → X 1Σ+

g (v = 0)
are quite small. Nevertheless, weak transitions to pri-
marily triplet levels very near dissociation have been ob-
served [41]; thus a stimulated Raman (e.g. STIRAP [42])
conversion of such levels to X 1Σ+

g (v = 0, J = 0) remains
a challenging possibility. Moreover, there is a large poten-
tial barrier if the B 1Πu state replaces the A 1Σ+

u state
as the intermediate state. There are similar problems for
other higher energy 1Σ+

u and 1Πu states as well.

2 Heteronuclear alkali dimers

The progress on photoassociation [43], formation of ul-
tracold molecules [1,44], determination of Feshbach reso-
nances, etc. for heteronuclear alkali dimer molecules is well
behind that for homonuclear alkali dimer molecules. Ul-
tracold polar alkali dimer molecules have been observed
for NaCs+ [45], RbCs [46,47], and KRb [48–50]. Pho-
toassociative spectra have only been recently observed for
RbCs [51] and KRb [49,50]. However, accurate ab initio
calculations and limited molecular spectra are available
for all polar alkali dimers (excluding those containing Fr).
The non-polar 6Li7Li molecule has also been observed by
photoassociation [52]. Very recently Feshbach resonances
have been experimentally observed for LiNa [53] and
KRb [54], opening the way for copious production of near-
dissociation levels of heteronuclear polar molecules and
formation of quantum degenerate gases of such molecules.
What we wish to emphasize here is that we believe such
molecules can be efficiently converted to v = 0, J = 0,
ground X 1Σ+ state molecules by a stimulated Raman
process (e.g. STIRAP [42]) via b 3Π ∼ A 1Σ+ mixed
levels.

Five examples of heteronuclear polar alkali dimers are
shown in Figures 1–5. In each case, the potential curves
plotted are based on high quality ab initio calculations,
but experimentally-based RKR potentials are virtually
identical, e.g. for NaK for which the greatest amount of
spectroscopic data is available. In each case, the proposed
initial state is a very slightly bound state correlating to a

Fig. 1. Ab initio potential energy curves of KRb [55]. The hor-
izontal lines represent the three levels involved in the proposed
stimulated Raman transition: the initial a 3Σ+ level near dis-
sociation created via a Feshbach resonance; the intermediate
level of mixed singlet-triplet character (b(1) 3Π ∼ A(2) 1Σ+)
with four important turning points (see text); and the final
true ground state level, X 1Σ+ v = 0, J = 0. The PUMP
“triplet” transition excites the initial level up to the interme-
diate level and the DUMP “singlet” transition de-excites the
intermediate level to the final level.

quasibound Feshbach-resonance-related state of predom-
inantly triplet character (especially near its inner turn-
ing RFR−). A vertical excitation from RFR− in accord
with the Franck-Condon Principle will efficiently reach
an outer turning point of the b(1) 3Π state, Rvb+. How-
ever, especially for the heteronuclear alkali dimers includ-
ing a Rb or Cs atom, levels of the b 3Π state will be
strongly mixed with levels of the A(2) 1Σ+ state. Such
mixed upper levels will be sparse in LiNa (as in Li2),
dense in NaRb, KRb and RbCs, and intermediate in NaK.
Such levels will have four turning points, two associated
with the b 3Π state (Rvb±) and two associated with the
A 1Σ+ state (RvA±). By a somewhat fortunate coinci-
dence, the appropriate RvA− turning points are directly
above the ground X 1Σ+ Re region, i.e. between the turn-
ing points R0X±. Such turning point matches imply large
transition moment/Franck-Condon factors for both the
PUMP step (a 3Σ+ → b 3Π ∼ A 1Σ+) and the DUMP
step (b 3Π ∼ A 1Σ+ → X 1Σ+) of a stimulated Raman
transition.

3 Specific heteronuclear alkali dimers

Let us begin a more detailed discussion with KRb, as
shown in Figure 1, a case for which both photoassocia-
tive spectra [49,50] and Feshbach resonance data [54] are
available. There are three sets of high quality ab initio cal-
culations available [55–57] as well as an accurate descrip-
tion of the long-range portion of the potential in terms
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lower levels, where the thermal dissociation can be turned
off by ultracold temperatures [2,32]. More recently, at-
tention has also focused on “the BEC-BCS Crossover”,
where “Cooper pairs” of resonant unbound Fermi atoms
undergo BEC [33–35] and give rise to superfluidity [36].
Very recently, an optically tuned Feshbach resonance in
87Rb2 has also been observed [37], as proposed in [38] and
further discussed in [39,40].

Thus there is great excitement and rapid progress
in producing Feshbach-resonance-related ultracold alkali
dimer molecules, particularly 6Li2 and 40K2. However, the
conversion of these molecules to X 1Σ+

g v = 0, J = 0
molecules and a “stable” molecule BEC is not straight-
forward. Ignoring hyperfine, a stimulated Raman process
would not work efficiently to convert a predominantly
triplet ungerade Feshbach-resonance-related state into a
singlet gerade ground state. The hyperfine terms in the
Hamiltonian do mix u and g symmetries and would al-
low some conversion, but the Franck-Condon factors for
X 1Σ+

g (vmax) → A 1Σ+
u (various v) → X 1Σ+

g (v = 0)
are quite small. Nevertheless, weak transitions to pri-
marily triplet levels very near dissociation have been ob-
served [41]; thus a stimulated Raman (e.g. STIRAP [42])
conversion of such levels to X 1Σ+

g (v = 0, J = 0) remains
a challenging possibility. Moreover, there is a large poten-
tial barrier if the B 1Πu state replaces the A 1Σ+

u state
as the intermediate state. There are similar problems for
other higher energy 1Σ+

u and 1Πu states as well.

2 Heteronuclear alkali dimers

The progress on photoassociation [43], formation of ul-
tracold molecules [1,44], determination of Feshbach reso-
nances, etc. for heteronuclear alkali dimer molecules is well
behind that for homonuclear alkali dimer molecules. Ul-
tracold polar alkali dimer molecules have been observed
for NaCs+ [45], RbCs [46,47], and KRb [48–50]. Pho-
toassociative spectra have only been recently observed for
RbCs [51] and KRb [49,50]. However, accurate ab initio
calculations and limited molecular spectra are available
for all polar alkali dimers (excluding those containing Fr).
The non-polar 6Li7Li molecule has also been observed by
photoassociation [52]. Very recently Feshbach resonances
have been experimentally observed for LiNa [53] and
KRb [54], opening the way for copious production of near-
dissociation levels of heteronuclear polar molecules and
formation of quantum degenerate gases of such molecules.
What we wish to emphasize here is that we believe such
molecules can be efficiently converted to v = 0, J = 0,
ground X 1Σ+ state molecules by a stimulated Raman
process (e.g. STIRAP [42]) via b 3Π ∼ A 1Σ+ mixed
levels.

Five examples of heteronuclear polar alkali dimers are
shown in Figures 1–5. In each case, the potential curves
plotted are based on high quality ab initio calculations,
but experimentally-based RKR potentials are virtually
identical, e.g. for NaK for which the greatest amount of
spectroscopic data is available. In each case, the proposed
initial state is a very slightly bound state correlating to a

Fig. 1. Ab initio potential energy curves of KRb [55]. The hor-
izontal lines represent the three levels involved in the proposed
stimulated Raman transition: the initial a 3Σ+ level near dis-
sociation created via a Feshbach resonance; the intermediate
level of mixed singlet-triplet character (b(1) 3Π ∼ A(2) 1Σ+)
with four important turning points (see text); and the final
true ground state level, X 1Σ+ v = 0, J = 0. The PUMP
“triplet” transition excites the initial level up to the interme-
diate level and the DUMP “singlet” transition de-excites the
intermediate level to the final level.

quasibound Feshbach-resonance-related state of predom-
inantly triplet character (especially near its inner turn-
ing RFR−). A vertical excitation from RFR− in accord
with the Franck-Condon Principle will efficiently reach
an outer turning point of the b(1) 3Π state, Rvb+. How-
ever, especially for the heteronuclear alkali dimers includ-
ing a Rb or Cs atom, levels of the b 3Π state will be
strongly mixed with levels of the A(2) 1Σ+ state. Such
mixed upper levels will be sparse in LiNa (as in Li2),
dense in NaRb, KRb and RbCs, and intermediate in NaK.
Such levels will have four turning points, two associated
with the b 3Π state (Rvb±) and two associated with the
A 1Σ+ state (RvA±). By a somewhat fortunate coinci-
dence, the appropriate RvA− turning points are directly
above the ground X 1Σ+ Re region, i.e. between the turn-
ing points R0X±. Such turning point matches imply large
transition moment/Franck-Condon factors for both the
PUMP step (a 3Σ+ → b 3Π ∼ A 1Σ+) and the DUMP
step (b 3Π ∼ A 1Σ+ → X 1Σ+) of a stimulated Raman
transition.

3 Specific heteronuclear alkali dimers

Let us begin a more detailed discussion with KRb, as
shown in Figure 1, a case for which both photoassocia-
tive spectra [49,50] and Feshbach resonance data [54] are
available. There are three sets of high quality ab initio cal-
culations available [55–57] as well as an accurate descrip-
tion of the long-range portion of the potential in terms
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lower levels, where the thermal dissociation can be turned
off by ultracold temperatures [2,32]. More recently, at-
tention has also focused on “the BEC-BCS Crossover”,
where “Cooper pairs” of resonant unbound Fermi atoms
undergo BEC [33–35] and give rise to superfluidity [36].
Very recently, an optically tuned Feshbach resonance in
87Rb2 has also been observed [37], as proposed in [38] and
further discussed in [39,40].

Thus there is great excitement and rapid progress
in producing Feshbach-resonance-related ultracold alkali
dimer molecules, particularly 6Li2 and 40K2. However, the
conversion of these molecules to X 1Σ+

g v = 0, J = 0
molecules and a “stable” molecule BEC is not straight-
forward. Ignoring hyperfine, a stimulated Raman process
would not work efficiently to convert a predominantly
triplet ungerade Feshbach-resonance-related state into a
singlet gerade ground state. The hyperfine terms in the
Hamiltonian do mix u and g symmetries and would al-
low some conversion, but the Franck-Condon factors for
X 1Σ+

g (vmax) → A 1Σ+
u (various v) → X 1Σ+

g (v = 0)
are quite small. Nevertheless, weak transitions to pri-
marily triplet levels very near dissociation have been ob-
served [41]; thus a stimulated Raman (e.g. STIRAP [42])
conversion of such levels to X 1Σ+

g (v = 0, J = 0) remains
a challenging possibility. Moreover, there is a large poten-
tial barrier if the B 1Πu state replaces the A 1Σ+

u state
as the intermediate state. There are similar problems for
other higher energy 1Σ+

u and 1Πu states as well.

2 Heteronuclear alkali dimers

The progress on photoassociation [43], formation of ul-
tracold molecules [1,44], determination of Feshbach reso-
nances, etc. for heteronuclear alkali dimer molecules is well
behind that for homonuclear alkali dimer molecules. Ul-
tracold polar alkali dimer molecules have been observed
for NaCs+ [45], RbCs [46,47], and KRb [48–50]. Pho-
toassociative spectra have only been recently observed for
RbCs [51] and KRb [49,50]. However, accurate ab initio
calculations and limited molecular spectra are available
for all polar alkali dimers (excluding those containing Fr).
The non-polar 6Li7Li molecule has also been observed by
photoassociation [52]. Very recently Feshbach resonances
have been experimentally observed for LiNa [53] and
KRb [54], opening the way for copious production of near-
dissociation levels of heteronuclear polar molecules and
formation of quantum degenerate gases of such molecules.
What we wish to emphasize here is that we believe such
molecules can be efficiently converted to v = 0, J = 0,
ground X 1Σ+ state molecules by a stimulated Raman
process (e.g. STIRAP [42]) via b 3Π ∼ A 1Σ+ mixed
levels.

Five examples of heteronuclear polar alkali dimers are
shown in Figures 1–5. In each case, the potential curves
plotted are based on high quality ab initio calculations,
but experimentally-based RKR potentials are virtually
identical, e.g. for NaK for which the greatest amount of
spectroscopic data is available. In each case, the proposed
initial state is a very slightly bound state correlating to a

Fig. 1. Ab initio potential energy curves of KRb [55]. The hor-
izontal lines represent the three levels involved in the proposed
stimulated Raman transition: the initial a 3Σ+ level near dis-
sociation created via a Feshbach resonance; the intermediate
level of mixed singlet-triplet character (b(1) 3Π ∼ A(2) 1Σ+)
with four important turning points (see text); and the final
true ground state level, X 1Σ+ v = 0, J = 0. The PUMP
“triplet” transition excites the initial level up to the interme-
diate level and the DUMP “singlet” transition de-excites the
intermediate level to the final level.

quasibound Feshbach-resonance-related state of predom-
inantly triplet character (especially near its inner turn-
ing RFR−). A vertical excitation from RFR− in accord
with the Franck-Condon Principle will efficiently reach
an outer turning point of the b(1) 3Π state, Rvb+. How-
ever, especially for the heteronuclear alkali dimers includ-
ing a Rb or Cs atom, levels of the b 3Π state will be
strongly mixed with levels of the A(2) 1Σ+ state. Such
mixed upper levels will be sparse in LiNa (as in Li2),
dense in NaRb, KRb and RbCs, and intermediate in NaK.
Such levels will have four turning points, two associated
with the b 3Π state (Rvb±) and two associated with the
A 1Σ+ state (RvA±). By a somewhat fortunate coinci-
dence, the appropriate RvA− turning points are directly
above the ground X 1Σ+ Re region, i.e. between the turn-
ing points R0X±. Such turning point matches imply large
transition moment/Franck-Condon factors for both the
PUMP step (a 3Σ+ → b 3Π ∼ A 1Σ+) and the DUMP
step (b 3Π ∼ A 1Σ+ → X 1Σ+) of a stimulated Raman
transition.

3 Specific heteronuclear alkali dimers

Let us begin a more detailed discussion with KRb, as
shown in Figure 1, a case for which both photoassocia-
tive spectra [49,50] and Feshbach resonance data [54] are
available. There are three sets of high quality ab initio cal-
culations available [55–57] as well as an accurate descrip-
tion of the long-range portion of the potential in terms
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valence correlation by a superposition of atomic one-elec-
tron polarization potentials is 6 cm - 1 for Li2,40 and 4 cm - 1 
for NaK.14 Neglecting core polarization altogether leads to 
errors of 4 cm -I for Li22,39 and 8 cm -I for NaK.2 

The interpolation formula by Cavaliere et al., 48 based on 
the ionization energies of the atoms and the (()e values of the 
homonuc1ear dimers, leads to deviations from our results for 
the mixed dimers of up to - 10 cm - I, the deviations being 
largest for the Li-containing molecules. 

D. Ionization energies 
Table IV contains our calculated values of vertical and 

adiabatic ionization potentials, I.P' v and I.P.a , and com-
parison is made to experimental data where available. The 
calculated values are from separate calculations for XY and 
XY+ at the equilibrium bond length of XY, in the case of 
I.P. v ; forI.P. a , our present results for De (XY) are combined 
with previous ones5,19 for De (XY+) and experimental 
atomic I.P. values. The experimental spectroscopic data for 
Li2, Na2, K 2, and NaK are to be considered as adiabatic 
ionization potentials.54,56,57 They agree with our computed 
I.P' Q to <0.02 eV. The agreement is much worse with the 
electron impact measurements for LiNa and LiK by 2mbov 
et al.55 Although the error bars given by 2mbov et al. are 
quite large ( ± 0.1 e V), neither our computed I,P'Q nor our 
I.P. v are within the error bars for both of the molecules. We 
feel that the experimental accuracy may have been overesti-
mated by 2mbov et al. 

The computed all-electron CPP results by Muller and 
Meyer,2 for which an accuracy of <0.01 eV has been 
claimed, are within 0.01 eV of our I.P'Q values, for the 
dimers XY (X, Y = Li to K). The pseudopotential value for 
CS2 in Ref. 20 (perturbative treatment of core-valence corre-
lation) is smaller than ours by 0.04 eV; this deviation is in 
line with the corresponding one for De and may be 
attributed, for the main part, to the limited basis set in Ref. 
20. The neglect of core-valence correlation leads to rather 

TABLE V. Dipole moments (in D) of alkali dimers XY (experimental val-
ues in parentheses). 

Na K 

Li 0.53 3.50 
(0.45a ) (3.4Ib ) 

Na 2.75 
(2.73d ) 

K 
Rb 

• Reference 26. 
bReference 59, with B. from Ref. 27. 
c Reference 59, with B. from this work. 
dReference 53. 
"Reference 59, with B. from Ref. 31. 

Rb Cs 

4.13 5.48 
(4.01" ) 
3.33 4.60 

(3.05" ) (4.57" ) 
0.64 1.92 

1.26 

large errors for I.P'a (0.05 eV for Li2, 0.27 eV for NaK2); the 
errors are larger than for De (XY), since in De (XY) the 
contribution of the attractive one-electron part of the CPP is 
nearly cancelled by the repulsive one of the two-electron 
part, while such a cancellation does not occur for De (XY+ ). 

The difference between vertical and adiabatic ionization 
energy is of the order of 0.1 e V, in our calculations, and the 
change ofI.P.v - I.P'Q from Li2 (0.11 eV) to CS2 (0.06 eV) 
is roughly proportional to the magnitude of the ionization 
potentials themselves. 

E. Dipole moments 
Our calculated dipole moments for R = Re are collect-

ed in Table V. The valence dipole moments /-Lv have been 
corrected by the induced dipole moments of the alkali cores 
/-Lc = a(f), where a is the core dipole polarizability and (f) 
is the mean value of the electric field at the site of the core. 
Note that, in contrast to Eq. (3), no cut-off factor has been 
used for determining (f). We also give experimental values, 
for comparison, in Table V. They are derived from ground 
vibronic Stark coefficients approximating /-L; by 

TABLE IV. Vertical/adiabatic ionization energies (in e V) of alkali dimers XY (experimental values in paren-
theses). 

Li 

Na 

K 

Rb 

Cs 

• Reference 54. 
b Reference 55. 
"Reference 56. 
dReference 57. 
"Reference 58. 
fReference 50. 

Li 

5.26/5.15 
(5.14" ) 

Na 

5.12/5.00 
(4.94b ) 

4.99/4.88 
(4.90" ) 

K Rb Cs 

4.61/4.50 4.49/4.38 4.28/4.19 
(4.69b ) 

4.51/4.41 4.39/4.30 4.18/4.10 
(4.42d ) 

4.14/4.05 4.05/3.97 3.89/3.81 
(4.06· ) 

3.97/3.89 3.82/3.75 
(3.44 ... 3.95f ) 

3.68/3.62 
(3.59 ... 3.82f ) 
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lower levels, where the thermal dissociation can be turned
off by ultracold temperatures [2,32]. More recently, at-
tention has also focused on “the BEC-BCS Crossover”,
where “Cooper pairs” of resonant unbound Fermi atoms
undergo BEC [33–35] and give rise to superfluidity [36].
Very recently, an optically tuned Feshbach resonance in
87Rb2 has also been observed [37], as proposed in [38] and
further discussed in [39,40].

Thus there is great excitement and rapid progress
in producing Feshbach-resonance-related ultracold alkali
dimer molecules, particularly 6Li2 and 40K2. However, the
conversion of these molecules to X 1Σ+

g v = 0, J = 0
molecules and a “stable” molecule BEC is not straight-
forward. Ignoring hyperfine, a stimulated Raman process
would not work efficiently to convert a predominantly
triplet ungerade Feshbach-resonance-related state into a
singlet gerade ground state. The hyperfine terms in the
Hamiltonian do mix u and g symmetries and would al-
low some conversion, but the Franck-Condon factors for
X 1Σ+

g (vmax) → A 1Σ+
u (various v) → X 1Σ+

g (v = 0)
are quite small. Nevertheless, weak transitions to pri-
marily triplet levels very near dissociation have been ob-
served [41]; thus a stimulated Raman (e.g. STIRAP [42])
conversion of such levels to X 1Σ+

g (v = 0, J = 0) remains
a challenging possibility. Moreover, there is a large poten-
tial barrier if the B 1Πu state replaces the A 1Σ+

u state
as the intermediate state. There are similar problems for
other higher energy 1Σ+

u and 1Πu states as well.

2 Heteronuclear alkali dimers

The progress on photoassociation [43], formation of ul-
tracold molecules [1,44], determination of Feshbach reso-
nances, etc. for heteronuclear alkali dimer molecules is well
behind that for homonuclear alkali dimer molecules. Ul-
tracold polar alkali dimer molecules have been observed
for NaCs+ [45], RbCs [46,47], and KRb [48–50]. Pho-
toassociative spectra have only been recently observed for
RbCs [51] and KRb [49,50]. However, accurate ab initio
calculations and limited molecular spectra are available
for all polar alkali dimers (excluding those containing Fr).
The non-polar 6Li7Li molecule has also been observed by
photoassociation [52]. Very recently Feshbach resonances
have been experimentally observed for LiNa [53] and
KRb [54], opening the way for copious production of near-
dissociation levels of heteronuclear polar molecules and
formation of quantum degenerate gases of such molecules.
What we wish to emphasize here is that we believe such
molecules can be efficiently converted to v = 0, J = 0,
ground X 1Σ+ state molecules by a stimulated Raman
process (e.g. STIRAP [42]) via b 3Π ∼ A 1Σ+ mixed
levels.

Five examples of heteronuclear polar alkali dimers are
shown in Figures 1–5. In each case, the potential curves
plotted are based on high quality ab initio calculations,
but experimentally-based RKR potentials are virtually
identical, e.g. for NaK for which the greatest amount of
spectroscopic data is available. In each case, the proposed
initial state is a very slightly bound state correlating to a

Fig. 1. Ab initio potential energy curves of KRb [55]. The hor-
izontal lines represent the three levels involved in the proposed
stimulated Raman transition: the initial a 3Σ+ level near dis-
sociation created via a Feshbach resonance; the intermediate
level of mixed singlet-triplet character (b(1) 3Π ∼ A(2) 1Σ+)
with four important turning points (see text); and the final
true ground state level, X 1Σ+ v = 0, J = 0. The PUMP
“triplet” transition excites the initial level up to the interme-
diate level and the DUMP “singlet” transition de-excites the
intermediate level to the final level.

quasibound Feshbach-resonance-related state of predom-
inantly triplet character (especially near its inner turn-
ing RFR−). A vertical excitation from RFR− in accord
with the Franck-Condon Principle will efficiently reach
an outer turning point of the b(1) 3Π state, Rvb+. How-
ever, especially for the heteronuclear alkali dimers includ-
ing a Rb or Cs atom, levels of the b 3Π state will be
strongly mixed with levels of the A(2) 1Σ+ state. Such
mixed upper levels will be sparse in LiNa (as in Li2),
dense in NaRb, KRb and RbCs, and intermediate in NaK.
Such levels will have four turning points, two associated
with the b 3Π state (Rvb±) and two associated with the
A 1Σ+ state (RvA±). By a somewhat fortunate coinci-
dence, the appropriate RvA− turning points are directly
above the ground X 1Σ+ Re region, i.e. between the turn-
ing points R0X±. Such turning point matches imply large
transition moment/Franck-Condon factors for both the
PUMP step (a 3Σ+ → b 3Π ∼ A 1Σ+) and the DUMP
step (b 3Π ∼ A 1Σ+ → X 1Σ+) of a stimulated Raman
transition.

3 Specific heteronuclear alkali dimers

Let us begin a more detailed discussion with KRb, as
shown in Figure 1, a case for which both photoassocia-
tive spectra [49,50] and Feshbach resonance data [54] are
available. There are three sets of high quality ab initio cal-
culations available [55–57] as well as an accurate descrip-
tion of the long-range portion of the potential in terms
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valence correlation by a superposition of atomic one-elec-
tron polarization potentials is 6 cm - 1 for Li2,40 and 4 cm - 1 
for NaK.14 Neglecting core polarization altogether leads to 
errors of 4 cm -I for Li22,39 and 8 cm -I for NaK.2 

The interpolation formula by Cavaliere et al., 48 based on 
the ionization energies of the atoms and the (()e values of the 
homonuc1ear dimers, leads to deviations from our results for 
the mixed dimers of up to - 10 cm - I, the deviations being 
largest for the Li-containing molecules. 

D. Ionization energies 
Table IV contains our calculated values of vertical and 

adiabatic ionization potentials, I.P' v and I.P.a , and com-
parison is made to experimental data where available. The 
calculated values are from separate calculations for XY and 
XY+ at the equilibrium bond length of XY, in the case of 
I.P. v ; forI.P. a , our present results for De (XY) are combined 
with previous ones5,19 for De (XY+) and experimental 
atomic I.P. values. The experimental spectroscopic data for 
Li2, Na2, K 2, and NaK are to be considered as adiabatic 
ionization potentials.54,56,57 They agree with our computed 
I.P' Q to <0.02 eV. The agreement is much worse with the 
electron impact measurements for LiNa and LiK by 2mbov 
et al.55 Although the error bars given by 2mbov et al. are 
quite large ( ± 0.1 e V), neither our computed I,P'Q nor our 
I.P. v are within the error bars for both of the molecules. We 
feel that the experimental accuracy may have been overesti-
mated by 2mbov et al. 

The computed all-electron CPP results by Muller and 
Meyer,2 for which an accuracy of <0.01 eV has been 
claimed, are within 0.01 eV of our I.P'Q values, for the 
dimers XY (X, Y = Li to K). The pseudopotential value for 
CS2 in Ref. 20 (perturbative treatment of core-valence corre-
lation) is smaller than ours by 0.04 eV; this deviation is in 
line with the corresponding one for De and may be 
attributed, for the main part, to the limited basis set in Ref. 
20. The neglect of core-valence correlation leads to rather 

TABLE V. Dipole moments (in D) of alkali dimers XY (experimental val-
ues in parentheses). 

Na K 

Li 0.53 3.50 
(0.45a ) (3.4Ib ) 

Na 2.75 
(2.73d ) 

K 
Rb 

• Reference 26. 
bReference 59, with B. from Ref. 27. 
c Reference 59, with B. from this work. 
dReference 53. 
"Reference 59, with B. from Ref. 31. 

Rb Cs 

4.13 5.48 
(4.01" ) 
3.33 4.60 

(3.05" ) (4.57" ) 
0.64 1.92 

1.26 

large errors for I.P'a (0.05 eV for Li2, 0.27 eV for NaK2); the 
errors are larger than for De (XY), since in De (XY) the 
contribution of the attractive one-electron part of the CPP is 
nearly cancelled by the repulsive one of the two-electron 
part, while such a cancellation does not occur for De (XY+ ). 

The difference between vertical and adiabatic ionization 
energy is of the order of 0.1 e V, in our calculations, and the 
change ofI.P.v - I.P'Q from Li2 (0.11 eV) to CS2 (0.06 eV) 
is roughly proportional to the magnitude of the ionization 
potentials themselves. 

E. Dipole moments 
Our calculated dipole moments for R = Re are collect-

ed in Table V. The valence dipole moments /-Lv have been 
corrected by the induced dipole moments of the alkali cores 
/-Lc = a(f), where a is the core dipole polarizability and (f) 
is the mean value of the electric field at the site of the core. 
Note that, in contrast to Eq. (3), no cut-off factor has been 
used for determining (f). We also give experimental values, 
for comparison, in Table V. They are derived from ground 
vibronic Stark coefficients approximating /-L; by 

TABLE IV. Vertical/adiabatic ionization energies (in e V) of alkali dimers XY (experimental values in paren-
theses). 

Li 

Na 

K 

Rb 

Cs 

• Reference 54. 
b Reference 55. 
"Reference 56. 
dReference 57. 
"Reference 58. 
fReference 50. 

Li 

5.26/5.15 
(5.14" ) 

Na 

5.12/5.00 
(4.94b ) 

4.99/4.88 
(4.90" ) 

K Rb Cs 

4.61/4.50 4.49/4.38 4.28/4.19 
(4.69b ) 

4.51/4.41 4.39/4.30 4.18/4.10 
(4.42d ) 

4.14/4.05 4.05/3.97 3.89/3.81 
(4.06· ) 

3.97/3.89 3.82/3.75 
(3.44 ... 3.95f ) 

3.68/3.62 
(3.59 ... 3.82f ) 
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lower levels, where the thermal dissociation can be turned
off by ultracold temperatures [2,32]. More recently, at-
tention has also focused on “the BEC-BCS Crossover”,
where “Cooper pairs” of resonant unbound Fermi atoms
undergo BEC [33–35] and give rise to superfluidity [36].
Very recently, an optically tuned Feshbach resonance in
87Rb2 has also been observed [37], as proposed in [38] and
further discussed in [39,40].

Thus there is great excitement and rapid progress
in producing Feshbach-resonance-related ultracold alkali
dimer molecules, particularly 6Li2 and 40K2. However, the
conversion of these molecules to X 1Σ+

g v = 0, J = 0
molecules and a “stable” molecule BEC is not straight-
forward. Ignoring hyperfine, a stimulated Raman process
would not work efficiently to convert a predominantly
triplet ungerade Feshbach-resonance-related state into a
singlet gerade ground state. The hyperfine terms in the
Hamiltonian do mix u and g symmetries and would al-
low some conversion, but the Franck-Condon factors for
X 1Σ+

g (vmax) → A 1Σ+
u (various v) → X 1Σ+

g (v = 0)
are quite small. Nevertheless, weak transitions to pri-
marily triplet levels very near dissociation have been ob-
served [41]; thus a stimulated Raman (e.g. STIRAP [42])
conversion of such levels to X 1Σ+

g (v = 0, J = 0) remains
a challenging possibility. Moreover, there is a large poten-
tial barrier if the B 1Πu state replaces the A 1Σ+

u state
as the intermediate state. There are similar problems for
other higher energy 1Σ+

u and 1Πu states as well.

2 Heteronuclear alkali dimers

The progress on photoassociation [43], formation of ul-
tracold molecules [1,44], determination of Feshbach reso-
nances, etc. for heteronuclear alkali dimer molecules is well
behind that for homonuclear alkali dimer molecules. Ul-
tracold polar alkali dimer molecules have been observed
for NaCs+ [45], RbCs [46,47], and KRb [48–50]. Pho-
toassociative spectra have only been recently observed for
RbCs [51] and KRb [49,50]. However, accurate ab initio
calculations and limited molecular spectra are available
for all polar alkali dimers (excluding those containing Fr).
The non-polar 6Li7Li molecule has also been observed by
photoassociation [52]. Very recently Feshbach resonances
have been experimentally observed for LiNa [53] and
KRb [54], opening the way for copious production of near-
dissociation levels of heteronuclear polar molecules and
formation of quantum degenerate gases of such molecules.
What we wish to emphasize here is that we believe such
molecules can be efficiently converted to v = 0, J = 0,
ground X 1Σ+ state molecules by a stimulated Raman
process (e.g. STIRAP [42]) via b 3Π ∼ A 1Σ+ mixed
levels.

Five examples of heteronuclear polar alkali dimers are
shown in Figures 1–5. In each case, the potential curves
plotted are based on high quality ab initio calculations,
but experimentally-based RKR potentials are virtually
identical, e.g. for NaK for which the greatest amount of
spectroscopic data is available. In each case, the proposed
initial state is a very slightly bound state correlating to a

Fig. 1. Ab initio potential energy curves of KRb [55]. The hor-
izontal lines represent the three levels involved in the proposed
stimulated Raman transition: the initial a 3Σ+ level near dis-
sociation created via a Feshbach resonance; the intermediate
level of mixed singlet-triplet character (b(1) 3Π ∼ A(2) 1Σ+)
with four important turning points (see text); and the final
true ground state level, X 1Σ+ v = 0, J = 0. The PUMP
“triplet” transition excites the initial level up to the interme-
diate level and the DUMP “singlet” transition de-excites the
intermediate level to the final level.

quasibound Feshbach-resonance-related state of predom-
inantly triplet character (especially near its inner turn-
ing RFR−). A vertical excitation from RFR− in accord
with the Franck-Condon Principle will efficiently reach
an outer turning point of the b(1) 3Π state, Rvb+. How-
ever, especially for the heteronuclear alkali dimers includ-
ing a Rb or Cs atom, levels of the b 3Π state will be
strongly mixed with levels of the A(2) 1Σ+ state. Such
mixed upper levels will be sparse in LiNa (as in Li2),
dense in NaRb, KRb and RbCs, and intermediate in NaK.
Such levels will have four turning points, two associated
with the b 3Π state (Rvb±) and two associated with the
A 1Σ+ state (RvA±). By a somewhat fortunate coinci-
dence, the appropriate RvA− turning points are directly
above the ground X 1Σ+ Re region, i.e. between the turn-
ing points R0X±. Such turning point matches imply large
transition moment/Franck-Condon factors for both the
PUMP step (a 3Σ+ → b 3Π ∼ A 1Σ+) and the DUMP
step (b 3Π ∼ A 1Σ+ → X 1Σ+) of a stimulated Raman
transition.

3 Specific heteronuclear alkali dimers

Let us begin a more detailed discussion with KRb, as
shown in Figure 1, a case for which both photoassocia-
tive spectra [49,50] and Feshbach resonance data [54] are
available. There are three sets of high quality ab initio cal-
culations available [55–57] as well as an accurate descrip-
tion of the long-range portion of the potential in terms
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valence correlation by a superposition of atomic one-elec-
tron polarization potentials is 6 cm - 1 for Li2,40 and 4 cm - 1 
for NaK.14 Neglecting core polarization altogether leads to 
errors of 4 cm -I for Li22,39 and 8 cm -I for NaK.2 

The interpolation formula by Cavaliere et al., 48 based on 
the ionization energies of the atoms and the (()e values of the 
homonuc1ear dimers, leads to deviations from our results for 
the mixed dimers of up to - 10 cm - I, the deviations being 
largest for the Li-containing molecules. 

D. Ionization energies 
Table IV contains our calculated values of vertical and 

adiabatic ionization potentials, I.P' v and I.P.a , and com-
parison is made to experimental data where available. The 
calculated values are from separate calculations for XY and 
XY+ at the equilibrium bond length of XY, in the case of 
I.P. v ; forI.P. a , our present results for De (XY) are combined 
with previous ones5,19 for De (XY+) and experimental 
atomic I.P. values. The experimental spectroscopic data for 
Li2, Na2, K 2, and NaK are to be considered as adiabatic 
ionization potentials.54,56,57 They agree with our computed 
I.P' Q to <0.02 eV. The agreement is much worse with the 
electron impact measurements for LiNa and LiK by 2mbov 
et al.55 Although the error bars given by 2mbov et al. are 
quite large ( ± 0.1 e V), neither our computed I,P'Q nor our 
I.P. v are within the error bars for both of the molecules. We 
feel that the experimental accuracy may have been overesti-
mated by 2mbov et al. 

The computed all-electron CPP results by Muller and 
Meyer,2 for which an accuracy of <0.01 eV has been 
claimed, are within 0.01 eV of our I.P'Q values, for the 
dimers XY (X, Y = Li to K). The pseudopotential value for 
CS2 in Ref. 20 (perturbative treatment of core-valence corre-
lation) is smaller than ours by 0.04 eV; this deviation is in 
line with the corresponding one for De and may be 
attributed, for the main part, to the limited basis set in Ref. 
20. The neglect of core-valence correlation leads to rather 

TABLE V. Dipole moments (in D) of alkali dimers XY (experimental val-
ues in parentheses). 

Na K 

Li 0.53 3.50 
(0.45a ) (3.4Ib ) 

Na 2.75 
(2.73d ) 

K 
Rb 

• Reference 26. 
bReference 59, with B. from Ref. 27. 
c Reference 59, with B. from this work. 
dReference 53. 
"Reference 59, with B. from Ref. 31. 

Rb Cs 

4.13 5.48 
(4.01" ) 
3.33 4.60 

(3.05" ) (4.57" ) 
0.64 1.92 

1.26 

large errors for I.P'a (0.05 eV for Li2, 0.27 eV for NaK2); the 
errors are larger than for De (XY), since in De (XY) the 
contribution of the attractive one-electron part of the CPP is 
nearly cancelled by the repulsive one of the two-electron 
part, while such a cancellation does not occur for De (XY+ ). 

The difference between vertical and adiabatic ionization 
energy is of the order of 0.1 e V, in our calculations, and the 
change ofI.P.v - I.P'Q from Li2 (0.11 eV) to CS2 (0.06 eV) 
is roughly proportional to the magnitude of the ionization 
potentials themselves. 

E. Dipole moments 
Our calculated dipole moments for R = Re are collect-

ed in Table V. The valence dipole moments /-Lv have been 
corrected by the induced dipole moments of the alkali cores 
/-Lc = a(f), where a is the core dipole polarizability and (f) 
is the mean value of the electric field at the site of the core. 
Note that, in contrast to Eq. (3), no cut-off factor has been 
used for determining (f). We also give experimental values, 
for comparison, in Table V. They are derived from ground 
vibronic Stark coefficients approximating /-L; by 

TABLE IV. Vertical/adiabatic ionization energies (in e V) of alkali dimers XY (experimental values in paren-
theses). 

Li 

Na 

K 

Rb 

Cs 

• Reference 54. 
b Reference 55. 
"Reference 56. 
dReference 57. 
"Reference 58. 
fReference 50. 

Li 

5.26/5.15 
(5.14" ) 

Na 

5.12/5.00 
(4.94b ) 

4.99/4.88 
(4.90" ) 

K Rb Cs 

4.61/4.50 4.49/4.38 4.28/4.19 
(4.69b ) 

4.51/4.41 4.39/4.30 4.18/4.10 
(4.42d ) 

4.14/4.05 4.05/3.97 3.89/3.81 
(4.06· ) 

3.97/3.89 3.82/3.75 
(3.44 ... 3.95f ) 

3.68/3.62 
(3.59 ... 3.82f ) 
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lower levels, where the thermal dissociation can be turned
off by ultracold temperatures [2,32]. More recently, at-
tention has also focused on “the BEC-BCS Crossover”,
where “Cooper pairs” of resonant unbound Fermi atoms
undergo BEC [33–35] and give rise to superfluidity [36].
Very recently, an optically tuned Feshbach resonance in
87Rb2 has also been observed [37], as proposed in [38] and
further discussed in [39,40].

Thus there is great excitement and rapid progress
in producing Feshbach-resonance-related ultracold alkali
dimer molecules, particularly 6Li2 and 40K2. However, the
conversion of these molecules to X 1Σ+

g v = 0, J = 0
molecules and a “stable” molecule BEC is not straight-
forward. Ignoring hyperfine, a stimulated Raman process
would not work efficiently to convert a predominantly
triplet ungerade Feshbach-resonance-related state into a
singlet gerade ground state. The hyperfine terms in the
Hamiltonian do mix u and g symmetries and would al-
low some conversion, but the Franck-Condon factors for
X 1Σ+

g (vmax) → A 1Σ+
u (various v) → X 1Σ+

g (v = 0)
are quite small. Nevertheless, weak transitions to pri-
marily triplet levels very near dissociation have been ob-
served [41]; thus a stimulated Raman (e.g. STIRAP [42])
conversion of such levels to X 1Σ+

g (v = 0, J = 0) remains
a challenging possibility. Moreover, there is a large poten-
tial barrier if the B 1Πu state replaces the A 1Σ+

u state
as the intermediate state. There are similar problems for
other higher energy 1Σ+

u and 1Πu states as well.

2 Heteronuclear alkali dimers

The progress on photoassociation [43], formation of ul-
tracold molecules [1,44], determination of Feshbach reso-
nances, etc. for heteronuclear alkali dimer molecules is well
behind that for homonuclear alkali dimer molecules. Ul-
tracold polar alkali dimer molecules have been observed
for NaCs+ [45], RbCs [46,47], and KRb [48–50]. Pho-
toassociative spectra have only been recently observed for
RbCs [51] and KRb [49,50]. However, accurate ab initio
calculations and limited molecular spectra are available
for all polar alkali dimers (excluding those containing Fr).
The non-polar 6Li7Li molecule has also been observed by
photoassociation [52]. Very recently Feshbach resonances
have been experimentally observed for LiNa [53] and
KRb [54], opening the way for copious production of near-
dissociation levels of heteronuclear polar molecules and
formation of quantum degenerate gases of such molecules.
What we wish to emphasize here is that we believe such
molecules can be efficiently converted to v = 0, J = 0,
ground X 1Σ+ state molecules by a stimulated Raman
process (e.g. STIRAP [42]) via b 3Π ∼ A 1Σ+ mixed
levels.

Five examples of heteronuclear polar alkali dimers are
shown in Figures 1–5. In each case, the potential curves
plotted are based on high quality ab initio calculations,
but experimentally-based RKR potentials are virtually
identical, e.g. for NaK for which the greatest amount of
spectroscopic data is available. In each case, the proposed
initial state is a very slightly bound state correlating to a

Fig. 1. Ab initio potential energy curves of KRb [55]. The hor-
izontal lines represent the three levels involved in the proposed
stimulated Raman transition: the initial a 3Σ+ level near dis-
sociation created via a Feshbach resonance; the intermediate
level of mixed singlet-triplet character (b(1) 3Π ∼ A(2) 1Σ+)
with four important turning points (see text); and the final
true ground state level, X 1Σ+ v = 0, J = 0. The PUMP
“triplet” transition excites the initial level up to the interme-
diate level and the DUMP “singlet” transition de-excites the
intermediate level to the final level.

quasibound Feshbach-resonance-related state of predom-
inantly triplet character (especially near its inner turn-
ing RFR−). A vertical excitation from RFR− in accord
with the Franck-Condon Principle will efficiently reach
an outer turning point of the b(1) 3Π state, Rvb+. How-
ever, especially for the heteronuclear alkali dimers includ-
ing a Rb or Cs atom, levels of the b 3Π state will be
strongly mixed with levels of the A(2) 1Σ+ state. Such
mixed upper levels will be sparse in LiNa (as in Li2),
dense in NaRb, KRb and RbCs, and intermediate in NaK.
Such levels will have four turning points, two associated
with the b 3Π state (Rvb±) and two associated with the
A 1Σ+ state (RvA±). By a somewhat fortunate coinci-
dence, the appropriate RvA− turning points are directly
above the ground X 1Σ+ Re region, i.e. between the turn-
ing points R0X±. Such turning point matches imply large
transition moment/Franck-Condon factors for both the
PUMP step (a 3Σ+ → b 3Π ∼ A 1Σ+) and the DUMP
step (b 3Π ∼ A 1Σ+ → X 1Σ+) of a stimulated Raman
transition.

3 Specific heteronuclear alkali dimers

Let us begin a more detailed discussion with KRb, as
shown in Figure 1, a case for which both photoassocia-
tive spectra [49,50] and Feshbach resonance data [54] are
available. There are three sets of high quality ab initio cal-
culations available [55–57] as well as an accurate descrip-
tion of the long-range portion of the potential in terms
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Limitations of KRb ?
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NaK, NaRb, NaCs, KCs, RbCs (endoergic - stable)
LiNa, LiK, LiRb, LiCs and KRb (exoergic - unstable)

solution : ultra-cold paramagnetic polar molecules made from 
alkaline-earth or rare earth + alkali atoms : SrLi, YbLi

• chemically reactive

• Zero spin
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valence correlation by a superposition of atomic one-elec-
tron polarization potentials is 6 cm - 1 for Li2,40 and 4 cm - 1 
for NaK.14 Neglecting core polarization altogether leads to 
errors of 4 cm -I for Li22,39 and 8 cm -I for NaK.2 

The interpolation formula by Cavaliere et al., 48 based on 
the ionization energies of the atoms and the (()e values of the 
homonuc1ear dimers, leads to deviations from our results for 
the mixed dimers of up to - 10 cm - I, the deviations being 
largest for the Li-containing molecules. 

D. Ionization energies 
Table IV contains our calculated values of vertical and 

adiabatic ionization potentials, I.P' v and I.P.a , and com-
parison is made to experimental data where available. The 
calculated values are from separate calculations for XY and 
XY+ at the equilibrium bond length of XY, in the case of 
I.P. v ; forI.P. a , our present results for De (XY) are combined 
with previous ones5,19 for De (XY+) and experimental 
atomic I.P. values. The experimental spectroscopic data for 
Li2, Na2, K 2, and NaK are to be considered as adiabatic 
ionization potentials.54,56,57 They agree with our computed 
I.P' Q to <0.02 eV. The agreement is much worse with the 
electron impact measurements for LiNa and LiK by 2mbov 
et al.55 Although the error bars given by 2mbov et al. are 
quite large ( ± 0.1 e V), neither our computed I,P'Q nor our 
I.P. v are within the error bars for both of the molecules. We 
feel that the experimental accuracy may have been overesti-
mated by 2mbov et al. 

The computed all-electron CPP results by Muller and 
Meyer,2 for which an accuracy of <0.01 eV has been 
claimed, are within 0.01 eV of our I.P'Q values, for the 
dimers XY (X, Y = Li to K). The pseudopotential value for 
CS2 in Ref. 20 (perturbative treatment of core-valence corre-
lation) is smaller than ours by 0.04 eV; this deviation is in 
line with the corresponding one for De and may be 
attributed, for the main part, to the limited basis set in Ref. 
20. The neglect of core-valence correlation leads to rather 

TABLE V. Dipole moments (in D) of alkali dimers XY (experimental val-
ues in parentheses). 

Na K 

Li 0.53 3.50 
(0.45a ) (3.4Ib ) 

Na 2.75 
(2.73d ) 

K 
Rb 

• Reference 26. 
bReference 59, with B. from Ref. 27. 
c Reference 59, with B. from this work. 
dReference 53. 
"Reference 59, with B. from Ref. 31. 

Rb Cs 

4.13 5.48 
(4.01" ) 
3.33 4.60 

(3.05" ) (4.57" ) 
0.64 1.92 

1.26 

large errors for I.P'a (0.05 eV for Li2, 0.27 eV for NaK2); the 
errors are larger than for De (XY), since in De (XY) the 
contribution of the attractive one-electron part of the CPP is 
nearly cancelled by the repulsive one of the two-electron 
part, while such a cancellation does not occur for De (XY+ ). 

The difference between vertical and adiabatic ionization 
energy is of the order of 0.1 e V, in our calculations, and the 
change ofI.P.v - I.P'Q from Li2 (0.11 eV) to CS2 (0.06 eV) 
is roughly proportional to the magnitude of the ionization 
potentials themselves. 

E. Dipole moments 
Our calculated dipole moments for R = Re are collect-

ed in Table V. The valence dipole moments /-Lv have been 
corrected by the induced dipole moments of the alkali cores 
/-Lc = a(f), where a is the core dipole polarizability and (f) 
is the mean value of the electric field at the site of the core. 
Note that, in contrast to Eq. (3), no cut-off factor has been 
used for determining (f). We also give experimental values, 
for comparison, in Table V. They are derived from ground 
vibronic Stark coefficients approximating /-L; by 

TABLE IV. Vertical/adiabatic ionization energies (in e V) of alkali dimers XY (experimental values in paren-
theses). 

Li 

Na 

K 

Rb 

Cs 

• Reference 54. 
b Reference 55. 
"Reference 56. 
dReference 57. 
"Reference 58. 
fReference 50. 

Li 

5.26/5.15 
(5.14" ) 

Na 

5.12/5.00 
(4.94b ) 

4.99/4.88 
(4.90" ) 

K Rb Cs 

4.61/4.50 4.49/4.38 4.28/4.19 
(4.69b ) 

4.51/4.41 4.39/4.30 4.18/4.10 
(4.42d ) 

4.14/4.05 4.05/3.97 3.89/3.81 
(4.06· ) 

3.97/3.89 3.82/3.75 
(3.44 ... 3.95f ) 

3.68/3.62 
(3.59 ... 3.82f ) 
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lower levels, where the thermal dissociation can be turned
off by ultracold temperatures [2,32]. More recently, at-
tention has also focused on “the BEC-BCS Crossover”,
where “Cooper pairs” of resonant unbound Fermi atoms
undergo BEC [33–35] and give rise to superfluidity [36].
Very recently, an optically tuned Feshbach resonance in
87Rb2 has also been observed [37], as proposed in [38] and
further discussed in [39,40].

Thus there is great excitement and rapid progress
in producing Feshbach-resonance-related ultracold alkali
dimer molecules, particularly 6Li2 and 40K2. However, the
conversion of these molecules to X 1Σ+

g v = 0, J = 0
molecules and a “stable” molecule BEC is not straight-
forward. Ignoring hyperfine, a stimulated Raman process
would not work efficiently to convert a predominantly
triplet ungerade Feshbach-resonance-related state into a
singlet gerade ground state. The hyperfine terms in the
Hamiltonian do mix u and g symmetries and would al-
low some conversion, but the Franck-Condon factors for
X 1Σ+

g (vmax) → A 1Σ+
u (various v) → X 1Σ+

g (v = 0)
are quite small. Nevertheless, weak transitions to pri-
marily triplet levels very near dissociation have been ob-
served [41]; thus a stimulated Raman (e.g. STIRAP [42])
conversion of such levels to X 1Σ+

g (v = 0, J = 0) remains
a challenging possibility. Moreover, there is a large poten-
tial barrier if the B 1Πu state replaces the A 1Σ+

u state
as the intermediate state. There are similar problems for
other higher energy 1Σ+

u and 1Πu states as well.

2 Heteronuclear alkali dimers

The progress on photoassociation [43], formation of ul-
tracold molecules [1,44], determination of Feshbach reso-
nances, etc. for heteronuclear alkali dimer molecules is well
behind that for homonuclear alkali dimer molecules. Ul-
tracold polar alkali dimer molecules have been observed
for NaCs+ [45], RbCs [46,47], and KRb [48–50]. Pho-
toassociative spectra have only been recently observed for
RbCs [51] and KRb [49,50]. However, accurate ab initio
calculations and limited molecular spectra are available
for all polar alkali dimers (excluding those containing Fr).
The non-polar 6Li7Li molecule has also been observed by
photoassociation [52]. Very recently Feshbach resonances
have been experimentally observed for LiNa [53] and
KRb [54], opening the way for copious production of near-
dissociation levels of heteronuclear polar molecules and
formation of quantum degenerate gases of such molecules.
What we wish to emphasize here is that we believe such
molecules can be efficiently converted to v = 0, J = 0,
ground X 1Σ+ state molecules by a stimulated Raman
process (e.g. STIRAP [42]) via b 3Π ∼ A 1Σ+ mixed
levels.

Five examples of heteronuclear polar alkali dimers are
shown in Figures 1–5. In each case, the potential curves
plotted are based on high quality ab initio calculations,
but experimentally-based RKR potentials are virtually
identical, e.g. for NaK for which the greatest amount of
spectroscopic data is available. In each case, the proposed
initial state is a very slightly bound state correlating to a

Fig. 1. Ab initio potential energy curves of KRb [55]. The hor-
izontal lines represent the three levels involved in the proposed
stimulated Raman transition: the initial a 3Σ+ level near dis-
sociation created via a Feshbach resonance; the intermediate
level of mixed singlet-triplet character (b(1) 3Π ∼ A(2) 1Σ+)
with four important turning points (see text); and the final
true ground state level, X 1Σ+ v = 0, J = 0. The PUMP
“triplet” transition excites the initial level up to the interme-
diate level and the DUMP “singlet” transition de-excites the
intermediate level to the final level.

quasibound Feshbach-resonance-related state of predom-
inantly triplet character (especially near its inner turn-
ing RFR−). A vertical excitation from RFR− in accord
with the Franck-Condon Principle will efficiently reach
an outer turning point of the b(1) 3Π state, Rvb+. How-
ever, especially for the heteronuclear alkali dimers includ-
ing a Rb or Cs atom, levels of the b 3Π state will be
strongly mixed with levels of the A(2) 1Σ+ state. Such
mixed upper levels will be sparse in LiNa (as in Li2),
dense in NaRb, KRb and RbCs, and intermediate in NaK.
Such levels will have four turning points, two associated
with the b 3Π state (Rvb±) and two associated with the
A 1Σ+ state (RvA±). By a somewhat fortunate coinci-
dence, the appropriate RvA− turning points are directly
above the ground X 1Σ+ Re region, i.e. between the turn-
ing points R0X±. Such turning point matches imply large
transition moment/Franck-Condon factors for both the
PUMP step (a 3Σ+ → b 3Π ∼ A 1Σ+) and the DUMP
step (b 3Π ∼ A 1Σ+ → X 1Σ+) of a stimulated Raman
transition.

3 Specific heteronuclear alkali dimers

Let us begin a more detailed discussion with KRb, as
shown in Figure 1, a case for which both photoassocia-
tive spectra [49,50] and Feshbach resonance data [54] are
available. There are three sets of high quality ab initio cal-
culations available [55–57] as well as an accurate descrip-
tion of the long-range portion of the potential in terms

Quantum degenerate polar molecules 
from cold atoms: state of the art

2004 Proposal: Efficient conversion of ultracold Feshbach-resonance-related 
polar molecules into ultracold ground state molecules [Stwalley], 
Eur. Phys. J. D 31, 221–225 (2004)

• 2008, Ultracold dense gas of deeply bound heteronuclear 
molecules [Jin, Ye]  (KRb)
• 2010, Dipolar collisions of polar molecules
• 2012, Long-Lived Dipolar Molecules in a 3D Optical Lattice

Limitations of KRb ?

solution: other alkali mixtures are chemically stable
NaK, NaRb, NaCs, KCs, RbCs (endoergic - stable)
LiNa, LiK, LiRb, LiCs and KRb (exoergic - unstable)

solution : ultra-cold paramagnetic polar molecules made from 
alkaline-earth or rare earth + alkali atoms : SrLi, YbLi

• chemically reactive

• Zero spin

what about the triplet state of a bi-alkali molecule?
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valence correlation by a superposition of atomic one-elec-
tron polarization potentials is 6 cm - 1 for Li2,40 and 4 cm - 1 
for NaK.14 Neglecting core polarization altogether leads to 
errors of 4 cm -I for Li22,39 and 8 cm -I for NaK.2 

The interpolation formula by Cavaliere et al., 48 based on 
the ionization energies of the atoms and the (()e values of the 
homonuc1ear dimers, leads to deviations from our results for 
the mixed dimers of up to - 10 cm - I, the deviations being 
largest for the Li-containing molecules. 

D. Ionization energies 
Table IV contains our calculated values of vertical and 

adiabatic ionization potentials, I.P' v and I.P.a , and com-
parison is made to experimental data where available. The 
calculated values are from separate calculations for XY and 
XY+ at the equilibrium bond length of XY, in the case of 
I.P. v ; forI.P. a , our present results for De (XY) are combined 
with previous ones5,19 for De (XY+) and experimental 
atomic I.P. values. The experimental spectroscopic data for 
Li2, Na2, K 2, and NaK are to be considered as adiabatic 
ionization potentials.54,56,57 They agree with our computed 
I.P' Q to <0.02 eV. The agreement is much worse with the 
electron impact measurements for LiNa and LiK by 2mbov 
et al.55 Although the error bars given by 2mbov et al. are 
quite large ( ± 0.1 e V), neither our computed I,P'Q nor our 
I.P. v are within the error bars for both of the molecules. We 
feel that the experimental accuracy may have been overesti-
mated by 2mbov et al. 

The computed all-electron CPP results by Muller and 
Meyer,2 for which an accuracy of <0.01 eV has been 
claimed, are within 0.01 eV of our I.P'Q values, for the 
dimers XY (X, Y = Li to K). The pseudopotential value for 
CS2 in Ref. 20 (perturbative treatment of core-valence corre-
lation) is smaller than ours by 0.04 eV; this deviation is in 
line with the corresponding one for De and may be 
attributed, for the main part, to the limited basis set in Ref. 
20. The neglect of core-valence correlation leads to rather 

TABLE V. Dipole moments (in D) of alkali dimers XY (experimental val-
ues in parentheses). 

Na K 

Li 0.53 3.50 
(0.45a ) (3.4Ib ) 

Na 2.75 
(2.73d ) 

K 
Rb 

• Reference 26. 
bReference 59, with B. from Ref. 27. 
c Reference 59, with B. from this work. 
dReference 53. 
"Reference 59, with B. from Ref. 31. 

Rb Cs 

4.13 5.48 
(4.01" ) 
3.33 4.60 

(3.05" ) (4.57" ) 
0.64 1.92 

1.26 

large errors for I.P'a (0.05 eV for Li2, 0.27 eV for NaK2); the 
errors are larger than for De (XY), since in De (XY) the 
contribution of the attractive one-electron part of the CPP is 
nearly cancelled by the repulsive one of the two-electron 
part, while such a cancellation does not occur for De (XY+ ). 

The difference between vertical and adiabatic ionization 
energy is of the order of 0.1 e V, in our calculations, and the 
change ofI.P.v - I.P'Q from Li2 (0.11 eV) to CS2 (0.06 eV) 
is roughly proportional to the magnitude of the ionization 
potentials themselves. 

E. Dipole moments 
Our calculated dipole moments for R = Re are collect-

ed in Table V. The valence dipole moments /-Lv have been 
corrected by the induced dipole moments of the alkali cores 
/-Lc = a(f), where a is the core dipole polarizability and (f) 
is the mean value of the electric field at the site of the core. 
Note that, in contrast to Eq. (3), no cut-off factor has been 
used for determining (f). We also give experimental values, 
for comparison, in Table V. They are derived from ground 
vibronic Stark coefficients approximating /-L; by 

TABLE IV. Vertical/adiabatic ionization energies (in e V) of alkali dimers XY (experimental values in paren-
theses). 

Li 

Na 

K 

Rb 

Cs 

• Reference 54. 
b Reference 55. 
"Reference 56. 
dReference 57. 
"Reference 58. 
fReference 50. 

Li 

5.26/5.15 
(5.14" ) 

Na 

5.12/5.00 
(4.94b ) 

4.99/4.88 
(4.90" ) 

K Rb Cs 

4.61/4.50 4.49/4.38 4.28/4.19 
(4.69b ) 

4.51/4.41 4.39/4.30 4.18/4.10 
(4.42d ) 

4.14/4.05 4.05/3.97 3.89/3.81 
(4.06· ) 

3.97/3.89 3.82/3.75 
(3.44 ... 3.95f ) 

3.68/3.62 
(3.59 ... 3.82f ) 
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valence correlation by a superposition of atomic one-elec-
tron polarization potentials is 6 cm - 1 for Li2,40 and 4 cm - 1 
for NaK.14 Neglecting core polarization altogether leads to 
errors of 4 cm -I for Li22,39 and 8 cm -I for NaK.2 

The interpolation formula by Cavaliere et al., 48 based on 
the ionization energies of the atoms and the (()e values of the 
homonuc1ear dimers, leads to deviations from our results for 
the mixed dimers of up to - 10 cm - I, the deviations being 
largest for the Li-containing molecules. 

D. Ionization energies 
Table IV contains our calculated values of vertical and 

adiabatic ionization potentials, I.P' v and I.P.a , and com-
parison is made to experimental data where available. The 
calculated values are from separate calculations for XY and 
XY+ at the equilibrium bond length of XY, in the case of 
I.P. v ; forI.P. a , our present results for De (XY) are combined 
with previous ones5,19 for De (XY+) and experimental 
atomic I.P. values. The experimental spectroscopic data for 
Li2, Na2, K 2, and NaK are to be considered as adiabatic 
ionization potentials.54,56,57 They agree with our computed 
I.P' Q to <0.02 eV. The agreement is much worse with the 
electron impact measurements for LiNa and LiK by 2mbov 
et al.55 Although the error bars given by 2mbov et al. are 
quite large ( ± 0.1 e V), neither our computed I,P'Q nor our 
I.P. v are within the error bars for both of the molecules. We 
feel that the experimental accuracy may have been overesti-
mated by 2mbov et al. 

The computed all-electron CPP results by Muller and 
Meyer,2 for which an accuracy of <0.01 eV has been 
claimed, are within 0.01 eV of our I.P'Q values, for the 
dimers XY (X, Y = Li to K). The pseudopotential value for 
CS2 in Ref. 20 (perturbative treatment of core-valence corre-
lation) is smaller than ours by 0.04 eV; this deviation is in 
line with the corresponding one for De and may be 
attributed, for the main part, to the limited basis set in Ref. 
20. The neglect of core-valence correlation leads to rather 

TABLE V. Dipole moments (in D) of alkali dimers XY (experimental val-
ues in parentheses). 

Na K 

Li 0.53 3.50 
(0.45a ) (3.4Ib ) 

Na 2.75 
(2.73d ) 

K 
Rb 

• Reference 26. 
bReference 59, with B. from Ref. 27. 
c Reference 59, with B. from this work. 
dReference 53. 
"Reference 59, with B. from Ref. 31. 

Rb Cs 

4.13 5.48 
(4.01" ) 
3.33 4.60 

(3.05" ) (4.57" ) 
0.64 1.92 

1.26 

large errors for I.P'a (0.05 eV for Li2, 0.27 eV for NaK2); the 
errors are larger than for De (XY), since in De (XY) the 
contribution of the attractive one-electron part of the CPP is 
nearly cancelled by the repulsive one of the two-electron 
part, while such a cancellation does not occur for De (XY+ ). 

The difference between vertical and adiabatic ionization 
energy is of the order of 0.1 e V, in our calculations, and the 
change ofI.P.v - I.P'Q from Li2 (0.11 eV) to CS2 (0.06 eV) 
is roughly proportional to the magnitude of the ionization 
potentials themselves. 

E. Dipole moments 
Our calculated dipole moments for R = Re are collect-

ed in Table V. The valence dipole moments /-Lv have been 
corrected by the induced dipole moments of the alkali cores 
/-Lc = a(f), where a is the core dipole polarizability and (f) 
is the mean value of the electric field at the site of the core. 
Note that, in contrast to Eq. (3), no cut-off factor has been 
used for determining (f). We also give experimental values, 
for comparison, in Table V. They are derived from ground 
vibronic Stark coefficients approximating /-L; by 

TABLE IV. Vertical/adiabatic ionization energies (in e V) of alkali dimers XY (experimental values in paren-
theses). 

Li 

Na 

K 

Rb 

Cs 

• Reference 54. 
b Reference 55. 
"Reference 56. 
dReference 57. 
"Reference 58. 
fReference 50. 

Li 

5.26/5.15 
(5.14" ) 

Na 

5.12/5.00 
(4.94b ) 

4.99/4.88 
(4.90" ) 

K Rb Cs 

4.61/4.50 4.49/4.38 4.28/4.19 
(4.69b ) 

4.51/4.41 4.39/4.30 4.18/4.10 
(4.42d ) 

4.14/4.05 4.05/3.97 3.89/3.81 
(4.06· ) 

3.97/3.89 3.82/3.75 
(3.44 ... 3.95f ) 

3.68/3.62 
(3.59 ... 3.82f ) 
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Downloaded 17 Feb 2013 to 128.189.113.51. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

Dipole moments (Debye)

J. Chem. Phys. 84, 5007 (1986)

(DM of singlet state KRb is about 0.5 Debye)

magnetically tunable collisions (FRs)



What about the lowest triplet state?

singlet g.s.

triplet g.s.

√  paramagnetic

√  somewhat polar (triplet DM ~1/10 that of singlet)
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valence correlation by a superposition of atomic one-elec-
tron polarization potentials is 6 cm - 1 for Li2,40 and 4 cm - 1 
for NaK.14 Neglecting core polarization altogether leads to 
errors of 4 cm -I for Li22,39 and 8 cm -I for NaK.2 

The interpolation formula by Cavaliere et al., 48 based on 
the ionization energies of the atoms and the (()e values of the 
homonuc1ear dimers, leads to deviations from our results for 
the mixed dimers of up to - 10 cm - I, the deviations being 
largest for the Li-containing molecules. 

D. Ionization energies 
Table IV contains our calculated values of vertical and 

adiabatic ionization potentials, I.P' v and I.P.a , and com-
parison is made to experimental data where available. The 
calculated values are from separate calculations for XY and 
XY+ at the equilibrium bond length of XY, in the case of 
I.P. v ; forI.P. a , our present results for De (XY) are combined 
with previous ones5,19 for De (XY+) and experimental 
atomic I.P. values. The experimental spectroscopic data for 
Li2, Na2, K 2, and NaK are to be considered as adiabatic 
ionization potentials.54,56,57 They agree with our computed 
I.P' Q to <0.02 eV. The agreement is much worse with the 
electron impact measurements for LiNa and LiK by 2mbov 
et al.55 Although the error bars given by 2mbov et al. are 
quite large ( ± 0.1 e V), neither our computed I,P'Q nor our 
I.P. v are within the error bars for both of the molecules. We 
feel that the experimental accuracy may have been overesti-
mated by 2mbov et al. 

The computed all-electron CPP results by Muller and 
Meyer,2 for which an accuracy of <0.01 eV has been 
claimed, are within 0.01 eV of our I.P'Q values, for the 
dimers XY (X, Y = Li to K). The pseudopotential value for 
CS2 in Ref. 20 (perturbative treatment of core-valence corre-
lation) is smaller than ours by 0.04 eV; this deviation is in 
line with the corresponding one for De and may be 
attributed, for the main part, to the limited basis set in Ref. 
20. The neglect of core-valence correlation leads to rather 

TABLE V. Dipole moments (in D) of alkali dimers XY (experimental val-
ues in parentheses). 

Na K 

Li 0.53 3.50 
(0.45a ) (3.4Ib ) 

Na 2.75 
(2.73d ) 

K 
Rb 

• Reference 26. 
bReference 59, with B. from Ref. 27. 
c Reference 59, with B. from this work. 
dReference 53. 
"Reference 59, with B. from Ref. 31. 

Rb Cs 

4.13 5.48 
(4.01" ) 
3.33 4.60 

(3.05" ) (4.57" ) 
0.64 1.92 

1.26 

large errors for I.P'a (0.05 eV for Li2, 0.27 eV for NaK2); the 
errors are larger than for De (XY), since in De (XY) the 
contribution of the attractive one-electron part of the CPP is 
nearly cancelled by the repulsive one of the two-electron 
part, while such a cancellation does not occur for De (XY+ ). 

The difference between vertical and adiabatic ionization 
energy is of the order of 0.1 e V, in our calculations, and the 
change ofI.P.v - I.P'Q from Li2 (0.11 eV) to CS2 (0.06 eV) 
is roughly proportional to the magnitude of the ionization 
potentials themselves. 

E. Dipole moments 
Our calculated dipole moments for R = Re are collect-

ed in Table V. The valence dipole moments /-Lv have been 
corrected by the induced dipole moments of the alkali cores 
/-Lc = a(f), where a is the core dipole polarizability and (f) 
is the mean value of the electric field at the site of the core. 
Note that, in contrast to Eq. (3), no cut-off factor has been 
used for determining (f). We also give experimental values, 
for comparison, in Table V. They are derived from ground 
vibronic Stark coefficients approximating /-L; by 

TABLE IV. Vertical/adiabatic ionization energies (in e V) of alkali dimers XY (experimental values in paren-
theses). 

Li 

Na 

K 

Rb 

Cs 

• Reference 54. 
b Reference 55. 
"Reference 56. 
dReference 57. 
"Reference 58. 
fReference 50. 

Li 

5.26/5.15 
(5.14" ) 

Na 

5.12/5.00 
(4.94b ) 

4.99/4.88 
(4.90" ) 

K Rb Cs 

4.61/4.50 4.49/4.38 4.28/4.19 
(4.69b ) 

4.51/4.41 4.39/4.30 4.18/4.10 
(4.42d ) 

4.14/4.05 4.05/3.97 3.89/3.81 
(4.06· ) 

3.97/3.89 3.82/3.75 
(3.44 ... 3.95f ) 

3.68/3.62 
(3.59 ... 3.82f ) 
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???  Is it stable ???

(DM of singlet state KRb is about 0.5 Debye)

magnetically tunable collisions (FRs)



What about the lowest triplet state?

singlet g.s.

triplet g.s.

√  paramagnetic

√  somewhat polar (triplet DM ~1/10 that of singlet)
DM of triplet state LiRb is about 0.4 Debye

• spin relaxation collisions (triplet to singlet coupling) ?

• chemical reactivity ?

• spontaneous emission ?

5010 Igel-Mann et al. : Ground-state properties of alkali dimers 

valence correlation by a superposition of atomic one-elec-
tron polarization potentials is 6 cm - 1 for Li2,40 and 4 cm - 1 
for NaK.14 Neglecting core polarization altogether leads to 
errors of 4 cm -I for Li22,39 and 8 cm -I for NaK.2 

The interpolation formula by Cavaliere et al., 48 based on 
the ionization energies of the atoms and the (()e values of the 
homonuc1ear dimers, leads to deviations from our results for 
the mixed dimers of up to - 10 cm - I, the deviations being 
largest for the Li-containing molecules. 

D. Ionization energies 
Table IV contains our calculated values of vertical and 

adiabatic ionization potentials, I.P' v and I.P.a , and com-
parison is made to experimental data where available. The 
calculated values are from separate calculations for XY and 
XY+ at the equilibrium bond length of XY, in the case of 
I.P. v ; forI.P. a , our present results for De (XY) are combined 
with previous ones5,19 for De (XY+) and experimental 
atomic I.P. values. The experimental spectroscopic data for 
Li2, Na2, K 2, and NaK are to be considered as adiabatic 
ionization potentials.54,56,57 They agree with our computed 
I.P' Q to <0.02 eV. The agreement is much worse with the 
electron impact measurements for LiNa and LiK by 2mbov 
et al.55 Although the error bars given by 2mbov et al. are 
quite large ( ± 0.1 e V), neither our computed I,P'Q nor our 
I.P. v are within the error bars for both of the molecules. We 
feel that the experimental accuracy may have been overesti-
mated by 2mbov et al. 

The computed all-electron CPP results by Muller and 
Meyer,2 for which an accuracy of <0.01 eV has been 
claimed, are within 0.01 eV of our I.P'Q values, for the 
dimers XY (X, Y = Li to K). The pseudopotential value for 
CS2 in Ref. 20 (perturbative treatment of core-valence corre-
lation) is smaller than ours by 0.04 eV; this deviation is in 
line with the corresponding one for De and may be 
attributed, for the main part, to the limited basis set in Ref. 
20. The neglect of core-valence correlation leads to rather 

TABLE V. Dipole moments (in D) of alkali dimers XY (experimental val-
ues in parentheses). 

Na K 

Li 0.53 3.50 
(0.45a ) (3.4Ib ) 

Na 2.75 
(2.73d ) 

K 
Rb 

• Reference 26. 
bReference 59, with B. from Ref. 27. 
c Reference 59, with B. from this work. 
dReference 53. 
"Reference 59, with B. from Ref. 31. 

Rb Cs 

4.13 5.48 
(4.01" ) 
3.33 4.60 

(3.05" ) (4.57" ) 
0.64 1.92 

1.26 

large errors for I.P'a (0.05 eV for Li2, 0.27 eV for NaK2); the 
errors are larger than for De (XY), since in De (XY) the 
contribution of the attractive one-electron part of the CPP is 
nearly cancelled by the repulsive one of the two-electron 
part, while such a cancellation does not occur for De (XY+ ). 

The difference between vertical and adiabatic ionization 
energy is of the order of 0.1 e V, in our calculations, and the 
change ofI.P.v - I.P'Q from Li2 (0.11 eV) to CS2 (0.06 eV) 
is roughly proportional to the magnitude of the ionization 
potentials themselves. 

E. Dipole moments 
Our calculated dipole moments for R = Re are collect-

ed in Table V. The valence dipole moments /-Lv have been 
corrected by the induced dipole moments of the alkali cores 
/-Lc = a(f), where a is the core dipole polarizability and (f) 
is the mean value of the electric field at the site of the core. 
Note that, in contrast to Eq. (3), no cut-off factor has been 
used for determining (f). We also give experimental values, 
for comparison, in Table V. They are derived from ground 
vibronic Stark coefficients approximating /-L; by 

TABLE IV. Vertical/adiabatic ionization energies (in e V) of alkali dimers XY (experimental values in paren-
theses). 

Li 

Na 

K 

Rb 

Cs 

• Reference 54. 
b Reference 55. 
"Reference 56. 
dReference 57. 
"Reference 58. 
fReference 50. 

Li 

5.26/5.15 
(5.14" ) 

Na 

5.12/5.00 
(4.94b ) 

4.99/4.88 
(4.90" ) 

K Rb Cs 

4.61/4.50 4.49/4.38 4.28/4.19 
(4.69b ) 

4.51/4.41 4.39/4.30 4.18/4.10 
(4.42d ) 

4.14/4.05 4.05/3.97 3.89/3.81 
(4.06· ) 

3.97/3.89 3.82/3.75 
(3.44 ... 3.95f ) 

3.68/3.62 
(3.59 ... 3.82f ) 
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???  Is it stable ???

(DM of singlet state KRb is about 0.5 Debye)

magnetically tunable collisions (FRs)



Is the lowest triplet state stable?
• spin relaxation collisions (triplet to singlet coupling) ?

• chemical reactivity ?

by some magic*, is the triplet state stable?
* or suitably physical reasons

• spontaneous emission ?



Is the lowest triplet state stable?
• spin relaxation collisions (triplet to singlet coupling) ?

“Spin-orbit couplings are small in light systems.  For Li2, one wouldn't expect fast relaxation.
... but will be more important in heavy systems (like LiRb), but how important?”

• chemical reactivity ?

• spontaneous emission ?



Is the lowest triplet state stable?of N = 0 and the high-field-seeking states of N = 1 have
different symmetries. Therefore, the variation of the magnetic
field in the circled area of Fig. 3 does not affect collision
dynamics of trapped CaD molecules.36 An external electric
field may, however, couple states with different symmetries
(Fig. 5). Fig. 6 demonstrates the effects of combined electric
and magnetic fields on the energy levels of the CaD molecule.
In the presence of an electric field, the crossing in the circled
area of Fig. 3 becomes an avoided crossing and the collision
dynamics of CaD in the low-field-seeking Zeeman state be-
comes very sensitive to both the magnetic and electric fields.

Fig. 6 shows the cross section for magnetic spin re-orienta-
tion in collisions of CaD molecules with He atoms computed
as a function of electric and magnetic fields at a collision

energy of 0.5 K. The interaction between CaD and He is
weak.37 In the absence of electric fields or at magnetic fields far
detuned from the circled area of Fig. 3, collisions with He
cannot significantly change the orientation of the electron spin
of the molecule. At certain combinations of electric and
magnetic fields, however, the spin-up state of CaD becomes
very unstable and even weak collisional perturbations result in
spin re-orientation. The efficiency of collisional spin re-orien-
tation of 2S molecules in the rotationally ground state may
thus be controlled with superimposed electric and magnetic
fields. The same mechanism can be used to induce transitions
between the S = 0 and S = 1 states of the A(2S)–BC(2S)
reactive complex35 and manipulate the efficiency of spin-for-
bidden chemical reactions in a magnetic trap.
The development of experimental techniques for producing

slow molecular beams with narrow velocity distributions has
opened another exciting research direction to study molecular
collisions and explore new mechanisms for controlling chemi-
cal reactions in the gas phase. Meijer and coworkers17,38–41

demonstrated that molecular beams produced in a supersonic
expansion can be slowed down and bunched by an alternating

Fig. 4 Schematic illustration of minimum energy profiles for an

A(2S) + BC(2S) chemical reaction in the singlet-spin (lower curve)

and triplet-spin (upper curve) electronic states. Electric fields may

induce non-adiabatic transitions between the different spin states and

modify the reaction mechanism.

Fig. 3 Zeeman energy levels of the CaD(2S) molecule. The dashed

line indicates the energy of the molecule confined in a magnetic trap.

Fig. 5 Stark levels of the CaD molecule in a magnetic field of 0.5 T

(upper panels) and 4.7 T (lower panels) as functions of the electric field

strength. The curves are labeled by the rotational quantum number of

the molecule at zero electric field. The dashed line indicates the energy

of the molecule confined in a magnetic trap. The curved arrows

connect states coupled by electric fields; the straight arrows connect

states coupled by the spin-rotation interaction. Adapted from the

paper of E. Abrahamsson, T. V. Tscherbul and R. V. Krems, J. Chem.

Phys., 2007, 127, 044302. Copyright 2007, American Institute of

Physics.
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of N = 0 and the high-field-seeking states of N = 1 have
different symmetries. Therefore, the variation of the magnetic
field in the circled area of Fig. 3 does not affect collision
dynamics of trapped CaD molecules.36 An external electric
field may, however, couple states with different symmetries
(Fig. 5). Fig. 6 demonstrates the effects of combined electric
and magnetic fields on the energy levels of the CaD molecule.
In the presence of an electric field, the crossing in the circled
area of Fig. 3 becomes an avoided crossing and the collision
dynamics of CaD in the low-field-seeking Zeeman state be-
comes very sensitive to both the magnetic and electric fields.

Fig. 6 shows the cross section for magnetic spin re-orienta-
tion in collisions of CaD molecules with He atoms computed
as a function of electric and magnetic fields at a collision

energy of 0.5 K. The interaction between CaD and He is
weak.37 In the absence of electric fields or at magnetic fields far
detuned from the circled area of Fig. 3, collisions with He
cannot significantly change the orientation of the electron spin
of the molecule. At certain combinations of electric and
magnetic fields, however, the spin-up state of CaD becomes
very unstable and even weak collisional perturbations result in
spin re-orientation. The efficiency of collisional spin re-orien-
tation of 2S molecules in the rotationally ground state may
thus be controlled with superimposed electric and magnetic
fields. The same mechanism can be used to induce transitions
between the S = 0 and S = 1 states of the A(2S)–BC(2S)
reactive complex35 and manipulate the efficiency of spin-for-
bidden chemical reactions in a magnetic trap.
The development of experimental techniques for producing

slow molecular beams with narrow velocity distributions has
opened another exciting research direction to study molecular
collisions and explore new mechanisms for controlling chemi-
cal reactions in the gas phase. Meijer and coworkers17,38–41

demonstrated that molecular beams produced in a supersonic
expansion can be slowed down and bunched by an alternating

Fig. 4 Schematic illustration of minimum energy profiles for an

A(2S) + BC(2S) chemical reaction in the singlet-spin (lower curve)

and triplet-spin (upper curve) electronic states. Electric fields may

induce non-adiabatic transitions between the different spin states and

modify the reaction mechanism.

Fig. 3 Zeeman energy levels of the CaD(2S) molecule. The dashed

line indicates the energy of the molecule confined in a magnetic trap.

Fig. 5 Stark levels of the CaD molecule in a magnetic field of 0.5 T

(upper panels) and 4.7 T (lower panels) as functions of the electric field

strength. The curves are labeled by the rotational quantum number of

the molecule at zero electric field. The dashed line indicates the energy

of the molecule confined in a magnetic trap. The curved arrows

connect states coupled by electric fields; the straight arrows connect

states coupled by the spin-rotation interaction. Adapted from the

paper of E. Abrahamsson, T. V. Tscherbul and R. V. Krems, J. Chem.

Phys., 2007, 127, 044302. Copyright 2007, American Institute of

Physics.
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• chemical reactivity ?

• spin relaxation collisions (triplet to singlet coupling) ?

“Spin-orbit couplings are small in light systems.  For Li2, one wouldn't expect fast relaxation.
... but will be more important in heavy systems (like LiRb), but how important?”

Physical Chemistry Chemical Physics

• spontaneous emission ?



Is the lowest triplet state stable?of N = 0 and the high-field-seeking states of N = 1 have
different symmetries. Therefore, the variation of the magnetic
field in the circled area of Fig. 3 does not affect collision
dynamics of trapped CaD molecules.36 An external electric
field may, however, couple states with different symmetries
(Fig. 5). Fig. 6 demonstrates the effects of combined electric
and magnetic fields on the energy levels of the CaD molecule.
In the presence of an electric field, the crossing in the circled
area of Fig. 3 becomes an avoided crossing and the collision
dynamics of CaD in the low-field-seeking Zeeman state be-
comes very sensitive to both the magnetic and electric fields.

Fig. 6 shows the cross section for magnetic spin re-orienta-
tion in collisions of CaD molecules with He atoms computed
as a function of electric and magnetic fields at a collision

energy of 0.5 K. The interaction between CaD and He is
weak.37 In the absence of electric fields or at magnetic fields far
detuned from the circled area of Fig. 3, collisions with He
cannot significantly change the orientation of the electron spin
of the molecule. At certain combinations of electric and
magnetic fields, however, the spin-up state of CaD becomes
very unstable and even weak collisional perturbations result in
spin re-orientation. The efficiency of collisional spin re-orien-
tation of 2S molecules in the rotationally ground state may
thus be controlled with superimposed electric and magnetic
fields. The same mechanism can be used to induce transitions
between the S = 0 and S = 1 states of the A(2S)–BC(2S)
reactive complex35 and manipulate the efficiency of spin-for-
bidden chemical reactions in a magnetic trap.
The development of experimental techniques for producing

slow molecular beams with narrow velocity distributions has
opened another exciting research direction to study molecular
collisions and explore new mechanisms for controlling chemi-
cal reactions in the gas phase. Meijer and coworkers17,38–41

demonstrated that molecular beams produced in a supersonic
expansion can be slowed down and bunched by an alternating

Fig. 4 Schematic illustration of minimum energy profiles for an

A(2S) + BC(2S) chemical reaction in the singlet-spin (lower curve)

and triplet-spin (upper curve) electronic states. Electric fields may

induce non-adiabatic transitions between the different spin states and

modify the reaction mechanism.

Fig. 3 Zeeman energy levels of the CaD(2S) molecule. The dashed

line indicates the energy of the molecule confined in a magnetic trap.

Fig. 5 Stark levels of the CaD molecule in a magnetic field of 0.5 T

(upper panels) and 4.7 T (lower panels) as functions of the electric field

strength. The curves are labeled by the rotational quantum number of

the molecule at zero electric field. The dashed line indicates the energy

of the molecule confined in a magnetic trap. The curved arrows

connect states coupled by electric fields; the straight arrows connect

states coupled by the spin-rotation interaction. Adapted from the
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“The interactions between 2S atoms and 2S molecules in the triplet spin state are typically 
characterized by strongly repulsive exchange forces, leading to significant reaction barriers.”

of N = 0 and the high-field-seeking states of N = 1 have
different symmetries. Therefore, the variation of the magnetic
field in the circled area of Fig. 3 does not affect collision
dynamics of trapped CaD molecules.36 An external electric
field may, however, couple states with different symmetries
(Fig. 5). Fig. 6 demonstrates the effects of combined electric
and magnetic fields on the energy levels of the CaD molecule.
In the presence of an electric field, the crossing in the circled
area of Fig. 3 becomes an avoided crossing and the collision
dynamics of CaD in the low-field-seeking Zeeman state be-
comes very sensitive to both the magnetic and electric fields.

Fig. 6 shows the cross section for magnetic spin re-orienta-
tion in collisions of CaD molecules with He atoms computed
as a function of electric and magnetic fields at a collision

energy of 0.5 K. The interaction between CaD and He is
weak.37 In the absence of electric fields or at magnetic fields far
detuned from the circled area of Fig. 3, collisions with He
cannot significantly change the orientation of the electron spin
of the molecule. At certain combinations of electric and
magnetic fields, however, the spin-up state of CaD becomes
very unstable and even weak collisional perturbations result in
spin re-orientation. The efficiency of collisional spin re-orien-
tation of 2S molecules in the rotationally ground state may
thus be controlled with superimposed electric and magnetic
fields. The same mechanism can be used to induce transitions
between the S = 0 and S = 1 states of the A(2S)–BC(2S)
reactive complex35 and manipulate the efficiency of spin-for-
bidden chemical reactions in a magnetic trap.
The development of experimental techniques for producing

slow molecular beams with narrow velocity distributions has
opened another exciting research direction to study molecular
collisions and explore new mechanisms for controlling chemi-
cal reactions in the gas phase. Meijer and coworkers17,38–41

demonstrated that molecular beams produced in a supersonic
expansion can be slowed down and bunched by an alternating

Fig. 4 Schematic illustration of minimum energy profiles for an

A(2S) + BC(2S) chemical reaction in the singlet-spin (lower curve)

and triplet-spin (upper curve) electronic states. Electric fields may

induce non-adiabatic transitions between the different spin states and

modify the reaction mechanism.

Fig. 3 Zeeman energy levels of the CaD(2S) molecule. The dashed

line indicates the energy of the molecule confined in a magnetic trap.

Fig. 5 Stark levels of the CaD molecule in a magnetic field of 0.5 T

(upper panels) and 4.7 T (lower panels) as functions of the electric field

strength. The curves are labeled by the rotational quantum number of

the molecule at zero electric field. The dashed line indicates the energy

of the molecule confined in a magnetic trap. The curved arrows

connect states coupled by electric fields; the straight arrows connect

states coupled by the spin-rotation interaction. Adapted from the

paper of E. Abrahamsson, T. V. Tscherbul and R. V. Krems, J. Chem.

Phys., 2007, 127, 044302. Copyright 2007, American Institute of

Physics.
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• chemical reactivity ?

• spin relaxation collisions (triplet to singlet coupling) ?

“Spin-orbit couplings are small in light systems.  For Li2, one wouldn't expect fast relaxation.
... but will be more important in heavy systems (like LiRb), but how important?”

Physical Chemistry Chemical Physics

• spontaneous emission ?



Is the lowest triplet state stable?of N = 0 and the high-field-seeking states of N = 1 have
different symmetries. Therefore, the variation of the magnetic
field in the circled area of Fig. 3 does not affect collision
dynamics of trapped CaD molecules.36 An external electric
field may, however, couple states with different symmetries
(Fig. 5). Fig. 6 demonstrates the effects of combined electric
and magnetic fields on the energy levels of the CaD molecule.
In the presence of an electric field, the crossing in the circled
area of Fig. 3 becomes an avoided crossing and the collision
dynamics of CaD in the low-field-seeking Zeeman state be-
comes very sensitive to both the magnetic and electric fields.

Fig. 6 shows the cross section for magnetic spin re-orienta-
tion in collisions of CaD molecules with He atoms computed
as a function of electric and magnetic fields at a collision

energy of 0.5 K. The interaction between CaD and He is
weak.37 In the absence of electric fields or at magnetic fields far
detuned from the circled area of Fig. 3, collisions with He
cannot significantly change the orientation of the electron spin
of the molecule. At certain combinations of electric and
magnetic fields, however, the spin-up state of CaD becomes
very unstable and even weak collisional perturbations result in
spin re-orientation. The efficiency of collisional spin re-orien-
tation of 2S molecules in the rotationally ground state may
thus be controlled with superimposed electric and magnetic
fields. The same mechanism can be used to induce transitions
between the S = 0 and S = 1 states of the A(2S)–BC(2S)
reactive complex35 and manipulate the efficiency of spin-for-
bidden chemical reactions in a magnetic trap.
The development of experimental techniques for producing

slow molecular beams with narrow velocity distributions has
opened another exciting research direction to study molecular
collisions and explore new mechanisms for controlling chemi-
cal reactions in the gas phase. Meijer and coworkers17,38–41

demonstrated that molecular beams produced in a supersonic
expansion can be slowed down and bunched by an alternating

Fig. 4 Schematic illustration of minimum energy profiles for an

A(2S) + BC(2S) chemical reaction in the singlet-spin (lower curve)

and triplet-spin (upper curve) electronic states. Electric fields may

induce non-adiabatic transitions between the different spin states and

modify the reaction mechanism.

Fig. 3 Zeeman energy levels of the CaD(2S) molecule. The dashed

line indicates the energy of the molecule confined in a magnetic trap.

Fig. 5 Stark levels of the CaD molecule in a magnetic field of 0.5 T

(upper panels) and 4.7 T (lower panels) as functions of the electric field

strength. The curves are labeled by the rotational quantum number of

the molecule at zero electric field. The dashed line indicates the energy

of the molecule confined in a magnetic trap. The curved arrows

connect states coupled by electric fields; the straight arrows connect

states coupled by the spin-rotation interaction. Adapted from the

paper of E. Abrahamsson, T. V. Tscherbul and R. V. Krems, J. Chem.

Phys., 2007, 127, 044302. Copyright 2007, American Institute of
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“The interactions between 2S atoms and 2S molecules in the triplet spin state are typically 
characterized by strongly repulsive exchange forces, leading to significant reaction barriers.”

“... non-adiabatic coupling ... may be induced by the spin-rotation interaction and the magnetic 
dipole–dipole interaction.  The latter is negligibly small and ... transitions are determined by the spin-
rotation interaction in the open-shell molecule. The spin-rotation interaction can be effectively 
manipulated with an external electric field.”

of N = 0 and the high-field-seeking states of N = 1 have
different symmetries. Therefore, the variation of the magnetic
field in the circled area of Fig. 3 does not affect collision
dynamics of trapped CaD molecules.36 An external electric
field may, however, couple states with different symmetries
(Fig. 5). Fig. 6 demonstrates the effects of combined electric
and magnetic fields on the energy levels of the CaD molecule.
In the presence of an electric field, the crossing in the circled
area of Fig. 3 becomes an avoided crossing and the collision
dynamics of CaD in the low-field-seeking Zeeman state be-
comes very sensitive to both the magnetic and electric fields.

Fig. 6 shows the cross section for magnetic spin re-orienta-
tion in collisions of CaD molecules with He atoms computed
as a function of electric and magnetic fields at a collision

energy of 0.5 K. The interaction between CaD and He is
weak.37 In the absence of electric fields or at magnetic fields far
detuned from the circled area of Fig. 3, collisions with He
cannot significantly change the orientation of the electron spin
of the molecule. At certain combinations of electric and
magnetic fields, however, the spin-up state of CaD becomes
very unstable and even weak collisional perturbations result in
spin re-orientation. The efficiency of collisional spin re-orien-
tation of 2S molecules in the rotationally ground state may
thus be controlled with superimposed electric and magnetic
fields. The same mechanism can be used to induce transitions
between the S = 0 and S = 1 states of the A(2S)–BC(2S)
reactive complex35 and manipulate the efficiency of spin-for-
bidden chemical reactions in a magnetic trap.
The development of experimental techniques for producing

slow molecular beams with narrow velocity distributions has
opened another exciting research direction to study molecular
collisions and explore new mechanisms for controlling chemi-
cal reactions in the gas phase. Meijer and coworkers17,38–41

demonstrated that molecular beams produced in a supersonic
expansion can be slowed down and bunched by an alternating

Fig. 4 Schematic illustration of minimum energy profiles for an

A(2S) + BC(2S) chemical reaction in the singlet-spin (lower curve)

and triplet-spin (upper curve) electronic states. Electric fields may

induce non-adiabatic transitions between the different spin states and

modify the reaction mechanism.

Fig. 3 Zeeman energy levels of the CaD(2S) molecule. The dashed

line indicates the energy of the molecule confined in a magnetic trap.

Fig. 5 Stark levels of the CaD molecule in a magnetic field of 0.5 T

(upper panels) and 4.7 T (lower panels) as functions of the electric field

strength. The curves are labeled by the rotational quantum number of

the molecule at zero electric field. The dashed line indicates the energy

of the molecule confined in a magnetic trap. The curved arrows

connect states coupled by electric fields; the straight arrows connect

states coupled by the spin-rotation interaction. Adapted from the

paper of E. Abrahamsson, T. V. Tscherbul and R. V. Krems, J. Chem.

Phys., 2007, 127, 044302. Copyright 2007, American Institute of

Physics.

4082 | Phys. Chem. Chem. Phys., 2008, 10, 4079–4092 This journal is !c the Owner Societies 2008

Cold Controlled Chemistry, PCCP 10, 4079 (2008). [Krems] 

• chemical reactivity ?

• spin relaxation collisions (triplet to singlet coupling) ?

“Spin-orbit couplings are small in light systems.  For Li2, one wouldn't expect fast relaxation.
... but will be more important in heavy systems (like LiRb), but how important?”

the fine print

Physical Chemistry Chemical Physics

• spontaneous emission ?



Experimental goals and results

STIRAP production of triplet Li2 
from FR molecules

STIRAP production of triplet 
LiRb from FR molecules

ground triplet 
spectroscopy
(2-color PA)

ground triplet 
spectroscopy
(2-color PA)

excited triplet 
spectroscopy
(1-color PA)

Feshbach resonances and 
FR molecule production

Feshbach resonances and 
FR molecule production

excited triplet 
spectroscopy
(1-color PA)
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Fig. 1. Potential energy curves for a number of excited states of Li2 molecule
obtained by linear response calculation from the ground state MCSCF wave
function.

Potential energy curves for a number of low-lying states of
theLi2 molecule calculated in presentwork are given in Fig.1,
which is presented just to recapitulate the results of previous
works and illustrate themain spectral features [6,7,20]. Three
lowest states are presented in larger scale in Fig. 2. Though
the triplet states of H2 molecule are well known from electric
discharge emission spectra since the beginning of molecular
spectroscopy [16], the first observation of the triplet state,
1(b)3!u, in Li2 molecule was reported only in 1983 [12].
Diffuse bands in emission spectra of dense alkali vapors have
also been known over 20 years [21], but triplet states of the
lithium dimer have not been observed directly until the work
of Engleke and Haage [12]. These authors have detected the
3"g → b3!u transition near 507 nm in collision-induced flu-
orescence and obtained the lower state molecular constants
from the partly resolved rotational structure. The 1(b)3!u
state spectroscopic constants were also derived from exami-
nation of the accidental predissociation of the 1(A)1#+

u rovi-
bronic levels [22]. The 1(b)3!u state of Li2 has received
a great attention not only because of its important role in
the perturbations and accidental predissociation of the 11#+

u
state (A state) [3,13], but also because of its fine structure
[2,23].
The crossing between 1(A)1#+

u and 1(b)3!u states in
Fig. 1, is one of the main features of the lithium dimer spec-
troscopy [6,8,9,13]. This A–b crossing is responsible for the
accidental predissociation of the 1(A)1#+

u state [23]. The
SOC perturbation between these singlet and triplet states pro-
vided a mixed “window” levels, through which the system
can penetrate from singlet to triplet manifolds. Using this
A–b window, a number of excited triplet states of lithium
dimer have been reached by perturbation-facilitated optical–
optical double-resonance (PFOODR) spectroscopy [8,9,13].
The 1(b)3!u state in turn predissociates via rotational–

Fig. 2. MCSCF potential energy curve for the three lowest states of Li2
molecule.

electronic interaction with the 1(a)3#+
u continuum (Fig. 1)

[23]. This weakly bound lowest triplet state of Li2 molecule
is getting increasing particular interest in recent time [3–
5,24,25].
The first rotationally resolved observation of the 1(a)3#+

u
state has been reported by Xie and Field [13,19]. Using the
selected (11#+

u –13!u) mixed levels of the A–b gateway,
the lowest triplet state in Li2 molecule has been studied by
double-resonance methods and by the 3!g → 13#+

u fluo-
rescence detection [3,13]. All triplet states of Li2 belong to
the Hund’s case (b) coupling scheme [2,3,13,17], since spin–
orbit coupling is very weak even for 3! states. The emission
which should correspond to electronic transition from the
weakly bound triplet state, a3#+

u , to the ground state, X1#+
g ,

is rather strictly forbidden as electric dipole radiation, even
when spin–orbit coupling is accounted; a magnetic dipole
transition moment for such emission has been calculated in
the present work and found to be completely negligible.
Recent developments in atom trapping and cold-atom

spectroscopy have led to new possibilities in the triplet states
study of the Li2 molecule through combinations of measure-
ments of cold collisions, photo-association spectroscopy and
magnetic-induced Feshbach resonances [1,26,27]. Collisions
of alkali metal atoms at ultra low temperatures ("10−4 K) are
very sensitive to the details of the interatomic potentials. Ob-
servation of Bose–Einstein condensation in 7Li2 [1] initiated
the interest in the scattering length of two ground state lithium
atoms when they approach each other as a triplet radical pair
[5]. This requires knowledge of the accurate potential energy
curve of the lowest triplet a3#+

u state of the Li2 molecule
[3,5].
The sign of the scattering length of two ground state

lithium atoms (the triplet radical pair) determines the sta-
bility of the Bose–Einstein condensate; it can be obtained
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ultra-cold Li+Rb mixtures

1 cm

108 Li atoms @ 1mK



observing Rb+Li Feshbach resonances
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MOT
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imaging axis

Trap Schematic

Crossed ODT
(optical dipole trap)



Load Lithium MOT
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Evaporate Li from crossed trap
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Load Rb MOT while holding Li

Crossed ODT



Transfer Rb to crossed trap

Rb MOT turned off:

In trap: Rubidium and Lithium

Crossed ODT



Trap for Li half as deep for Rb

Both Rb and Li in trap: trap depths different

Crossed ODT



Simultaneous evaporation of Li and Rb

Trap power lowered to force 
evaporation losses

A) If Li+Rb reach thermal 
equilibrium, Li leaves trap quickly

B) If Li+Rb decoupled, Li 
evaporatively cools and leaves trap 
slowly

Trap for Li half as deep for Rb

Crossed ODT



Image Li or Rb

imaging axis
Crossed ODT
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• broadest resonances known 
in any hetero-nuclear mixture

• large mass imbalance
Efimov physics
Bose Fermi pairing physics

• large electric dipole moment
electric field tuning of FRs
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FIG. 3: High resolution scan of the normalized
6
Li atom num-

ber as a function of photo-association laser energy hνPA after

a 750 ms hold time at zero magnetic field and a PA laser

intensity of IPA = 635 W cm
−2

. This is the second of the

three resonances shown in Fig. 2 corresponding to a transition

from an initial unbound molecular state with N = 0, G = 0

to the v� = 21 vibrational level of the 1
3Σ+

g excited state with

N �
= 1, G�

= 0. The ensemble temperature was 800 nK. The

FWHM of this loss peak is 0.00048 cm
−1

(14.4 MHz).

ure 4 shows the loss spectrum for a transition from an

initial unbound molecular state with N = 1, G = 1 to

the v� = 20 vibrational level of the 1
3Σ+

g excited state

with N �
= 2, G�

= 1. For each of the seven vibrational

levels, we observed at least 4 (3) distinct loss features

for transitions to the N �
= 2, G�

= 1 (N �
= 0, G�

= 1)

final state. By evaporating the ensemble to 15 µK and

holding the magnetic field at 184.7 G, we observed that

each of these loss features results from multiple PA res-

onances that are unresolvable at 250 µK. The locations

of the loss features observed at 250 µK for each of the

seven vibrational levels is provided in Tables II and III.

These measurements were performed in the absence of

the comb stabilization. Instead, the Ti:sapphire lasers

were referenced to the wavemeter whose uncertainty is

60 MHz.

A. Systematic shifts

While the absolute uncertainty of our PA measure-

ments made using the frequency comb is ±600 kHz, the

data was taken in the presence of a small but non-zero

magnetic field and in an optical dipole trap with a known

intensity. These residual fields as well as the PA laser

itself can lead to a systematic shift of the resonance posi-

tions from their zero-field values. Therefore, in an effort

to quantify the role of the PA laser intensity, the CDT

laser intensity, and the residual magnetic field on the PA
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FIG. 4: (Color online) Normalized
6
Li atom number as a

function of photo-association laser energy hνPA after a 2 sec-

ond hold time. The circles are for an ensemble temperature of

250 µK at 185 G, and four distinct features are observed. The

diamonds denote the atom loss for an ensemble temperature

of 15 µK and at a magnetic field of 184.7 G. At this lower

temperature, these loss features are seen to result from multi-

ple PA resonances that are unresolvable at 250 µK. These PA

features arise from p-wave ground-state collisions and are en-

hanced by proximity to a p-wave Feshbach resonance between

the |1� and |2� states at 185.1 G.

TABLE I: Experimentally measured PA resonances for s-wave

collisions in a 50:50 mixture of the |1� and |2� states of
6
Li.

These three PA resonances correspond to a transition from an

initial unbound molecular state with N = 0, G = 0 to the vth

vibrational level of the 1
3Σ+

g excited state with N �
= 1. As we

explain in Sec. IV, spin-spin and spin-rotation coupling split

the excited state into three sub-levels producing the three PA

features corresponding to quantum numbers (N �
= 1, J �

= 1),

(N �
= 1, J �

= 2), and (N �
= 1, J �

= 0) respectively. The

absolute uncertainty in each these measurements is ±0.00002
cm

−1
(±600kHz).

v� 1st 2nd 3rd

cm
−1

cm
−1

cm
−1

20 12237.17755 12237.18587 12237.20126

21 12394.39726 12394.40535 12394.42039

22 12546.06767 12546.07552 12546.09025

23 12692.17316 12692.18080 12692.19509

24 12832.70080 12832.70820 12832.72214

25 12967.64116 12967.64862 12967.66219

26 13096.99114 13096.99804 13097.01125

loss features, we varied each one and measured the PA

resonance position and width for various excited states.

In each case, we assumed a linear dependence and de-

termined a shift rate of the resonance position with the

corresponding field strength. The uncertainty in this rate

is a one-sigma statistical uncertainty on the slope of the

linear fit.

When varying the PA laser intensity from IPA =

0.19 kW cm
−2

to IPA = 1.27 kW cm
−2

we observed

that the centroid of the first feature (J �
= 1) associated

atom loss

Ω1

width set by excited state lifetime

width ~ 10 MHz

“one-color PA”
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photo-association light

Ω1
Ω2

continuum (s-wave coll.)
N=0, G=0, S=1, I=1

For photo-association, just add additional light

atom loss suppressed

Ω2 - Ω1

width set by coupling induced by Ω2

Autler-Townes splitting

“two-color PA”

PRA 68, 051403 (2003)
[Schloder, Deuschle, Silber, Zimmermann]
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Rb+Li MOT chamber
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For photo-association, we just add additional light

2 Ti:sapphire lasers

frequency comb



Photo-association (PA) laser system

When locked to comb:
1) uncertainty on frequency difference < 10 kHz.
2) line width of each Ti:sapphire: ~ 100 kHz
(verified by an independent heterodyne measurement)

frequency comb 2 Ti:sapphire lasers

self reference lock
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Fig. 1. Potential energy curves for a number of excited states of Li2 molecule
obtained by linear response calculation from the ground state MCSCF wave
function.

Potential energy curves for a number of low-lying states of
theLi2 molecule calculated in presentwork are given in Fig.1,
which is presented just to recapitulate the results of previous
works and illustrate themain spectral features [6,7,20]. Three
lowest states are presented in larger scale in Fig. 2. Though
the triplet states of H2 molecule are well known from electric
discharge emission spectra since the beginning of molecular
spectroscopy [16], the first observation of the triplet state,
1(b)3!u, in Li2 molecule was reported only in 1983 [12].
Diffuse bands in emission spectra of dense alkali vapors have
also been known over 20 years [21], but triplet states of the
lithium dimer have not been observed directly until the work
of Engleke and Haage [12]. These authors have detected the
3"g → b3!u transition near 507 nm in collision-induced flu-
orescence and obtained the lower state molecular constants
from the partly resolved rotational structure. The 1(b)3!u
state spectroscopic constants were also derived from exami-
nation of the accidental predissociation of the 1(A)1#+

u rovi-
bronic levels [22]. The 1(b)3!u state of Li2 has received
a great attention not only because of its important role in
the perturbations and accidental predissociation of the 11#+

u
state (A state) [3,13], but also because of its fine structure
[2,23].
The crossing between 1(A)1#+

u and 1(b)3!u states in
Fig. 1, is one of the main features of the lithium dimer spec-
troscopy [6,8,9,13]. This A–b crossing is responsible for the
accidental predissociation of the 1(A)1#+

u state [23]. The
SOC perturbation between these singlet and triplet states pro-
vided a mixed “window” levels, through which the system
can penetrate from singlet to triplet manifolds. Using this
A–b window, a number of excited triplet states of lithium
dimer have been reached by perturbation-facilitated optical–
optical double-resonance (PFOODR) spectroscopy [8,9,13].
The 1(b)3!u state in turn predissociates via rotational–

Fig. 2. MCSCF potential energy curve for the three lowest states of Li2
molecule.

electronic interaction with the 1(a)3#+
u continuum (Fig. 1)

[23]. This weakly bound lowest triplet state of Li2 molecule
is getting increasing particular interest in recent time [3–
5,24,25].
The first rotationally resolved observation of the 1(a)3#+

u
state has been reported by Xie and Field [13,19]. Using the
selected (11#+

u –13!u) mixed levels of the A–b gateway,
the lowest triplet state in Li2 molecule has been studied by
double-resonance methods and by the 3!g → 13#+

u fluo-
rescence detection [3,13]. All triplet states of Li2 belong to
the Hund’s case (b) coupling scheme [2,3,13,17], since spin–
orbit coupling is very weak even for 3! states. The emission
which should correspond to electronic transition from the
weakly bound triplet state, a3#+

u , to the ground state,X1#+
g ,

is rather strictly forbidden as electric dipole radiation, even
when spin–orbit coupling is accounted; a magnetic dipole
transition moment for such emission has been calculated in
the present work and found to be completely negligible.
Recent developments in atom trapping and cold-atom

spectroscopy have led to new possibilities in the triplet states
study of the Li2 molecule through combinations of measure-
ments of cold collisions, photo-association spectroscopy and
magnetic-induced Feshbach resonances [1,26,27]. Collisions
of alkali metal atoms at ultra low temperatures ("10−4 K) are
very sensitive to the details of the interatomic potentials. Ob-
servation of Bose–Einstein condensation in 7Li2 [1] initiated
the interest in the scattering length of two ground state lithium
atoms when they approach each other as a triplet radical pair
[5]. This requires knowledge of the accurate potential energy
curve of the lowest triplet a3#+

u state of the Li2 molecule
[3,5].
The sign of the scattering length of two ground state

lithium atoms (the triplet radical pair) determines the sta-
bility of the Bose–Einstein condensate; it can be obtained
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Fig. 1. Potential energy curves for a number of excited states of Li2 molecule
obtained by linear response calculation from the ground state MCSCF wave
function.

Potential energy curves for a number of low-lying states of
theLi2 molecule calculated in presentwork are given in Fig.1,
which is presented just to recapitulate the results of previous
works and illustrate themain spectral features [6,7,20]. Three
lowest states are presented in larger scale in Fig. 2. Though
the triplet states of H2 molecule are well known from electric
discharge emission spectra since the beginning of molecular
spectroscopy [16], the first observation of the triplet state,
1(b)3!u, in Li2 molecule was reported only in 1983 [12].
Diffuse bands in emission spectra of dense alkali vapors have
also been known over 20 years [21], but triplet states of the
lithium dimer have not been observed directly until the work
of Engleke and Haage [12]. These authors have detected the
3"g → b3!u transition near 507 nm in collision-induced flu-
orescence and obtained the lower state molecular constants
from the partly resolved rotational structure. The 1(b)3!u
state spectroscopic constants were also derived from exami-
nation of the accidental predissociation of the 1(A)1#+

u rovi-
bronic levels [22]. The 1(b)3!u state of Li2 has received
a great attention not only because of its important role in
the perturbations and accidental predissociation of the 11#+

u
state (A state) [3,13], but also because of its fine structure
[2,23].
The crossing between 1(A)1#+

u and 1(b)3!u states in
Fig. 1, is one of the main features of the lithium dimer spec-
troscopy [6,8,9,13]. This A–b crossing is responsible for the
accidental predissociation of the 1(A)1#+

u state [23]. The
SOC perturbation between these singlet and triplet states pro-
vided a mixed “window” levels, through which the system
can penetrate from singlet to triplet manifolds. Using this
A–b window, a number of excited triplet states of lithium
dimer have been reached by perturbation-facilitated optical–
optical double-resonance (PFOODR) spectroscopy [8,9,13].
The 1(b)3!u state in turn predissociates via rotational–

Fig. 2. MCSCF potential energy curve for the three lowest states of Li2
molecule.

electronic interaction with the 1(a)3#+
u continuum (Fig. 1)

[23]. This weakly bound lowest triplet state of Li2 molecule
is getting increasing particular interest in recent time [3–
5,24,25].
The first rotationally resolved observation of the 1(a)3#+

u
state has been reported by Xie and Field [13,19]. Using the
selected (11#+

u –13!u) mixed levels of the A–b gateway,
the lowest triplet state in Li2 molecule has been studied by
double-resonance methods and by the 3!g → 13#+

u fluo-
rescence detection [3,13]. All triplet states of Li2 belong to
the Hund’s case (b) coupling scheme [2,3,13,17], since spin–
orbit coupling is very weak even for 3! states. The emission
which should correspond to electronic transition from the
weakly bound triplet state, a3#+

u , to the ground state,X1#+
g ,

is rather strictly forbidden as electric dipole radiation, even
when spin–orbit coupling is accounted; a magnetic dipole
transition moment for such emission has been calculated in
the present work and found to be completely negligible.
Recent developments in atom trapping and cold-atom

spectroscopy have led to new possibilities in the triplet states
study of the Li2 molecule through combinations of measure-
ments of cold collisions, photo-association spectroscopy and
magnetic-induced Feshbach resonances [1,26,27]. Collisions
of alkali metal atoms at ultra low temperatures ("10−4 K) are
very sensitive to the details of the interatomic potentials. Ob-
servation of Bose–Einstein condensation in 7Li2 [1] initiated
the interest in the scattering length of two ground state lithium
atoms when they approach each other as a triplet radical pair
[5]. This requires knowledge of the accurate potential energy
curve of the lowest triplet a3#+

u state of the Li2 molecule
[3,5].
The sign of the scattering length of two ground state

lithium atoms (the triplet radical pair) determines the sta-
bility of the Bose–Einstein condensate; it can be obtained
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We present experimental observations of seven vibrational levels v� = 20− 26 of the 1
3Σ+

g excited

state of Li2 molecules by the photoassociation (PA) of a degenerate Fermi gas of
6
Li atoms. For each

vibrational level, we resolve the rotational structure using a Feshbach resonance to enhance the PA

rates from p-wave collisions. We also, for the first time, determine the spin-spin and spin-rotation

interaction constants for this state. The absolute uncertainty of our measurements is ±0.00002 cm
−1

(±600 kHz). We use these new data to further refine an analytic potential for this state.

PACS numbers: 34.50.-s, 33.20.-t, 67.85.Lm

I. INTRODUCTION

Photoassociation (PA) of ultra-cold atoms is a pow-

erful spectroscopic technique that has been used exten-

sively since the advent of laser cooling to make precise

measurements of high-lying vibrational levels that are

often difficult to access with traditional bound-bound

molecular spectroscopy. In addition to improving our

knowledge of weakly bound molecular states, PA spec-

troscopy has also allowed precise determinations of atom-

atom scattering lengths and excited atomic state life-

times. PA resonances have also been used to control

atomic interactions via optical Feshbach resonances and

for the production of ultra-cold molecules as discussed in

several excellent review articles [1–5].

In this work, we measure the binding energies of seven

vibrational levels v� = 20−26 of the 1
3Σ+

g excited state of

6
Li2 molecules by photoassociating a quantum degener-

ate Fermi gas of lithium atoms held in a shallow optical

dipole trap. The absolute uncertainty of our measure-

ments is ±0.00002 cm
−1

(±600 kHz). As in previous

high-resolution photoassociative spectra of lithium, our

frequency resolution allows us to resolve the rotational

structure of these levels [6]. We observe and quantify

for the first time ever the spin-spin and spin-rotation

coupling constants for this state. As shown in Fig. 1,

these measurements are in a completely unexplored spec-

tral range for this molecule and bridge a gap between

measurements of the deeply lying v� = 0 − 7 levels by

Fourier transform spectroscopy (of both
7,7

Li2 and
6,6

Li2

molecules) [7, 8] and measurements of the binding ener-

gies of levels v� = 62 − 90 of
7,7

Li2 and v� = 56 − 84 of
6,6

Li2 by photoassociation of atoms in a magneto-optic

trap [9].

The motivations for the present work of mapping the

excited state potential in this wavelength range include

the following: (a) as mentioned above, this is a previ-

ously unexplored region of the potential and these mea-

surements thus provide an important addition to the ex-

isting data allowing us to make a much more complete

FIG. 1: (Color online) The 1
3Σ+

g potential studied in this

work (solid line). The solid filled areas indicate regions where

experimental data is available for
6,6

Li2. The present work in-

cludes high resolution data from seven new vibrational states

(v� = 20 to 26) including the N �
= 0, 1, 2 rotational states in

each case. The theoretical long-range potential according to

[10] is shown by the dotted line.

and accurate, global description of this state, (b) knowing

the locations of these intermediate states is important for

the eventual formation of ultracold ground triplet state

molecules since these states are expected to strike the

best compromise between a good Franck–Condon over-

lap with the initial state (either a Feshbach resonance

molecule or an unbound collision state) and the final

state in the a3Σ+
u potential, (c) this wavelength range

is particularly convenient for future experiments since it

is easily accessible by both solid-state (Ti:sapphire) and

diode lasers. This latter point is relevant to future ex-

periments on the probing, alignment and spinning of ul-

tracold, weakly bound Li2 molecules (i.e. either Feshbach

halo dimers or molecules in the ground triplet state) with

high-intensity, ultra-short pulses from Ti:sapphire lasers

Ω1

E(2
1Σ+

g )

electronic excited states that correlate to the 2s+2p threshold in Lithium

b(13Πu)

A(1
1Σ+

u )

c(13Σ+
g )

B(1
1Πu)

C(1
3Πg)

electronic ground states that correlate to the 2s+2s threshold in Lithium

a(1
3Σ+

u )

X(1
1Σ+

g )

(1) E

(2) V (R) = VLvW(R) + VE(R)

(3) V = VLvW + VE

(4) V (R) = VLvW + VE

(5) VStark ∼ −
α0E2

2

(6) FStark = −∇VStark ∼ ∇
α0E2

2
= α0E ×∇E = 2VStark ×

∇E

E

VStark ∼ h× 32 MHz (1.6 mK) for Li and VStark ∼ h× 64 MHz (3.2 mK) at 40kV/cm for Rb. For a change of the electric

field from the maximum to zero over a length L ∼ 1 cm, the force is then

Comparing this to the force due to gravity... For
6
Li over 1 cm, we have h × 1.5 MHz/cm and for

85
Rb we have h × 21

MHz/cm.

(7)
δνbare

δνECDL
= Q2

=

� �
dν
dI

�
bare�

dν
dI

�
ECDL

�2

d

L

γstd
sc

vth

(8) σxσpx = σzσpz =
�
2

1

1-color PA spectroscopy results

this work

6Li2

continuum (s-wave coll.)



High resolution photoassociation spectroscopy of the
6
Li2 13Σ+

g state

Mariusz Semczuk
1
, Xuan Li

2
, Will Gunton

1
, Magnus Haw

1
, Nikesh S.

Dattani
3
, Julien Witz

1
, Arthur Mills

1
, David J. Jones

1
, and Kirk W. Madison

1

1
Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada

2
Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, USA

3
Department of Chemistry, University of Oxford, Oxford, UK

(Dated: November 30, 2012)

We present experimental observations of seven vibrational levels v� = 20− 26 of the 1
3Σ+

g excited

state of Li2 molecules by the photoassociation (PA) of a degenerate Fermi gas of
6
Li atoms. For each

vibrational level, we resolve the rotational structure using a Feshbach resonance to enhance the PA

rates from p-wave collisions. We also, for the first time, determine the spin-spin and spin-rotation

interaction constants for this state. The absolute uncertainty of our measurements is ±0.00002 cm
−1

(±600 kHz). We use these new data to further refine an analytic potential for this state.

PACS numbers: 34.50.-s, 33.20.-t, 67.85.Lm

I. INTRODUCTION

Photoassociation (PA) of ultra-cold atoms is a pow-

erful spectroscopic technique that has been used exten-

sively since the advent of laser cooling to make precise

measurements of high-lying vibrational levels that are

often difficult to access with traditional bound-bound

molecular spectroscopy. In addition to improving our

knowledge of weakly bound molecular states, PA spec-

troscopy has also allowed precise determinations of atom-

atom scattering lengths and excited atomic state life-

times. PA resonances have also been used to control

atomic interactions via optical Feshbach resonances and

for the production of ultra-cold molecules as discussed in

several excellent review articles [1–5].

In this work, we measure the binding energies of seven

vibrational levels v� = 20−26 of the 1
3Σ+

g excited state of

6
Li2 molecules by photoassociating a quantum degener-

ate Fermi gas of lithium atoms held in a shallow optical

dipole trap. The absolute uncertainty of our measure-

ments is ±0.00002 cm
−1

(±600 kHz). As in previous

high-resolution photoassociative spectra of lithium, our

frequency resolution allows us to resolve the rotational

structure of these levels [6]. We observe and quantify

for the first time ever the spin-spin and spin-rotation

coupling constants for this state. As shown in Fig. 1,

these measurements are in a completely unexplored spec-

tral range for this molecule and bridge a gap between

measurements of the deeply lying v� = 0 − 7 levels by

Fourier transform spectroscopy (of both
7,7

Li2 and
6,6

Li2

molecules) [7, 8] and measurements of the binding ener-

gies of levels v� = 62 − 90 of
7,7

Li2 and v� = 56 − 84 of
6,6

Li2 by photoassociation of atoms in a magneto-optic

trap [9].

The motivations for the present work of mapping the

excited state potential in this wavelength range include

the following: (a) as mentioned above, this is a previ-

ously unexplored region of the potential and these mea-

surements thus provide an important addition to the ex-

isting data allowing us to make a much more complete

FIG. 1: (Color online) The 1
3Σ+

g potential studied in this

work (solid line). The solid filled areas indicate regions where

experimental data is available for
6,6

Li2. The present work in-

cludes high resolution data from seven new vibrational states

(v� = 20 to 26) including the N �
= 0, 1, 2 rotational states in

each case. The theoretical long-range potential according to

[10] is shown by the dotted line.

and accurate, global description of this state, (b) knowing

the locations of these intermediate states is important for

the eventual formation of ultracold ground triplet state

molecules since these states are expected to strike the

best compromise between a good Franck–Condon over-

lap with the initial state (either a Feshbach resonance

molecule or an unbound collision state) and the final

state in the a3Σ+
u potential, (c) this wavelength range

is particularly convenient for future experiments since it

is easily accessible by both solid-state (Ti:sapphire) and

diode lasers. This latter point is relevant to future ex-

periments on the probing, alignment and spinning of ul-

tracold, weakly bound Li2 molecules (i.e. either Feshbach

halo dimers or molecules in the ground triplet state) with

high-intensity, ultra-short pulses from Ti:sapphire lasers
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with an absolute accuracy of +/- 600 kHz (+/- 
0.00002 cm-1)

2) For each vibrational level, we observe the 
N’=1 level AND using a p-wave FR at 187.4 G, 
we observe the N’=0 and N’=2 rotational levels

3) We also characterized the systematic shifts 
due to magnetic field, and the residual AC Stark 
shifts of the PA laser and the trapping laser.
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high-resolution photoassociative spectra of lithium, our

frequency resolution allows us to resolve the rotational

structure of these levels [6]. We observe and quantify

for the first time ever the spin-spin and spin-rotation

coupling constants for this state. As shown in Fig. 1,

these measurements are in a completely unexplored spec-

tral range for this molecule and bridge a gap between

measurements of the deeply lying v� = 0 − 7 levels by

Fourier transform spectroscopy (of both
7,7

Li2 and
6,6

Li2

molecules) [7, 8] and measurements of the binding ener-

gies of levels v� = 62 − 90 of
7,7

Li2 and v� = 56 − 84 of
6,6

Li2 by photoassociation of atoms in a magneto-optic

trap [9].

The motivations for the present work of mapping the

excited state potential in this wavelength range include

the following: (a) as mentioned above, this is a previ-

ously unexplored region of the potential and these mea-

surements thus provide an important addition to the ex-

isting data allowing us to make a much more complete

FIG. 1: (Color online) The 1
3Σ+

g potential studied in this

work (solid line). The solid filled areas indicate regions where

experimental data is available for
6,6

Li2. The present work in-

cludes high resolution data from seven new vibrational states

(v� = 20 to 26) including the N �
= 0, 1, 2 rotational states in

each case. The theoretical long-range potential according to

[10] is shown by the dotted line.

and accurate, global description of this state, (b) knowing

the locations of these intermediate states is important for

the eventual formation of ultracold ground triplet state

molecules since these states are expected to strike the

best compromise between a good Franck–Condon over-

lap with the initial state (either a Feshbach resonance

molecule or an unbound collision state) and the final

state in the a3Σ+
u potential, (c) this wavelength range

is particularly convenient for future experiments since it

is easily accessible by both solid-state (Ti:sapphire) and

diode lasers. This latter point is relevant to future ex-

periments on the probing, alignment and spinning of ul-

tracold, weakly bound Li2 molecules (i.e. either Feshbach

halo dimers or molecules in the ground triplet state) with

high-intensity, ultra-short pulses from Ti:sapphire lasers

Ω1

E(2
1Σ+

g )

electronic excited states that correlate to the 2s+2p threshold in Lithium

b(13Πu)

A(1
1Σ+

u )

c(13Σ+
g )

B(1
1Πu)

C(1
3Πg)

electronic ground states that correlate to the 2s+2s threshold in Lithium

a(1
3Σ+

u )

X(1
1Σ+

g )

(1) E

(2) V (R) = VLvW(R) + VE(R)

(3) V = VLvW + VE

(4) V (R) = VLvW + VE

(5) VStark ∼ −
α0E2

2

(6) FStark = −∇VStark ∼ ∇
α0E2

2
= α0E ×∇E = 2VStark ×

∇E

E

VStark ∼ h× 32 MHz (1.6 mK) for Li and VStark ∼ h× 64 MHz (3.2 mK) at 40kV/cm for Rb. For a change of the electric

field from the maximum to zero over a length L ∼ 1 cm, the force is then

Comparing this to the force due to gravity... For
6
Li over 1 cm, we have h × 1.5 MHz/cm and for

85
Rb we have h × 21

MHz/cm.

(7)
δνbare

δνECDL
= Q2

=

� �
dν
dI

�
bare�

dν
dI

�
ECDL

�2

d

L

γstd
sc

vth

(8) σxσpx = σzσpz =
�
2

1

1) We measure 7 levels from v’=20 to v’=26 
with an absolute accuracy of +/- 600 kHz (+/- 
0.00002 cm-1)

2) For each vibrational level, we observe the 
N’=1 level AND using a p-wave FR at 187.4 G, 
we observe the N’=0 and N’=2 rotational levels

3) We also characterized the systematic shifts 
due to magnetic field, and the residual AC Stark 
shifts of the PA laser and the trapping laser.

1-color PA spectroscopy results

this work
Initial state:
S-wave collision: N=0
Total spin = 0  (G = S+I = 0)
electronic spin = 0, 1 

two states are:
|S=0,N=0,J=0,I=0>
|S=1,N=0,J=1,I=1>

0) To minimize broadening and systematic shifts, 
we evaporate to very low trap powers and photo-
associate a 2-component quantum degenerate 
Fermi gas (T/TF ~ 0.4)

+
|F=1/2, mF=1/2>

|mF= -1/2>

the relevant initial state is:
|S=1,N=0,J=1,I=1>

accuracy 20 MHz

accuracy 600 kHz

accuracy ~ GHz

6Li2
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1-color PA spectroscopy results

3

NIR) with an absolute accuracy of 60 MHz and a shot-
to-shot repeatability (i.e. precision) of 10 MHz in the fre-
quency range of this work. For the high resolution mea-
surements, the Ti:sapphire laser, operating in the range
from 770 to 820 nm, is stabilized to a fiber based, self-
referenced frequency comb operating with a center wave-
length of 1550 nm as described previously [18]. Briefly,
the frequency comb is an Erbium-doped fiber laser fre-
quency comb with two amplified output branches. One
branch is used for self-referencing the carrier-envelope off-
set frequency via an f–2f interferometer. The second
branch is also spectrally broadened in a highly nonlin-
ear fiber, but not to a full octave of optical frequencies.
The output of this branch is frequency-doubled using an
array of periodically-poled lithium niobate waveguides
with different poling periods. The frequency-doubled
comb is then mixed with the Ti:sapphire laser on a fast
photodiode to generate a heterodyne beatnote, which is
used to stabilize the Ti:sapphire laser to the frequency
comb. For this work we verified the comb-referenced
Ti:sapphire’s absolute frequency uncertainty by measur-
ing the resonant frequencies of the D2 line at 780 nm
(the 5s1/2,→ 5p3/2 transition) of 85Rb atoms in a vapor
cell and comparing them with their known values [19].
We verified that the absolute uncertainty is ±600 kHz,
consistent with that determined previously [18].

III. OBSERVATIONS
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FIG. 2: Normalized 6Li atom number as a function of photo-
association laser energy hνPA after a 2 second hold time
at zero magnetic field and a PA laser intensity of IPA =
635 W cm−2. These three resonances correspond to a transi-
tion from an initial unbound molecular state with N = 0, G =
0 to the v� = 21 vibrational level of the 13Σ+

g excited state
with N � = 1, G� = 0. The ensemble temperature was 15 µK.

In our initial search of PA resonances, we held the mag-

netic field near to the s-wave Feshbach resonance between
the |1� and |2� states at 834 G to enhance the collision
rate. This produced a very wide (1 GHz FWHM) PA
loss feature which facilitated initial detection [20]. Af-
ter the approximate locations of the PA resonances were
found in this way, we performed a high resolution scan
with an ensemble temperature of 15 µK and with no bias
magnetic field [51]. We observed that the PA spectrum
of each vibrational level had associated with it three nar-
row (below 10 MHz FWHM) features distributed across
a range of 0.7 GHz as shown in Fig. 2. Figure 3 shows
a higher resolution scan of the second feature shown in
Fig. 2. In order to reduce as much as possible the thermal
broadening and the inhomogeneous AC Stark shift pro-
duced by the optical dipole trapping potential, these data
were obtained in a very shallow trap (Utrap/kB ∼ 8 µK)
and an ensemble temperature of 800 nK, a temperature
well below the Fermi temperature for this two component
Fermi-gas (T/TF = 0.4). We then verified that these PA
resonances arise from collisions between atoms in states
|1� and |2� by using a state-selective resonant pulse of
light to remove all atoms in either of the two states. The
spin purification was done at the end of the preparation
sequence, and we observed the absence of these atom loss
features with either one of the states removed [52]. To
rule out the absence of these loss features due to a sim-
ple reduction of the density, we observed a reappearance
of the PA features when using a 50:50 mixture of the
|1� and |2� states with the same total number of particles
and temperature as the ensembles after spin purification.
Given that p-wave collisions are dramatically suppressed
at these temperatures and that these PA loss features
were visibly enhanced by the s-wave FR, we inferred that
they arise from s-wave collisions between atoms in states
|1� and |2�. Thus, they correspond to a transition from
an initial unbound molecular state with N = 0, G = 0
to an excited state with N � = 1, G� = 0 (assuming G
is a good quantum number). As we describe later, we
find that spin-spin and spin-rotation coupling split the
excited state into three sub-levels producing the three
PA features. In this case G is no longer a good quantum
number. The locations of these three features for each of
the seven vibrational levels is provided in Table I.

We also located for each of the vibrational states the
PA resonances associated with p-wave ground-state col-
lisions. However, these features were only observable in
our experiment when measures were taken to enhance
the PA scattering rate. In order to observe these PA
resonances, we enhanced the p-wave scattering rate by
stopping the evaporation at an ensemble temperature of
250 µK and by holding the magnetic field at 185 G during
the PA stage. This magnetic field is near the p-wave Fes-
hbach resonance between the |1� and |2� states at 185.1 G
[16]. Due to the Feshbach resonance enhancement of in-
elastic ground-state collisions, the ensemble particle loss
in the absence of the PA light was approximately 50%
during the 2 second hold time. Additional loss was in-
duced when the light was near a PA resonance. Fig-

4
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FIG. 3: High resolution scan of the normalized
6
Li atom num-

ber as a function of photo-association laser energy hνPA after

a 750 ms hold time at zero magnetic field and a PA laser

intensity of IPA = 635 W cm
−2

. This is the second of the

three resonances shown in Fig. 2 corresponding to a transition

from an initial unbound molecular state with N = 0, G = 0

to the v� = 21 vibrational level of the 1
3Σ+

g excited state with

N �
= 1, G�

= 0. The ensemble temperature was 800 nK. The

FWHM of this loss peak is 0.00048 cm
−1

(14.4 MHz).

ure 4 shows the loss spectrum for a transition from an

initial unbound molecular state with N = 1, G = 1 to

the v� = 20 vibrational level of the 1
3Σ+

g excited state

with N �
= 2, G�

= 1. For each of the seven vibrational

levels, we observed at least 4 (3) distinct loss features

for transitions to the N �
= 2, G�

= 1 (N �
= 0, G�

= 1)

final state. By evaporating the ensemble to 15 µK and

holding the magnetic field at 184.7 G, we observed that

each of these loss features results from multiple PA res-

onances that are unresolvable at 250 µK. The locations

of the loss features observed at 250 µK for each of the

seven vibrational levels is provided in Tables II and III.

These measurements were performed in the absence of

the comb stabilization. Instead, the Ti:sapphire lasers

were referenced to the wavemeter whose uncertainty is

60 MHz.

A. Systematic shifts

While the absolute uncertainty of our PA measure-

ments made using the frequency comb is ±600 kHz, the

data was taken in the presence of a small but non-zero

magnetic field and in an optical dipole trap with a known

intensity. These residual fields as well as the PA laser

itself can lead to a systematic shift of the resonance posi-

tions from their zero-field values. Therefore, in an effort

to quantify the role of the PA laser intensity, the CDT

laser intensity, and the residual magnetic field on the PA

0.74 0.75 0.76 0.77 0.78 0.79 0.8 0.810.4

0.5

0.6

0.7

0.8

0.9

1

wavenumber − 12238 [cm−1]

no
rm

al
iz

ed
 a

to
m

 n
um

be
r

Student Version of MATLAB

FIG. 4: (Color online) Normalized
6
Li atom number as a

function of photo-association laser energy hνPA after a 2 sec-

ond hold time. The circles are for an ensemble temperature of

250 µK at 185 G, and four distinct features are observed. The

diamonds denote the atom loss for an ensemble temperature

of 15 µK and at a magnetic field of 184.7 G. At this lower

temperature, these loss features are seen to result from multi-

ple PA resonances that are unresolvable at 250 µK. These PA

features arise from p-wave ground-state collisions and are en-

hanced by proximity to a p-wave Feshbach resonance between

the |1� and |2� states at 185.1 G.

TABLE I: Experimentally measured PA resonances for s-wave

collisions in a 50:50 mixture of the |1� and |2� states of
6
Li.

These three PA resonances correspond to a transition from an

initial unbound molecular state with N = 0, G = 0 to the vth

vibrational level of the 1
3Σ+

g excited state with N �
= 1. As we

explain in Sec. IV, spin-spin and spin-rotation coupling split

the excited state into three sub-levels producing the three PA

features corresponding to quantum numbers (N �
= 1, J �

= 1),

(N �
= 1, J �

= 2), and (N �
= 1, J �

= 0) respectively. The

absolute uncertainty in each these measurements is ±0.00002
cm

−1
(±600kHz).

v� 1st 2nd 3rd

cm
−1

cm
−1

cm
−1

20 12237.17755 12237.18587 12237.20126

21 12394.39726 12394.40535 12394.42039

22 12546.06767 12546.07552 12546.09025

23 12692.17316 12692.18080 12692.19509

24 12832.70080 12832.70820 12832.72214

25 12967.64116 12967.64862 12967.66219

26 13096.99114 13096.99804 13097.01125

loss features, we varied each one and measured the PA

resonance position and width for various excited states.

In each case, we assumed a linear dependence and de-

termined a shift rate of the resonance position with the

corresponding field strength. The uncertainty in this rate

is a one-sigma statistical uncertainty on the slope of the

linear fit.

When varying the PA laser intensity from IPA =

0.19 kW cm
−2

to IPA = 1.27 kW cm
−2

we observed

that the centroid of the first feature (J �
= 1) associated

J’=1

J’=0J’=2
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X(1
1Σ+

g )

(1) E

(2) V (R) = VLvW(R) + VE(R)

(3) V = VLvW + VE

(4) V (R) = VLvW + VE

(5) VStark ∼ −
α0E2

2

(6) FStark = −∇VStark ∼ ∇
α0E2

2
= α0E ×∇E = 2VStark ×

∇E

E

VStark ∼ h× 32 MHz (1.6 mK) for Li and VStark ∼ h× 64 MHz (3.2 mK) at 40kV/cm for Rb. For a change of the electric

field from the maximum to zero over a length L ∼ 1 cm, the force is then

Comparing this to the force due to gravity... For
6
Li over 1 cm, we have h × 1.5 MHz/cm and for

85
Rb we have h × 21

MHz/cm.

(7)
δνbare

δνECDL
= Q2

=
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dν
dI
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bare�

dν
dI

�
ECDL

�2

d
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γstd
sc
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(8) σxσpx = σzσpz =
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2

1

the relevant initial state is:
|S=1,N=0,J=1,I=1>

continuum (s-wave coll.)

We resolve three features for each vibrational level

v’=24
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v’=24,  N’=1, G’=0, S’=1, I’=1

3

NIR) with an absolute accuracy of 60 MHz and a shot-
to-shot repeatability (i.e. precision) of 10 MHz in the fre-
quency range of this work. For the high resolution mea-
surements, the Ti:sapphire laser, operating in the range
from 770 to 820 nm, is stabilized to a fiber based, self-
referenced frequency comb operating with a center wave-
length of 1550 nm as described previously [18]. Briefly,
the frequency comb is an Erbium-doped fiber laser fre-
quency comb with two amplified output branches. One
branch is used for self-referencing the carrier-envelope off-
set frequency via an f–2f interferometer. The second
branch is also spectrally broadened in a highly nonlin-
ear fiber, but not to a full octave of optical frequencies.
The output of this branch is frequency-doubled using an
array of periodically-poled lithium niobate waveguides
with different poling periods. The frequency-doubled
comb is then mixed with the Ti:sapphire laser on a fast
photodiode to generate a heterodyne beatnote, which is
used to stabilize the Ti:sapphire laser to the frequency
comb. For this work we verified the comb-referenced
Ti:sapphire’s absolute frequency uncertainty by measur-
ing the resonant frequencies of the D2 line at 780 nm
(the 5s1/2,→ 5p3/2 transition) of 85Rb atoms in a vapor
cell and comparing them with their known values [19].
We verified that the absolute uncertainty is ±600 kHz,
consistent with that determined previously [18].

III. OBSERVATIONS
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FIG. 2: Normalized 6Li atom number as a function of photo-
association laser energy hνPA after a 2 second hold time
at zero magnetic field and a PA laser intensity of IPA =
635 W cm−2. These three resonances correspond to a transi-
tion from an initial unbound molecular state with N = 0, G =
0 to the v� = 21 vibrational level of the 13Σ+

g excited state
with N � = 1, G� = 0. The ensemble temperature was 15 µK.

In our initial search of PA resonances, we held the mag-

netic field near to the s-wave Feshbach resonance between
the |1� and |2� states at 834 G to enhance the collision
rate. This produced a very wide (1 GHz FWHM) PA
loss feature which facilitated initial detection [20]. Af-
ter the approximate locations of the PA resonances were
found in this way, we performed a high resolution scan
with an ensemble temperature of 15 µK and with no bias
magnetic field [51]. We observed that the PA spectrum
of each vibrational level had associated with it three nar-
row (below 10 MHz FWHM) features distributed across
a range of 0.7 GHz as shown in Fig. 2. Figure 3 shows
a higher resolution scan of the second feature shown in
Fig. 2. In order to reduce as much as possible the thermal
broadening and the inhomogeneous AC Stark shift pro-
duced by the optical dipole trapping potential, these data
were obtained in a very shallow trap (Utrap/kB ∼ 8 µK)
and an ensemble temperature of 800 nK, a temperature
well below the Fermi temperature for this two component
Fermi-gas (T/TF = 0.4). We then verified that these PA
resonances arise from collisions between atoms in states
|1� and |2� by using a state-selective resonant pulse of
light to remove all atoms in either of the two states. The
spin purification was done at the end of the preparation
sequence, and we observed the absence of these atom loss
features with either one of the states removed [52]. To
rule out the absence of these loss features due to a sim-
ple reduction of the density, we observed a reappearance
of the PA features when using a 50:50 mixture of the
|1� and |2� states with the same total number of particles
and temperature as the ensembles after spin purification.
Given that p-wave collisions are dramatically suppressed
at these temperatures and that these PA loss features
were visibly enhanced by the s-wave FR, we inferred that
they arise from s-wave collisions between atoms in states
|1� and |2�. Thus, they correspond to a transition from
an initial unbound molecular state with N = 0, G = 0
to an excited state with N � = 1, G� = 0 (assuming G
is a good quantum number). As we describe later, we
find that spin-spin and spin-rotation coupling split the
excited state into three sub-levels producing the three
PA features. In this case G is no longer a good quantum
number. The locations of these three features for each of
the seven vibrational levels is provided in Table I.

We also located for each of the vibrational states the
PA resonances associated with p-wave ground-state col-
lisions. However, these features were only observable in
our experiment when measures were taken to enhance
the PA scattering rate. In order to observe these PA
resonances, we enhanced the p-wave scattering rate by
stopping the evaporation at an ensemble temperature of
250 µK and by holding the magnetic field at 185 G during
the PA stage. This magnetic field is near the p-wave Fes-
hbach resonance between the |1� and |2� states at 185.1 G
[16]. Due to the Feshbach resonance enhancement of in-
elastic ground-state collisions, the ensemble particle loss
in the absence of the PA light was approximately 50%
during the 2 second hold time. Additional loss was in-
duced when the light was near a PA resonance. Fig-

4
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FIG. 3: High resolution scan of the normalized
6
Li atom num-

ber as a function of photo-association laser energy hνPA after

a 750 ms hold time at zero magnetic field and a PA laser

intensity of IPA = 635 W cm
−2

. This is the second of the

three resonances shown in Fig. 2 corresponding to a transition

from an initial unbound molecular state with N = 0, G = 0

to the v� = 21 vibrational level of the 1
3Σ+

g excited state with

N �
= 1, G�

= 0. The ensemble temperature was 800 nK. The

FWHM of this loss peak is 0.00048 cm
−1

(14.4 MHz).

ure 4 shows the loss spectrum for a transition from an

initial unbound molecular state with N = 1, G = 1 to

the v� = 20 vibrational level of the 1
3Σ+

g excited state

with N �
= 2, G�

= 1. For each of the seven vibrational

levels, we observed at least 4 (3) distinct loss features

for transitions to the N �
= 2, G�

= 1 (N �
= 0, G�

= 1)

final state. By evaporating the ensemble to 15 µK and

holding the magnetic field at 184.7 G, we observed that

each of these loss features results from multiple PA res-

onances that are unresolvable at 250 µK. The locations

of the loss features observed at 250 µK for each of the

seven vibrational levels is provided in Tables II and III.

These measurements were performed in the absence of

the comb stabilization. Instead, the Ti:sapphire lasers

were referenced to the wavemeter whose uncertainty is

60 MHz.

A. Systematic shifts

While the absolute uncertainty of our PA measure-

ments made using the frequency comb is ±600 kHz, the

data was taken in the presence of a small but non-zero

magnetic field and in an optical dipole trap with a known

intensity. These residual fields as well as the PA laser

itself can lead to a systematic shift of the resonance posi-

tions from their zero-field values. Therefore, in an effort

to quantify the role of the PA laser intensity, the CDT

laser intensity, and the residual magnetic field on the PA

0.74 0.75 0.76 0.77 0.78 0.79 0.8 0.810.4

0.5

0.6

0.7

0.8

0.9

1

wavenumber − 12238 [cm−1]

no
rm

al
iz

ed
 a

to
m

 n
um

be
r

Student Version of MATLAB

FIG. 4: (Color online) Normalized
6
Li atom number as a

function of photo-association laser energy hνPA after a 2 sec-

ond hold time. The circles are for an ensemble temperature of

250 µK at 185 G, and four distinct features are observed. The

diamonds denote the atom loss for an ensemble temperature

of 15 µK and at a magnetic field of 184.7 G. At this lower

temperature, these loss features are seen to result from multi-

ple PA resonances that are unresolvable at 250 µK. These PA

features arise from p-wave ground-state collisions and are en-

hanced by proximity to a p-wave Feshbach resonance between

the |1� and |2� states at 185.1 G.

TABLE I: Experimentally measured PA resonances for s-wave

collisions in a 50:50 mixture of the |1� and |2� states of
6
Li.

These three PA resonances correspond to a transition from an

initial unbound molecular state with N = 0, G = 0 to the vth

vibrational level of the 1
3Σ+

g excited state with N �
= 1. As we

explain in Sec. IV, spin-spin and spin-rotation coupling split

the excited state into three sub-levels producing the three PA

features corresponding to quantum numbers (N �
= 1, J �

= 1),

(N �
= 1, J �

= 2), and (N �
= 1, J �

= 0) respectively. The

absolute uncertainty in each these measurements is ±0.00002
cm

−1
(±600kHz).

v� 1st 2nd 3rd

cm
−1

cm
−1

cm
−1

20 12237.17755 12237.18587 12237.20126

21 12394.39726 12394.40535 12394.42039

22 12546.06767 12546.07552 12546.09025

23 12692.17316 12692.18080 12692.19509

24 12832.70080 12832.70820 12832.72214

25 12967.64116 12967.64862 12967.66219

26 13096.99114 13096.99804 13097.01125

loss features, we varied each one and measured the PA

resonance position and width for various excited states.

In each case, we assumed a linear dependence and de-

termined a shift rate of the resonance position with the

corresponding field strength. The uncertainty in this rate

is a one-sigma statistical uncertainty on the slope of the

linear fit.

When varying the PA laser intensity from IPA =

0.19 kW cm
−2

to IPA = 1.27 kW cm
−2

we observed

that the centroid of the first feature (J �
= 1) associated

J’=1

J’=0J’=2
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electronic excited states that correlate to the 2s+2p threshold in Lithium
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B(1
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C(1
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electronic ground states that correlate to the 2s+2s threshold in Lithium

a(1
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VStark ∼ h× 32 MHz (1.6 mK) for Li and VStark ∼ h× 64 MHz (3.2 mK) at 40kV/cm for Rb. For a change of the electric

field from the maximum to zero over a length L ∼ 1 cm, the force is then

Comparing this to the force due to gravity... For
6
Li over 1 cm, we have h × 1.5 MHz/cm and for

85
Rb we have h × 21

MHz/cm.
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continuum (s-wave coll.)

We resolve three features for each vibrational level

v’=24



J’=1

J’=0
J’=2

Ω1

1-color PA spectroscopy results

v’=24,  N’=1, G’=0, S’=1, I’=1

3

NIR) with an absolute accuracy of 60 MHz and a shot-
to-shot repeatability (i.e. precision) of 10 MHz in the fre-
quency range of this work. For the high resolution mea-
surements, the Ti:sapphire laser, operating in the range
from 770 to 820 nm, is stabilized to a fiber based, self-
referenced frequency comb operating with a center wave-
length of 1550 nm as described previously [18]. Briefly,
the frequency comb is an Erbium-doped fiber laser fre-
quency comb with two amplified output branches. One
branch is used for self-referencing the carrier-envelope off-
set frequency via an f–2f interferometer. The second
branch is also spectrally broadened in a highly nonlin-
ear fiber, but not to a full octave of optical frequencies.
The output of this branch is frequency-doubled using an
array of periodically-poled lithium niobate waveguides
with different poling periods. The frequency-doubled
comb is then mixed with the Ti:sapphire laser on a fast
photodiode to generate a heterodyne beatnote, which is
used to stabilize the Ti:sapphire laser to the frequency
comb. For this work we verified the comb-referenced
Ti:sapphire’s absolute frequency uncertainty by measur-
ing the resonant frequencies of the D2 line at 780 nm
(the 5s1/2,→ 5p3/2 transition) of 85Rb atoms in a vapor
cell and comparing them with their known values [19].
We verified that the absolute uncertainty is ±600 kHz,
consistent with that determined previously [18].

III. OBSERVATIONS
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FIG. 2: Normalized 6Li atom number as a function of photo-
association laser energy hνPA after a 2 second hold time
at zero magnetic field and a PA laser intensity of IPA =
635 W cm−2. These three resonances correspond to a transi-
tion from an initial unbound molecular state with N = 0, G =
0 to the v� = 21 vibrational level of the 13Σ+

g excited state
with N � = 1, G� = 0. The ensemble temperature was 15 µK.

In our initial search of PA resonances, we held the mag-

netic field near to the s-wave Feshbach resonance between
the |1� and |2� states at 834 G to enhance the collision
rate. This produced a very wide (1 GHz FWHM) PA
loss feature which facilitated initial detection [20]. Af-
ter the approximate locations of the PA resonances were
found in this way, we performed a high resolution scan
with an ensemble temperature of 15 µK and with no bias
magnetic field [51]. We observed that the PA spectrum
of each vibrational level had associated with it three nar-
row (below 10 MHz FWHM) features distributed across
a range of 0.7 GHz as shown in Fig. 2. Figure 3 shows
a higher resolution scan of the second feature shown in
Fig. 2. In order to reduce as much as possible the thermal
broadening and the inhomogeneous AC Stark shift pro-
duced by the optical dipole trapping potential, these data
were obtained in a very shallow trap (Utrap/kB ∼ 8 µK)
and an ensemble temperature of 800 nK, a temperature
well below the Fermi temperature for this two component
Fermi-gas (T/TF = 0.4). We then verified that these PA
resonances arise from collisions between atoms in states
|1� and |2� by using a state-selective resonant pulse of
light to remove all atoms in either of the two states. The
spin purification was done at the end of the preparation
sequence, and we observed the absence of these atom loss
features with either one of the states removed [52]. To
rule out the absence of these loss features due to a sim-
ple reduction of the density, we observed a reappearance
of the PA features when using a 50:50 mixture of the
|1� and |2� states with the same total number of particles
and temperature as the ensembles after spin purification.
Given that p-wave collisions are dramatically suppressed
at these temperatures and that these PA loss features
were visibly enhanced by the s-wave FR, we inferred that
they arise from s-wave collisions between atoms in states
|1� and |2�. Thus, they correspond to a transition from
an initial unbound molecular state with N = 0, G = 0
to an excited state with N � = 1, G� = 0 (assuming G
is a good quantum number). As we describe later, we
find that spin-spin and spin-rotation coupling split the
excited state into three sub-levels producing the three
PA features. In this case G is no longer a good quantum
number. The locations of these three features for each of
the seven vibrational levels is provided in Table I.

We also located for each of the vibrational states the
PA resonances associated with p-wave ground-state col-
lisions. However, these features were only observable in
our experiment when measures were taken to enhance
the PA scattering rate. In order to observe these PA
resonances, we enhanced the p-wave scattering rate by
stopping the evaporation at an ensemble temperature of
250 µK and by holding the magnetic field at 185 G during
the PA stage. This magnetic field is near the p-wave Fes-
hbach resonance between the |1� and |2� states at 185.1 G
[16]. Due to the Feshbach resonance enhancement of in-
elastic ground-state collisions, the ensemble particle loss
in the absence of the PA light was approximately 50%
during the 2 second hold time. Additional loss was in-
duced when the light was near a PA resonance. Fig-
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FIG. 3: High resolution scan of the normalized
6
Li atom num-

ber as a function of photo-association laser energy hνPA after

a 750 ms hold time at zero magnetic field and a PA laser

intensity of IPA = 635 W cm
−2

. This is the second of the

three resonances shown in Fig. 2 corresponding to a transition

from an initial unbound molecular state with N = 0, G = 0

to the v� = 21 vibrational level of the 1
3Σ+

g excited state with

N �
= 1, G�

= 0. The ensemble temperature was 800 nK. The

FWHM of this loss peak is 0.00048 cm
−1

(14.4 MHz).

ure 4 shows the loss spectrum for a transition from an

initial unbound molecular state with N = 1, G = 1 to

the v� = 20 vibrational level of the 1
3Σ+

g excited state

with N �
= 2, G�

= 1. For each of the seven vibrational

levels, we observed at least 4 (3) distinct loss features

for transitions to the N �
= 2, G�

= 1 (N �
= 0, G�

= 1)

final state. By evaporating the ensemble to 15 µK and

holding the magnetic field at 184.7 G, we observed that

each of these loss features results from multiple PA res-

onances that are unresolvable at 250 µK. The locations

of the loss features observed at 250 µK for each of the

seven vibrational levels is provided in Tables II and III.

These measurements were performed in the absence of

the comb stabilization. Instead, the Ti:sapphire lasers

were referenced to the wavemeter whose uncertainty is

60 MHz.

A. Systematic shifts

While the absolute uncertainty of our PA measure-

ments made using the frequency comb is ±600 kHz, the

data was taken in the presence of a small but non-zero

magnetic field and in an optical dipole trap with a known

intensity. These residual fields as well as the PA laser

itself can lead to a systematic shift of the resonance posi-

tions from their zero-field values. Therefore, in an effort

to quantify the role of the PA laser intensity, the CDT

laser intensity, and the residual magnetic field on the PA
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FIG. 4: (Color online) Normalized
6
Li atom number as a

function of photo-association laser energy hνPA after a 2 sec-

ond hold time. The circles are for an ensemble temperature of

250 µK at 185 G, and four distinct features are observed. The

diamonds denote the atom loss for an ensemble temperature

of 15 µK and at a magnetic field of 184.7 G. At this lower

temperature, these loss features are seen to result from multi-

ple PA resonances that are unresolvable at 250 µK. These PA

features arise from p-wave ground-state collisions and are en-

hanced by proximity to a p-wave Feshbach resonance between

the |1� and |2� states at 185.1 G.

TABLE I: Experimentally measured PA resonances for s-wave

collisions in a 50:50 mixture of the |1� and |2� states of
6
Li.

These three PA resonances correspond to a transition from an

initial unbound molecular state with N = 0, G = 0 to the vth

vibrational level of the 1
3Σ+

g excited state with N �
= 1. As we

explain in Sec. IV, spin-spin and spin-rotation coupling split

the excited state into three sub-levels producing the three PA

features corresponding to quantum numbers (N �
= 1, J �

= 1),

(N �
= 1, J �

= 2), and (N �
= 1, J �

= 0) respectively. The

absolute uncertainty in each these measurements is ±0.00002
cm

−1
(±600kHz).

v� 1st 2nd 3rd

cm
−1

cm
−1

cm
−1

20 12237.17755 12237.18587 12237.20126

21 12394.39726 12394.40535 12394.42039

22 12546.06767 12546.07552 12546.09025

23 12692.17316 12692.18080 12692.19509

24 12832.70080 12832.70820 12832.72214

25 12967.64116 12967.64862 12967.66219

26 13096.99114 13096.99804 13097.01125

loss features, we varied each one and measured the PA

resonance position and width for various excited states.

In each case, we assumed a linear dependence and de-

termined a shift rate of the resonance position with the

corresponding field strength. The uncertainty in this rate

is a one-sigma statistical uncertainty on the slope of the

linear fit.

When varying the PA laser intensity from IPA =

0.19 kW cm
−2

to IPA = 1.27 kW cm
−2

we observed

that the centroid of the first feature (J �
= 1) associated

J’=1

J’=0J’=2

We resolve three features for each vibrational level
split by spin-spin and spin-rotation coupling
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VStark ∼ h× 32 MHz (1.6 mK) for Li and VStark ∼ h× 64 MHz (3.2 mK) at 40kV/cm for Rb. For a change of the electric

field from the maximum to zero over a length L ∼ 1 cm, the force is then

Comparing this to the force due to gravity... For
6
Li over 1 cm, we have h × 1.5 MHz/cm and for

85
Rb we have h × 21

MHz/cm.
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|S=1,N=0,J=1,I=1>

continuum (s-wave coll.)

(1) �J = �N + �S

(2) f4 − f5

(3) ∆J = ±1, 0

(4) f3 − f2

(5) f2 − f1

Are the terms in the Hamiltonian explicitly

(6) Ĥspin−rot = γv
�N · �S

(7) Ĥspin−spin = 2λv[Ŝ
2
z − Ŝ

2
/3]

... of the rotational levels, previously labeled by N , according to the J quantum

number, given by J = (N + S), (N + S − 1), (N + S − 2),· · · , |N − S|. Therefore,

each level with a given N(≥ S) consists of 2S + 1 sub-levels, and the number of

sub-levels is equal to the spin multiplicity. However, for N < S, the number of

sub-levels is equal to 2N + 1 (the rotational multiplicity). Hence, all N = 0 levels

do not split, as mentioned previously. For a particular ro-vibrational state, |ν, N �,
with a total spin S = 1, the rotational energy is given by

FJ=N+1 = BvN(N + 1) + (2N + 3)Bv − λv

−
�

(2N + 3)2B2
v + λ2

v − 2λvBv + γv(N + 1)

FJ=N = BvN(N + 1)

FJ=N−1 = BvN(N + 1)− (2N − 1)Bv − λv

+

�
(2N − 1)2B2

v + λ2
v − 2λvBv − γvN,(8)

where λv and γv are constants. Here, λv is related to the spin-spin interaction and

it describes the coupling between the total spin, �S, and the molecular axis; γv is

related to the spin-rotation interaction and it is a measure of the coupling between

�S and �N . Under most circumstances, these two constants describe small effects

which are not spectroscopically resolvable and are typically ignored in the Dunham

expansion. However, at the level of resolution in the current experiment, one needs

to take into account these second-order perturbations. In the case where spin-spin

and spin-rotation couplings are small (Bv � |λv|, |γv|) we can simplify Eq. 7 to

FJ=N+1 = BvN(N + 1)− 2N + 2

2N + 3
λv + γv(N + 1)

FJ=N = BvN(N + 1)

FJ=N−1 = BvN(N + 1)− 2N

2N − 1
λv − γvN.(9)

In addition, when spin-spin coupling is much more important than spin-rotation

coupling (|λv| � |γv|), the energy ordering results from the λv terms, and we can

label these three peaks in Table ??, energetically from low to high, as (N
�
= 1, J

�
=

1), (N
�
= 1, J

�
= 2), and (N

�
= 1, J

�
= 0) because λv is negative.

1
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... of the rotational levels, previously labeled by N , according to the J quantum

number, given by J = (N + S), (N + S − 1), (N + S − 2),· · · , |N − S|. Therefore,

each level with a given N(≥ S) consists of 2S + 1 sub-levels, and the number of

sub-levels is equal to the spin multiplicity. However, for N < S, the number of

sub-levels is equal to 2N + 1 (the rotational multiplicity). Hence, all N = 0 levels

do not split, as mentioned previously. For a particular ro-vibrational state, |ν, N �,
with a total spin S = 1, the rotational energy is given by

FJ=N+1 = BvN(N + 1) + (2N + 3)Bv − λv

−
�

(2N + 3)2B2
v + λ2

v − 2λvBv + γv(N + 1)

FJ=N = BvN(N + 1)

FJ=N−1 = BvN(N + 1)− (2N − 1)Bv − λv

+
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(2N − 1)2B2

v + λ2
v − 2λvBv − γvN,(6)

where λv and γv are constants. Here, λv is related to the spin-spin interaction and

it describes the coupling between the total spin, �S, and the molecular axis; γv is

related to the spin-rotation interaction and it is a measure of the coupling between

�S and �N . Under most circumstances, these two constants describe small effects

which are not spectroscopically resolvable and are typically ignored in the Dunham

expansion. However, at the level of resolution in the current experiment, one needs

to take into account these second-order perturbations. In the case where spin-spin

and spin-rotation couplings are small (Bv � |λv|, |γv|) we can simplify Eq. 5 to

FJ=N+1 = BvN(N + 1)− 2N + 2

2N + 3
λv + γv(N + 1)

FJ=N = BvN(N + 1)

FJ=N−1 = BvN(N + 1)− 2N

2N − 1
λv − γvN.(7)

In addition, when spin-spin coupling is much more important than spin-rotation

coupling (|λv| � |γv|), the energy ordering results from the λv terms, and we can

label these three peaks in Table ??, energetically from low to high, as (N
�
= 1, J

�
=

1), (N
�
= 1, J

�
= 2), and (N

�
= 1, J

�
= 0) because λv is negative.

1
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TABLE II: Experimentally measured PA resonances for p-
wave collisions in an incoherent mixture of the |1� and |2�
states of 6Li held at a magnetic field of B = 185 G. Each
of these values was extracted by fitting a loss spectrum like
that shown in Fig. 4. These PA resonances correspond to
a transition from an initial unbound molecular state with
N = 1, G = 1 to the vth vibrational level of the 13Σ+

g ex-
cited state with N � = 0, G� = 1. While the precision in these
measurements is 0.001 cm−1, the uncertainty, limited by the
wavemeter, is ±0.002 cm−1

v� 1st 2nd 3rd
cm−1 cm−1 cm−1

20 12236.388 12236.407 12236.424
21 12393.629 12393.648 12393.664
22 12545.320 12545.338 12545.355
23 12691.446 12691.465 12691.480
24 12831.995 12832.012 12832.029
25 12966.957 12966.975 12966.991
26 13096.326 13096.346 13096.362

TABLE III: Experimentally measured PA resonances for p-
wave collisions in an incoherent mixture of the |1� and |2�
states of 6Li held at a magnetic field of B = 185 G. Each
of these values was extracted by fitting a loss spectrum like
that shown in Fig. 4. These PA resonances correspond to
a transition from an initial unbound molecular state with
N = 1, G = 1 to the vth vibrational level of the 13Σ+

g ex-
cited state with N � = 2, G� = 1. While the precision in these
measurements is 0.001 cm−1, the uncertainty, limited by the
wavemeter, is ±0.002 cm−1

v� 1st 2nd 3rd 4th
cm−1 cm−1 cm−1 cm−1

20 12238.757 12238.772 12238.780 12238.795
21 12395.936 12395.951 12395.958 12395.973
22 12547.567 12547.579 12547.587 12547.601
23 12693.628 12693.642 12693.648 12693.665
24 12834.113 12834.128 12834.134 12834.150
25 12969.011 12969.026 12969.032 12969.047
26 13098.315 13098.332 13098.339 13098.355

When varying the PA laser intensity from IPA =

0.19 kW cm
−2

to IPA = 1.27 kW cm
−2

we observed

that the centroid of the first feature (J �
= 1) associated

with the v� = 26 excited state shifted to higher frequen-

cies at a rate of 471± 433 kHz per kW cm
−2

. When the

CDT laser intensity was varied from 5.4 kW cm
−2

(145

mW total CDT power) to 140 kW cm
−2

(3.1 W total

CDT power) the PA feature centroid associated with the

v� = 24, J �
= 1 state shifted down in frequency at a rate

of −(19 ± 1.2) kHz per kW cm
−2

. The resonance po-

sitions reported in Table I were determined using a PA

laser intensity of IPA = 635 W cm
−2

, and a CDT inten-

sity of 7.5 kW cm
−2

. Assuming the differential AC Stark

shift is the same for all excited states, the reported val-

ues are therefore shifted lower by 142± 9 kHz due to the

CDT and higher by 300 ± 274 kHz due to the PA laser

than their extrapolated position at zero differential AC

Stark shift. The overall AC Stark shift of the resonance

positions is thus higher by 157 kHz with an uncertainty

of ±274 kHz. Both this shift and uncertainty are small

compared to the absolute uncertainty of the frequency

comb. For the resonance positions reported in Tables II

and III, the trapping power was larger (40 W total) and

the differential AC Stark shift due to the CDT is esti-

mated to be −(15± 1) MHz.

When the magnetic field was varied from 0 G to 10 G

the PA features associated with the v� = 24, J �
= 1,

J �
= 2, and J �

= 0 states were observed to shift and, in

the case of J �
= 1 and J �

= 2, to broaden and eventually

split into multiple resolvable peaks. In each case, we mea-

sured the PA feature center of mass and found that when

the magnetic field was varied from 0 to 1 G, the barycen-

ter of the PA features moved by −(91.2 ± 18.3) kHz for

the J �
= 1 state, +(46±28) kHz for the J �

= 2 state, and

+(74.5 ± 30.1) kHz for the J �
= 0 state. Since the res-

onance positions reported in Table I were determined in

the presence of a residual magnetic field below 400 mG,

the uncertainty in their positions due to the magnetic

field was below 50 kHz for all J states and thus small

compared to the absolute uncertainty of the frequency

comb.

IV. INTERPRETATION

In order to interpret our measurements, we begin with

a brief review of the symmetry properties and corre-

sponding selection rules relevant for the photoassociation

process. Molecules in the 1
3Σ+

g excited state are charac-

terized by the Hund’s case “b” coupling scheme in which

the total electronic (nuclear) spin �S = �s1+�s2 (�I =�i1+�i2)
is completely uncoupled from the internuclear axis. Here

�sj (�ij) is the electronic (nuclear) spin of atom “j”. This

occurs when Λ = 0, the projection of the orbital angular

momentum of the electrons along the internuclear axis

is zero, and there is therefore no axial magnetic field to

couple the total spin to the axis. For “Σ” states, the

orbital angular momentum of the electrons is zero and

therefore Λ is always identically zero; however, even in

some cases where Λ �= 0, especially for light molecules,

the coupling is sufficiently weak that Hund’s case “b” is

still the appropriate scheme [21]. The total angular mo-

mentum, apart from the spin, is �K ≡ �N + �Λ, the vector

sum of �Λ and the rotational angular momentum of the

nuclei �N . Therefore for “Σ” states �K = �N , and thus �K is

perpendicular to the internuclear axis. The total spin of

the molecule is �G = �S+�I and is a good quantum number

so long as the hyperfine interaction and spin-rotational

couplings are small. The total spin combines with the to-

tal angular momentum apart from spin �K to result in the

total angular momentum including spin as �J = �K + �G.

For electric dipole radiation, the selection rule is that

∆J = 0,±1 with the restriction that J = 0 � J = 0. In

6

addition, under the emission or absorption of a photon

the parity of the electronic orbital must change (+↔ −)

and for a homonuclear molecule, the symmetry of the

coordinate function under interchange of the two nuclei

must change from symmetric to anti-symmetric or vice

versa (g ↔ u). In the present scenario of Hund’s case

“b” coupling, the spin is so weakly coupled to the other

angular momenta that both quantum numbers S and K
are well defined and we have in addition the selection

rules ∆S = 0 (or equivalently ∆G = 0) and therefore

∆K = 0,±1 with the restriction that ∆K = 0 is for-

bidden for Σ → Σ transitions. Since we are here only

concerned with transitions to the 1
3Σ+

g excited state, we

have that ∆N = ±1 and ∆G = 0.

TABLE IV: Allowed rotational levels and corresponding nu-
clear spin configurations for 6Li2 molecules in the limit that
spin-spin and spin-rotation couplings are small enough that
G is a good quantum number.

State Electronic Nuclear Allowed Total
spin spin rotational states Spin

ground states
- - - N = 0, 2, 4 . . . G = 0
- - - N = 1, 3, 5 . . . G = 1

excited states
13Σ+

g : S = 1 I = 0 N = 0, 2, 4 . . . G = 1
I = 1 N = 1, 3, 5 . . . G = 0, 1, 2
I = 2 N = 0, 2, 4 . . . G = 1, 2, 3

We now discuss the allowed quantum numbers for the

initial and final states. In this work, we only consider

collisions between two
6
Li atoms, which are composite

fermions (consisting of 9 fermions: 3 protons, 3 neu-

trons, and 3 electrons), and we note that the 2-body

eigenstates, composed of a spin part and an orbital part,

must be antisymmetric upon exchange of the two atoms.

The consequence is that only certain spin states are pos-

sible given a particular orbital state. An important ex-

ample of this constraint imposed by exchange symmetry

is that the two-body position wave function (sometimes

called the “coordinate function” or orbital state) must

be antisymmetric for a collision between two fermions in

the same spin state (for which the spin wave function is

manifestly symmetric). Thus a spin polarized Fermi gas

can only have odd partial wave collisions (p-, f -, h-wave,

etc...) corresponding to odd values of the rotational an-

gular momentum of the complex (N = 1, 3, 5 . . .), which

are antisymmetric with respect to atom exchange. For

a gas composed of two distinct spin states, even partial

wave collisions can occur (s-, d-, g-wave, etc...) so long

as the spin wave function is antisymmetric upon atom

exchange. As we described in Sec. III, the ability to turn

off s-wave collisions by spin polarizing the gas is a useful

feature of our system that we use to validate our assign-

ment of the PA lines.

The total spin angular momentum of the initial un-

bound molecular state is given by the vector sum of the

f quantum numbers for the isolated atoms: �G = �f1 + �f2.

Here �f1 = �s1 +�i1. In our experiment, the atoms are op-

tically pumped to the lowest hyperfine state before being

exposed to the photoassociation light. Therefore we have

that f1 = f2 =
1
2 and there are two allowed values of the

total spin: G = 0, 1. Certain values of G (specifically

G = f1 + f2, f1 + f2 − 2, . . .) are associated with spin

states symmetric with respect to interchange of the atoms

while the orbital states with even values of N are sym-

metric under the interchange of the atoms. Therefore all

even partial wave collisions (N = 0, 2, 4, . . .) have a total

spin of zero (G = 0) and all odd partial wave collisions

(N = 1, 3, 5, . . .) have a total spin of one (G = 1).

The final state is a molecule in the 1
3Σ+

g potential. For

this triplet state, the total electronic spin is well defined

(S = 1) and the “gerade” symmetry signified by a sub-

script “g” denotes that all states with an even rotational

quantum number (N = 0, 2, 4, . . .) are symmetric under

the interchange of the two nuclei. Because the electronic

spin is well defined and fixed for this excited state, we

now consider interchanging just the nuclei while leaving

the electrons untouched. There are three possible values

of the total nuclear spin (I = 0, 1, 2) since the nuclear

spin of each atom is i = 1. Similar to the symmetry of

G, states with I = i1 + i2, i1 + i2 − 2 . . . (corresponding

here to I = 0 and I = 2) are symmetric with respect

to interchange of the nuclei whereas the I = 1 state is

antisymmetric. Since the nuclei are bosons the total wave

function must be symmetric under the interchange of the

nuclei. Putting this together, we have that the even (odd)

values of I occur with even (odd) values of N . The total

spin angular momentum quantum number G can take on

all values between and including |I + S| and |I − S|.
The possible quantum numbers for the ground and ex-

cited states are tabulated in Table IV. For a ground state

s-wave collision (N = 0) we find that there is only one

allowed value for the total spin: G = 0. From an ini-

tial state with N = 0 and G = 0, we see that there is

only one possible transition to the excited triplet state:

(N = 0, G = 0) → (N �
= 1, G�

= 0). For a ground state

p-wave collision, the initial state is (N = 1, G = 1) and

there are two possible transitions to the excited triplet

state: (N = 1, G = 1) → (N �
= 0, G�

= 1) and

(N = 1, G = 1) → (N �
= 2, G�

= 1). In both cases,

there are two possible values of the total nuclear spin:

I = 0 or 2.

In the preceding discussion, we have assumed that both

the spin-spin coupling, involving terms of the form �s1 ·�s2,

and the coupling of the total electronic spin, �S, with

the molecular rotation, �N , are negligible. In this case,

the total spin (characterized by �G) is a good quantum

number. However, while these couplings are small, we

nevertheless do resolve a splitting of the excited state

energy levels by observing three PA resonances as seen

in Fig. 2 instead of a single feature for an initial s-wave

collision. As we explain later, the ground state is not

split in this particular case because N = 0.

In order to properly label the three PA resonances (as-

sociated with ground state s-wave collisions) observed
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addition, under the emission or absorption of a photon

the parity of the electronic orbital must change (+↔ −)

and for a homonuclear molecule, the symmetry of the

coordinate function under interchange of the two nuclei

must change from symmetric to anti-symmetric or vice

versa (g ↔ u). In the present scenario of Hund’s case

“b” coupling, the spin is so weakly coupled to the other

angular momenta that both quantum numbers S and K
are well defined and we have in addition the selection

rules ∆S = 0 (or equivalently ∆G = 0) and therefore

∆K = 0,±1 with the restriction that ∆K = 0 is for-

bidden for Σ → Σ transitions. Since we are here only

concerned with transitions to the 1
3Σ+

g excited state, we

have that ∆N = ±1 and ∆G = 0.

TABLE IV: Allowed rotational levels and corresponding nu-
clear spin configurations for 6Li2 molecules in the limit that
spin-spin and spin-rotation couplings are small enough that
G is a good quantum number.

State Electronic Nuclear Allowed Total
spin spin rotational states Spin

ground states
- - - N = 0, 2, 4 . . . G = 0
- - - N = 1, 3, 5 . . . G = 1

excited states
13Σ+

g : S = 1 I = 0 N = 0, 2, 4 . . . G = 1
I = 1 N = 1, 3, 5 . . . G = 0, 1, 2
I = 2 N = 0, 2, 4 . . . G = 1, 2, 3

We now discuss the allowed quantum numbers for the

initial and final states. In this work, we only consider

collisions between two
6
Li atoms, which are composite

fermions (consisting of 9 fermions: 3 protons, 3 neu-

trons, and 3 electrons), and we note that the 2-body

eigenstates, composed of a spin part and an orbital part,

must be antisymmetric upon exchange of the two atoms.

The consequence is that only certain spin states are pos-

sible given a particular orbital state. An important ex-

ample of this constraint imposed by exchange symmetry

is that the two-body position wave function (sometimes

called the “coordinate function” or orbital state) must

be antisymmetric for a collision between two fermions in

the same spin state (for which the spin wave function is

manifestly symmetric). Thus a spin polarized Fermi gas

can only have odd partial wave collisions (p-, f -, h-wave,

etc...) corresponding to odd values of the rotational an-

gular momentum of the complex (N = 1, 3, 5 . . .), which

are antisymmetric with respect to atom exchange. For

a gas composed of two distinct spin states, even partial

wave collisions can occur (s-, d-, g-wave, etc...) so long

as the spin wave function is antisymmetric upon atom

exchange. As we described in Sec. III, the ability to turn

off s-wave collisions by spin polarizing the gas is a useful

feature of our system that we use to validate our assign-

ment of the PA lines.

The total spin angular momentum of the initial un-

bound molecular state is given by the vector sum of the

f quantum numbers for the isolated atoms: �G = �f1 + �f2.

Here �f1 = �s1 +�i1. In our experiment, the atoms are op-

tically pumped to the lowest hyperfine state before being

exposed to the photoassociation light. Therefore we have

that f1 = f2 =
1
2 and there are two allowed values of the

total spin: G = 0, 1. Certain values of G (specifically

G = f1 + f2, f1 + f2 − 2, . . .) are associated with spin

states symmetric with respect to interchange of the atoms

while the orbital states with even values of N are sym-

metric under the interchange of the atoms. Therefore all

even partial wave collisions (N = 0, 2, 4, . . .) have a total

spin of zero (G = 0) and all odd partial wave collisions

(N = 1, 3, 5, . . .) have a total spin of one (G = 1).

The final state is a molecule in the 1
3Σ+

g potential. For

this triplet state, the total electronic spin is well defined

(S = 1) and the “gerade” symmetry signified by a sub-

script “g” denotes that all states with an even rotational

quantum number (N = 0, 2, 4, . . .) are symmetric under

the interchange of the two nuclei. Because the electronic

spin is well defined and fixed for this excited state, we

now consider interchanging just the nuclei while leaving

the electrons untouched. There are three possible values

of the total nuclear spin (I = 0, 1, 2) since the nuclear

spin of each atom is i = 1. Similar to the symmetry of

G, states with I = i1 + i2, i1 + i2 − 2 . . . (corresponding

here to I = 0 and I = 2) are symmetric with respect

to interchange of the nuclei whereas the I = 1 state is

antisymmetric. Since the nuclei are bosons the total wave

function must be symmetric under the interchange of the

nuclei. Putting this together, we have that the even (odd)

values of I occur with even (odd) values of N . The total

spin angular momentum quantum number G can take on

all values between and including |I + S| and |I − S|.
The possible quantum numbers for the ground and ex-

cited states are tabulated in Table IV. For a ground state

s-wave collision (N = 0) we find that there is only one

allowed value for the total spin: G = 0. From an ini-

tial state with N = 0 and G = 0, we see that there is

only one possible transition to the excited triplet state:

(N = 0, G = 0) → (N �
= 1, G�

= 0). For a ground state

p-wave collision, the initial state is (N = 1, G = 1) and

there are two possible transitions to the excited triplet

state: (N = 1, G = 1) → (N �
= 0, G�

= 1) and

(N = 1, G = 1) → (N �
= 2, G�

= 1). In both cases,

there are two possible values of the total nuclear spin:

I = 0 or 2.

In the preceding discussion, we have assumed that both

the spin-spin coupling, involving terms of the form �s1 ·�s2,

and the coupling of the total electronic spin, �S, with

the molecular rotation, �N , are negligible. In this case,

the total spin (characterized by �G) is a good quantum

number. However, while these couplings are small, we

nevertheless do resolve a splitting of the excited state

energy levels by observing three PA resonances as seen

in Fig. 2 instead of a single feature for an initial s-wave

collision. As we explain later, the ground state is not

split in this particular case because N = 0.

In order to properly label the three PA resonances (as-

sociated with ground state s-wave collisions) observed
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NIR) with an absolute accuracy of 60 MHz and a shot-
to-shot repeatability (i.e. precision) of 10 MHz in the fre-
quency range of this work. For the high resolution mea-
surements, the Ti:sapphire laser, operating in the range
from 770 to 820 nm, is stabilized to a fiber based, self-
referenced frequency comb operating with a center wave-
length of 1550 nm as described previously [18]. Briefly,
the frequency comb is an Erbium-doped fiber laser fre-
quency comb with two amplified output branches. One
branch is used for self-referencing the carrier-envelope off-
set frequency via an f–2f interferometer. The second
branch is also spectrally broadened in a highly nonlin-
ear fiber, but not to a full octave of optical frequencies.
The output of this branch is frequency-doubled using an
array of periodically-poled lithium niobate waveguides
with different poling periods. The frequency-doubled
comb is then mixed with the Ti:sapphire laser on a fast
photodiode to generate a heterodyne beatnote, which is
used to stabilize the Ti:sapphire laser to the frequency
comb. For this work we verified the comb-referenced
Ti:sapphire’s absolute frequency uncertainty by measur-
ing the resonant frequencies of the D2 line at 780 nm
(the 5s1/2,→ 5p3/2 transition) of 85Rb atoms in a vapor
cell and comparing them with their known values [19].
We verified that the absolute uncertainty is ±600 kHz,
consistent with that determined previously [18].

III. OBSERVATIONS
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FIG. 2: Normalized 6Li atom number as a function of photo-
association laser energy hνPA after a 2 second hold time
at zero magnetic field and a PA laser intensity of IPA =
635 W cm−2. These three resonances correspond to a transi-
tion from an initial unbound molecular state with N = 0, G =
0 to the v� = 21 vibrational level of the 13Σ+

g excited state
with N � = 1, G� = 0. The ensemble temperature was 15 µK.

In our initial search of PA resonances, we held the mag-

netic field near to the s-wave Feshbach resonance between
the |1� and |2� states at 834 G to enhance the collision
rate. This produced a very wide (1 GHz FWHM) PA
loss feature which facilitated initial detection [20]. Af-
ter the approximate locations of the PA resonances were
found in this way, we performed a high resolution scan
with an ensemble temperature of 15 µK and with no bias
magnetic field [51]. We observed that the PA spectrum
of each vibrational level had associated with it three nar-
row (below 10 MHz FWHM) features distributed across
a range of 0.7 GHz as shown in Fig. 2. Figure 3 shows
a higher resolution scan of the second feature shown in
Fig. 2. In order to reduce as much as possible the thermal
broadening and the inhomogeneous AC Stark shift pro-
duced by the optical dipole trapping potential, these data
were obtained in a very shallow trap (Utrap/kB ∼ 8 µK)
and an ensemble temperature of 800 nK, a temperature
well below the Fermi temperature for this two component
Fermi-gas (T/TF = 0.4). We then verified that these PA
resonances arise from collisions between atoms in states
|1� and |2� by using a state-selective resonant pulse of
light to remove all atoms in either of the two states. The
spin purification was done at the end of the preparation
sequence, and we observed the absence of these atom loss
features with either one of the states removed [52]. To
rule out the absence of these loss features due to a sim-
ple reduction of the density, we observed a reappearance
of the PA features when using a 50:50 mixture of the
|1� and |2� states with the same total number of particles
and temperature as the ensembles after spin purification.
Given that p-wave collisions are dramatically suppressed
at these temperatures and that these PA loss features
were visibly enhanced by the s-wave FR, we inferred that
they arise from s-wave collisions between atoms in states
|1� and |2�. Thus, they correspond to a transition from
an initial unbound molecular state with N = 0, G = 0
to an excited state with N � = 1, G� = 0 (assuming G
is a good quantum number). As we describe later, we
find that spin-spin and spin-rotation coupling split the
excited state into three sub-levels producing the three
PA features. In this case G is no longer a good quantum
number. The locations of these three features for each of
the seven vibrational levels is provided in Table I.

We also located for each of the vibrational states the
PA resonances associated with p-wave ground-state col-
lisions. However, these features were only observable in
our experiment when measures were taken to enhance
the PA scattering rate. In order to observe these PA
resonances, we enhanced the p-wave scattering rate by
stopping the evaporation at an ensemble temperature of
250 µK and by holding the magnetic field at 185 G during
the PA stage. This magnetic field is near the p-wave Fes-
hbach resonance between the |1� and |2� states at 185.1 G
[16]. Due to the Feshbach resonance enhancement of in-
elastic ground-state collisions, the ensemble particle loss
in the absence of the PA light was approximately 50%
during the 2 second hold time. Additional loss was in-
duced when the light was near a PA resonance. Fig-
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FIG. 3: High resolution scan of the normalized
6
Li atom num-

ber as a function of photo-association laser energy hνPA after

a 750 ms hold time at zero magnetic field and a PA laser

intensity of IPA = 635 W cm
−2

. This is the second of the

three resonances shown in Fig. 2 corresponding to a transition

from an initial unbound molecular state with N = 0, G = 0

to the v� = 21 vibrational level of the 1
3Σ+

g excited state with

N �
= 1, G�

= 0. The ensemble temperature was 800 nK. The

FWHM of this loss peak is 0.00048 cm
−1

(14.4 MHz).

ure 4 shows the loss spectrum for a transition from an

initial unbound molecular state with N = 1, G = 1 to

the v� = 20 vibrational level of the 1
3Σ+

g excited state

with N �
= 2, G�

= 1. For each of the seven vibrational

levels, we observed at least 4 (3) distinct loss features

for transitions to the N �
= 2, G�

= 1 (N �
= 0, G�

= 1)

final state. By evaporating the ensemble to 15 µK and

holding the magnetic field at 184.7 G, we observed that

each of these loss features results from multiple PA res-

onances that are unresolvable at 250 µK. The locations

of the loss features observed at 250 µK for each of the

seven vibrational levels is provided in Tables II and III.

These measurements were performed in the absence of

the comb stabilization. Instead, the Ti:sapphire lasers

were referenced to the wavemeter whose uncertainty is

60 MHz.

A. Systematic shifts

While the absolute uncertainty of our PA measure-

ments made using the frequency comb is ±600 kHz, the

data was taken in the presence of a small but non-zero

magnetic field and in an optical dipole trap with a known

intensity. These residual fields as well as the PA laser

itself can lead to a systematic shift of the resonance posi-

tions from their zero-field values. Therefore, in an effort

to quantify the role of the PA laser intensity, the CDT

laser intensity, and the residual magnetic field on the PA
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FIG. 4: (Color online) Normalized
6
Li atom number as a

function of photo-association laser energy hνPA after a 2 sec-

ond hold time. The circles are for an ensemble temperature of

250 µK at 185 G, and four distinct features are observed. The

diamonds denote the atom loss for an ensemble temperature

of 15 µK and at a magnetic field of 184.7 G. At this lower

temperature, these loss features are seen to result from multi-

ple PA resonances that are unresolvable at 250 µK. These PA

features arise from p-wave ground-state collisions and are en-

hanced by proximity to a p-wave Feshbach resonance between

the |1� and |2� states at 185.1 G.

TABLE I: Experimentally measured PA resonances for s-wave

collisions in a 50:50 mixture of the |1� and |2� states of
6
Li.

These three PA resonances correspond to a transition from an

initial unbound molecular state with N = 0, G = 0 to the vth

vibrational level of the 1
3Σ+

g excited state with N �
= 1. As we

explain in Sec. IV, spin-spin and spin-rotation coupling split

the excited state into three sub-levels producing the three PA

features corresponding to quantum numbers (N �
= 1, J �

= 1),

(N �
= 1, J �

= 2), and (N �
= 1, J �

= 0) respectively. The

absolute uncertainty in each these measurements is ±0.00002
cm

−1
(±600kHz).

v� 1st 2nd 3rd

cm
−1

cm
−1

cm
−1

20 12237.17755 12237.18587 12237.20126

21 12394.39726 12394.40535 12394.42039

22 12546.06767 12546.07552 12546.09025

23 12692.17316 12692.18080 12692.19509

24 12832.70080 12832.70820 12832.72214

25 12967.64116 12967.64862 12967.66219

26 13096.99114 13096.99804 13097.01125

loss features, we varied each one and measured the PA

resonance position and width for various excited states.

In each case, we assumed a linear dependence and de-

termined a shift rate of the resonance position with the

corresponding field strength. The uncertainty in this rate

is a one-sigma statistical uncertainty on the slope of the

linear fit.

When varying the PA laser intensity from IPA =

0.19 kW cm
−2

to IPA = 1.27 kW cm
−2

we observed

that the centroid of the first feature (J �
= 1) associated

J’=1

J’=0J’=2

We resolve three features for each vibrational level
split by spin-spin and spin-rotation coupling

E(2
1Σ+

g )

electronic excited states that correlate to the 2s+2p threshold in Lithium

b(13Πu)

A(1
1Σ+

u )

c(13Σ+
g )

B(1
1Πu)

C(1
3Πg)

electronic ground states that correlate to the 2s+2s threshold in Lithium

a(1
3Σ+

u )

X(1
1Σ+

g )

(1) E

(2) V (R) = VLvW(R) + VE(R)

(3) V = VLvW + VE

(4) V (R) = VLvW + VE

(5) VStark ∼ −
α0E2

2

(6) FStark = −∇VStark ∼ ∇
α0E2

2
= α0E ×∇E = 2VStark ×

∇E

E

VStark ∼ h× 32 MHz (1.6 mK) for Li and VStark ∼ h× 64 MHz (3.2 mK) at 40kV/cm for Rb. For a change of the electric

field from the maximum to zero over a length L ∼ 1 cm, the force is then

Comparing this to the force due to gravity... For
6
Li over 1 cm, we have h × 1.5 MHz/cm and for

85
Rb we have h × 21

MHz/cm.

(7)
δνbare

δνECDL
= Q2

=

� �
dν
dI

�
bare�

dν
dI

�
ECDL

�2

d

L

γstd
sc

vth

(8) σxσpx = σzσpz =
�
2

1

Are the terms in the Hamiltonian explicitly

(1) Ĥspin−rot = γv
�N · �S

(2) Ĥspin−spin = λv[Ŝ
2
z − Ŝ

2
/3]

... of the rotational levels, previously labeled by N , according to the J quantum

number, given by J = (N + S), (N + S − 1), (N + S − 2),· · · , |N − S|. Therefore,

each level with a given N(≥ S) consists of 2S + 1 sub-levels, and the number of

sub-levels is equal to the spin multiplicity. However, for N < S, the number of

sub-levels is equal to 2N + 1 (the rotational multiplicity). Hence, all N = 0 levels

do not split, as mentioned previously. For a particular ro-vibrational state, |ν, N �,
with a total spin S = 1, the rotational energy is given by

FJ=N+1 = BvN(N + 1) + (2N + 3)Bv − λv

−
�

(2N + 3)2B2
v + λ2

v − 2λvBv + γv(N + 1)

FJ=N = BvN(N + 1)

FJ=N−1 = BvN(N + 1)− (2N − 1)Bv − λv

+

�
(2N − 1)2B2

v + λ2
v − 2λvBv − γvN,(3)

where λv and γv are constants. Here, λv is related to the spin-spin interaction and

it describes the coupling between the total spin, �S, and the molecular axis; γv is

related to the spin-rotation interaction and it is a measure of the coupling between

�S and �N . Under most circumstances, these two constants describe small effects

which are not spectroscopically resolvable and are typically ignored in the Dunham

expansion. However, at the level of resolution in the current experiment, one needs

to take into account these second-order perturbations. In the case where spin-spin

and spin-rotation couplings are small (Bv � |λv|, |γv|) we can simplify Eq. 3 to

FJ=N+1 = BvN(N + 1)− 2N + 2

2N + 3
λv + γv(N + 1)

FJ=N = BvN(N + 1)

FJ=N−1 = BvN(N + 1)− 2N

2N − 1
λv − γvN.(4)

In addition, when spin-spin coupling is much more important than spin-rotation

coupling (|λv| � |γv|), the energy ordering results from the λv terms, and we can

label these three peaks in Table ??, energetically from low to high, as (N
�
= 1, J

�
=

1), (N
�
= 1, J

�
= 2), and (N

�
= 1, J

�
= 0) because λv is negative.

1
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FIG. 5: (Color online) The experimentally determined (cir-

cles) and ab initio computed (squares) spin-spin interaction

constants, λv, as a function of the vibrational quantum num-

ber for the 1
3Σ+

g electronic state. These constants were de-

termined from the frequency splittings of the three features

observed for the N = 0→ N �
= 1 transition. The uncertainty

in these values is ±400 kHz. The dashed lines are guides to

the eye.

TABLE V: The values for the spin-spin interaction constant,

λv, and the spin-rotation interaction constant, γv, determined

from Eq. 2 and the peak spacings reported in Table I. The

uncertainty in these values is ±400 kHz. The λv values are

plotted in Fig. 5 along with their expected values determined

from ab initio calculations.

v� λv (MHz) γv (MHz)

20 -348.2 -14.5

21 -339.4 -14.5

22 -331.1 -14.7

23 -321.7 -14.2

24 -312.2 -14.4

25 -309.6 -14.0

26 -294.3 -14.3

for each rovibrational state given spin-spin and spin-

rotational coupling, we redefine �J to be the total an-

gular momentum apart from nuclear spin, �J ≡ �N + �S.

Here, a magnetic coupling between �S and �N , (of the form

�N · �S), as well as a spin-spin coupling term, (of the form

[Ŝ2
z− Ŝ2/3]) cause a splitting of the rotational levels, pre-

viously labeled by N , according to the J quantum num-

ber, given by J = (N +S), (N +S− 1), (N +S− 2),· · · ,
|N − S|. Therefore, each level with a given N(≥ S) con-

sists of 2S + 1 sub-levels, and the number of sub-levels

is equal to the spin multiplicity. However, for N < S,

the number of sub-levels is equal to 2N + 1 (the rota-

tional multiplicity). Hence, all N = 0 levels do not split,

as mentioned previously. For a particular ro-vibrational

state, |ν, N �, with a total spin S = 1, the rotational

energy is given by [21, 22]

FJ=N+1 = BvN(N + 1) + (2N + 3)Bv − λv

−
�

(2N + 3)2B2
v + λ2

v − 2λvBv + γv(N + 1)

FJ=N = BvN(N + 1)

FJ=N−1 = BvN(N + 1)− (2N − 1)Bv − λv

+

�
(2N − 1)2B2

v + λ2
v − 2λvBv − γvN, (1)

where λv and γv are constants. Here, λv is related to

the spin-spin interaction and it describes the coupling
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Fig. 1. Potential energy curves for a number of excited states of Li2 molecule
obtained by linear response calculation from the ground state MCSCF wave
function.

Potential energy curves for a number of low-lying states of
theLi2 molecule calculated in presentwork are given in Fig.1,
which is presented just to recapitulate the results of previous
works and illustrate themain spectral features [6,7,20]. Three
lowest states are presented in larger scale in Fig. 2. Though
the triplet states of H2 molecule are well known from electric
discharge emission spectra since the beginning of molecular
spectroscopy [16], the first observation of the triplet state,
1(b)3!u, in Li2 molecule was reported only in 1983 [12].
Diffuse bands in emission spectra of dense alkali vapors have
also been known over 20 years [21], but triplet states of the
lithium dimer have not been observed directly until the work
of Engleke and Haage [12]. These authors have detected the
3"g → b3!u transition near 507 nm in collision-induced flu-
orescence and obtained the lower state molecular constants
from the partly resolved rotational structure. The 1(b)3!u
state spectroscopic constants were also derived from exami-
nation of the accidental predissociation of the 1(A)1#+

u rovi-
bronic levels [22]. The 1(b)3!u state of Li2 has received
a great attention not only because of its important role in
the perturbations and accidental predissociation of the 11#+

u
state (A state) [3,13], but also because of its fine structure
[2,23].
The crossing between 1(A)1#+

u and 1(b)3!u states in
Fig. 1, is one of the main features of the lithium dimer spec-
troscopy [6,8,9,13]. This A–b crossing is responsible for the
accidental predissociation of the 1(A)1#+

u state [23]. The
SOC perturbation between these singlet and triplet states pro-
vided a mixed “window” levels, through which the system
can penetrate from singlet to triplet manifolds. Using this
A–b window, a number of excited triplet states of lithium
dimer have been reached by perturbation-facilitated optical–
optical double-resonance (PFOODR) spectroscopy [8,9,13].
The 1(b)3!u state in turn predissociates via rotational–

Fig. 2. MCSCF potential energy curve for the three lowest states of Li2
molecule.

electronic interaction with the 1(a)3#+
u continuum (Fig. 1)

[23]. This weakly bound lowest triplet state of Li2 molecule
is getting increasing particular interest in recent time [3–
5,24,25].
The first rotationally resolved observation of the 1(a)3#+

u
state has been reported by Xie and Field [13,19]. Using the
selected (11#+

u –13!u) mixed levels of the A–b gateway,
the lowest triplet state in Li2 molecule has been studied by
double-resonance methods and by the 3!g → 13#+

u fluo-
rescence detection [3,13]. All triplet states of Li2 belong to
the Hund’s case (b) coupling scheme [2,3,13,17], since spin–
orbit coupling is very weak even for 3! states. The emission
which should correspond to electronic transition from the
weakly bound triplet state, a3#+

u , to the ground state,X1#+
g ,

is rather strictly forbidden as electric dipole radiation, even
when spin–orbit coupling is accounted; a magnetic dipole
transition moment for such emission has been calculated in
the present work and found to be completely negligible.
Recent developments in atom trapping and cold-atom

spectroscopy have led to new possibilities in the triplet states
study of the Li2 molecule through combinations of measure-
ments of cold collisions, photo-association spectroscopy and
magnetic-induced Feshbach resonances [1,26,27]. Collisions
of alkali metal atoms at ultra low temperatures ("10−4 K) are
very sensitive to the details of the interatomic potentials. Ob-
servation of Bose–Einstein condensation in 7Li2 [1] initiated
the interest in the scattering length of two ground state lithium
atoms when they approach each other as a triplet radical pair
[5]. This requires knowledge of the accurate potential energy
curve of the lowest triplet a3#+

u state of the Li2 molecule
[3,5].
The sign of the scattering length of two ground state

lithium atoms (the triplet radical pair) determines the sta-
bility of the Bose–Einstein condensate; it can be obtained
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Motivations:
1) Technical: we can access with our lasers.
2) It has a magnetic moment (Molecular FRs !)
3) Make a BEC of ground state molecules
4) Measure the “Spin blockade”
5) Study collision properties of ultra-cold super-
rotors (collaboration with Valery Milner)
6) Stepping stone for making triplet LiRb
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Triplet ground state Li2

10 vibrational levels
all accessible with our laser system

2-color PA spectroscopy : ground state spectroscopy
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2-color PA spectroscopy results : here Ω1 is fixed and Ω2 is scanned
In the data that follows, the loss of atoms due to photo-association induced by Ω1 is suppressed by the AC 
Stark shift of the excited state levels induced by Ω2.  We specify the excited state v’ number and the J’ 
number and we specify the ground state v’’ number and N’’ number.

+
the relevant initial state is:
|S=1,N=0,J=1,I=1>
the intermediate state is:
|S=1,N=1,J=1,I=1>
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2-color PA spectroscopy results : here Ω1 is fixed and Ω2 is scanned
In the data that follows, the loss of atoms due to photo-association induced by Ω1 is suppressed by the AC 
Stark shift of the excited state levels induced by Ω2.  We specify the excited state v’ number and the J’ 
number and we specify the ground state v’’ number and N’’ number.

+
the relevant initial state is:
|S=1,N=0,J=1,I=1>
the intermediate state is:
|S=1,N=1,J=1,I=1>

v’’=1, N’’=0

Ω2 - Ω1

three features

(1) ∆J = ±1, 0

(2) f3 − f2

(3) f2 − f1

Are the terms in the Hamiltonian explicitly

(4) Ĥspin−rot = γv
�N · �S

(5) Ĥspin−spin = λv[Ŝ
2
z − Ŝ

2
/3]

... of the rotational levels, previously labeled by N , according to the J quantum

number, given by J = (N + S), (N + S − 1), (N + S − 2),· · · , |N − S|. Therefore,

each level with a given N(≥ S) consists of 2S + 1 sub-levels, and the number of

sub-levels is equal to the spin multiplicity. However, for N < S, the number of

sub-levels is equal to 2N + 1 (the rotational multiplicity). Hence, all N = 0 levels

do not split, as mentioned previously. For a particular ro-vibrational state, |ν, N �,
with a total spin S = 1, the rotational energy is given by

FJ=N+1 = BvN(N + 1) + (2N + 3)Bv − λv

−
�

(2N + 3)2B2
v + λ2

v − 2λvBv + γv(N + 1)

FJ=N = BvN(N + 1)

FJ=N−1 = BvN(N + 1)− (2N − 1)Bv − λv

+

�
(2N − 1)2B2

v + λ2
v − 2λvBv − γvN,(6)

where λv and γv are constants. Here, λv is related to the spin-spin interaction and

it describes the coupling between the total spin, �S, and the molecular axis; γv is

related to the spin-rotation interaction and it is a measure of the coupling between

�S and �N . Under most circumstances, these two constants describe small effects

which are not spectroscopically resolvable and are typically ignored in the Dunham

expansion. However, at the level of resolution in the current experiment, one needs

to take into account these second-order perturbations. In the case where spin-spin

and spin-rotation couplings are small (Bv � |λv|, |γv|) we can simplify Eq. 5 to

FJ=N+1 = BvN(N + 1)− 2N + 2

2N + 3
λv + γv(N + 1)

FJ=N = BvN(N + 1)

FJ=N−1 = BvN(N + 1)− 2N

2N − 1
λv − γvN.(7)

In addition, when spin-spin coupling is much more important than spin-rotation

coupling (|λv| � |γv|), the energy ordering results from the λv terms, and we can

label these three peaks in Table ??, energetically from low to high, as (N
�
= 1, J

�
=

1), (N
�
= 1, J

�
= 2), and (N

�
= 1, J

�
= 0) because λv is negative.

1

selection rules
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TABLE II: Experimentally measured PA resonances for p-
wave collisions in an incoherent mixture of the |1� and |2�
states of 6Li held at a magnetic field of B = 185 G. Each
of these values was extracted by fitting a loss spectrum like
that shown in Fig. 4. These PA resonances correspond to
a transition from an initial unbound molecular state with
N = 1, G = 1 to the vth vibrational level of the 13Σ+

g ex-
cited state with N � = 0, G� = 1. While the precision in these
measurements is 0.001 cm−1, the uncertainty, limited by the
wavemeter, is ±0.002 cm−1

v� 1st 2nd 3rd
cm−1 cm−1 cm−1

20 12236.388 12236.407 12236.424
21 12393.629 12393.648 12393.664
22 12545.320 12545.338 12545.355
23 12691.446 12691.465 12691.480
24 12831.995 12832.012 12832.029
25 12966.957 12966.975 12966.991
26 13096.326 13096.346 13096.362

TABLE III: Experimentally measured PA resonances for p-
wave collisions in an incoherent mixture of the |1� and |2�
states of 6Li held at a magnetic field of B = 185 G. Each
of these values was extracted by fitting a loss spectrum like
that shown in Fig. 4. These PA resonances correspond to
a transition from an initial unbound molecular state with
N = 1, G = 1 to the vth vibrational level of the 13Σ+

g ex-
cited state with N � = 2, G� = 1. While the precision in these
measurements is 0.001 cm−1, the uncertainty, limited by the
wavemeter, is ±0.002 cm−1

v� 1st 2nd 3rd 4th
cm−1 cm−1 cm−1 cm−1

20 12238.757 12238.772 12238.780 12238.795
21 12395.936 12395.951 12395.958 12395.973
22 12547.567 12547.579 12547.587 12547.601
23 12693.628 12693.642 12693.648 12693.665
24 12834.113 12834.128 12834.134 12834.150
25 12969.011 12969.026 12969.032 12969.047
26 13098.315 13098.332 13098.339 13098.355

When varying the PA laser intensity from IPA =

0.19 kW cm
−2

to IPA = 1.27 kW cm
−2

we observed

that the centroid of the first feature (J �
= 1) associated

with the v� = 26 excited state shifted to higher frequen-

cies at a rate of 471± 433 kHz per kW cm
−2

. When the

CDT laser intensity was varied from 5.4 kW cm
−2

(145

mW total CDT power) to 140 kW cm
−2

(3.1 W total

CDT power) the PA feature centroid associated with the

v� = 24, J �
= 1 state shifted down in frequency at a rate

of −(19 ± 1.2) kHz per kW cm
−2

. The resonance po-

sitions reported in Table I were determined using a PA

laser intensity of IPA = 635 W cm
−2

, and a CDT inten-

sity of 7.5 kW cm
−2

. Assuming the differential AC Stark

shift is the same for all excited states, the reported val-

ues are therefore shifted lower by 142± 9 kHz due to the

CDT and higher by 300 ± 274 kHz due to the PA laser

than their extrapolated position at zero differential AC

Stark shift. The overall AC Stark shift of the resonance

positions is thus higher by 157 kHz with an uncertainty

of ±274 kHz. Both this shift and uncertainty are small

compared to the absolute uncertainty of the frequency

comb. For the resonance positions reported in Tables II

and III, the trapping power was larger (40 W total) and

the differential AC Stark shift due to the CDT is esti-

mated to be −(15± 1) MHz.

When the magnetic field was varied from 0 G to 10 G

the PA features associated with the v� = 24, J �
= 1,

J �
= 2, and J �

= 0 states were observed to shift and, in

the case of J �
= 1 and J �

= 2, to broaden and eventually

split into multiple resolvable peaks. In each case, we mea-

sured the PA feature center of mass and found that when

the magnetic field was varied from 0 to 1 G, the barycen-

ter of the PA features moved by −(91.2 ± 18.3) kHz for

the J �
= 1 state, +(46±28) kHz for the J �

= 2 state, and

+(74.5 ± 30.1) kHz for the J �
= 0 state. Since the res-

onance positions reported in Table I were determined in

the presence of a residual magnetic field below 400 mG,

the uncertainty in their positions due to the magnetic

field was below 50 kHz for all J states and thus small

compared to the absolute uncertainty of the frequency

comb.

IV. INTERPRETATION

In order to interpret our measurements, we begin with

a brief review of the symmetry properties and corre-

sponding selection rules relevant for the photoassociation

process. Molecules in the 1
3Σ+

g excited state are charac-

terized by the Hund’s case “b” coupling scheme in which

the total electronic (nuclear) spin �S = �s1+�s2 (�I =�i1+�i2)
is completely uncoupled from the internuclear axis. Here

�sj (�ij) is the electronic (nuclear) spin of atom “j”. This

occurs when Λ = 0, the projection of the orbital angular

momentum of the electrons along the internuclear axis

is zero, and there is therefore no axial magnetic field to

couple the total spin to the axis. For “Σ” states, the

orbital angular momentum of the electrons is zero and

therefore Λ is always identically zero; however, even in

some cases where Λ �= 0, especially for light molecules,

the coupling is sufficiently weak that Hund’s case “b” is

still the appropriate scheme [21]. The total angular mo-

mentum, apart from the spin, is �K ≡ �N + �Λ, the vector

sum of �Λ and the rotational angular momentum of the

nuclei �N . Therefore for “Σ” states �K = �N , and thus �K is

perpendicular to the internuclear axis. The total spin of

the molecule is �G = �S+�I and is a good quantum number

so long as the hyperfine interaction and spin-rotational

couplings are small. The total spin combines with the to-

tal angular momentum apart from spin �K to result in the

total angular momentum including spin as �J = �K + �G.

For electric dipole radiation, the selection rule is that

∆J = 0,±1 with the restriction that J = 0 � J = 0. In

6

addition, under the emission or absorption of a photon

the parity of the electronic orbital must change (+↔ −)

and for a homonuclear molecule, the symmetry of the

coordinate function under interchange of the two nuclei

must change from symmetric to anti-symmetric or vice

versa (g ↔ u). In the present scenario of Hund’s case

“b” coupling, the spin is so weakly coupled to the other

angular momenta that both quantum numbers S and K
are well defined and we have in addition the selection

rules ∆S = 0 (or equivalently ∆G = 0) and therefore

∆K = 0,±1 with the restriction that ∆K = 0 is for-

bidden for Σ → Σ transitions. Since we are here only

concerned with transitions to the 1
3Σ+

g excited state, we

have that ∆N = ±1 and ∆G = 0.

TABLE IV: Allowed rotational levels and corresponding nu-
clear spin configurations for 6Li2 molecules in the limit that
spin-spin and spin-rotation couplings are small enough that
G is a good quantum number.

State Electronic Nuclear Allowed Total
spin spin rotational states Spin

ground states
- - - N = 0, 2, 4 . . . G = 0
- - - N = 1, 3, 5 . . . G = 1

excited states
13Σ+

g : S = 1 I = 0 N = 0, 2, 4 . . . G = 1
I = 1 N = 1, 3, 5 . . . G = 0, 1, 2
I = 2 N = 0, 2, 4 . . . G = 1, 2, 3

We now discuss the allowed quantum numbers for the

initial and final states. In this work, we only consider

collisions between two
6
Li atoms, which are composite

fermions (consisting of 9 fermions: 3 protons, 3 neu-

trons, and 3 electrons), and we note that the 2-body

eigenstates, composed of a spin part and an orbital part,

must be antisymmetric upon exchange of the two atoms.

The consequence is that only certain spin states are pos-

sible given a particular orbital state. An important ex-

ample of this constraint imposed by exchange symmetry

is that the two-body position wave function (sometimes

called the “coordinate function” or orbital state) must

be antisymmetric for a collision between two fermions in

the same spin state (for which the spin wave function is

manifestly symmetric). Thus a spin polarized Fermi gas

can only have odd partial wave collisions (p-, f -, h-wave,

etc...) corresponding to odd values of the rotational an-

gular momentum of the complex (N = 1, 3, 5 . . .), which

are antisymmetric with respect to atom exchange. For

a gas composed of two distinct spin states, even partial

wave collisions can occur (s-, d-, g-wave, etc...) so long

as the spin wave function is antisymmetric upon atom

exchange. As we described in Sec. III, the ability to turn

off s-wave collisions by spin polarizing the gas is a useful

feature of our system that we use to validate our assign-

ment of the PA lines.

The total spin angular momentum of the initial un-

bound molecular state is given by the vector sum of the

f quantum numbers for the isolated atoms: �G = �f1 + �f2.

Here �f1 = �s1 +�i1. In our experiment, the atoms are op-

tically pumped to the lowest hyperfine state before being

exposed to the photoassociation light. Therefore we have

that f1 = f2 =
1
2 and there are two allowed values of the

total spin: G = 0, 1. Certain values of G (specifically

G = f1 + f2, f1 + f2 − 2, . . .) are associated with spin

states symmetric with respect to interchange of the atoms

while the orbital states with even values of N are sym-

metric under the interchange of the atoms. Therefore all

even partial wave collisions (N = 0, 2, 4, . . .) have a total

spin of zero (G = 0) and all odd partial wave collisions

(N = 1, 3, 5, . . .) have a total spin of one (G = 1).

The final state is a molecule in the 1
3Σ+

g potential. For

this triplet state, the total electronic spin is well defined

(S = 1) and the “gerade” symmetry signified by a sub-

script “g” denotes that all states with an even rotational

quantum number (N = 0, 2, 4, . . .) are symmetric under

the interchange of the two nuclei. Because the electronic

spin is well defined and fixed for this excited state, we

now consider interchanging just the nuclei while leaving

the electrons untouched. There are three possible values

of the total nuclear spin (I = 0, 1, 2) since the nuclear

spin of each atom is i = 1. Similar to the symmetry of

G, states with I = i1 + i2, i1 + i2 − 2 . . . (corresponding

here to I = 0 and I = 2) are symmetric with respect

to interchange of the nuclei whereas the I = 1 state is

antisymmetric. Since the nuclei are bosons the total wave

function must be symmetric under the interchange of the

nuclei. Putting this together, we have that the even (odd)

values of I occur with even (odd) values of N . The total

spin angular momentum quantum number G can take on

all values between and including |I + S| and |I − S|.
The possible quantum numbers for the ground and ex-

cited states are tabulated in Table IV. For a ground state

s-wave collision (N = 0) we find that there is only one

allowed value for the total spin: G = 0. From an ini-

tial state with N = 0 and G = 0, we see that there is

only one possible transition to the excited triplet state:

(N = 0, G = 0) → (N �
= 1, G�

= 0). For a ground state

p-wave collision, the initial state is (N = 1, G = 1) and

there are two possible transitions to the excited triplet

state: (N = 1, G = 1) → (N �
= 0, G�

= 1) and

(N = 1, G = 1) → (N �
= 2, G�

= 1). In both cases,

there are two possible values of the total nuclear spin:

I = 0 or 2.

In the preceding discussion, we have assumed that both

the spin-spin coupling, involving terms of the form �s1 ·�s2,

and the coupling of the total electronic spin, �S, with

the molecular rotation, �N , are negligible. In this case,

the total spin (characterized by �G) is a good quantum

number. However, while these couplings are small, we

nevertheless do resolve a splitting of the excited state

energy levels by observing three PA resonances as seen

in Fig. 2 instead of a single feature for an initial s-wave

collision. As we explain later, the ground state is not

split in this particular case because N = 0.

In order to properly label the three PA resonances (as-

sociated with ground state s-wave collisions) observed
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must be antisymmetric upon exchange of the two atoms.
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a gas composed of two distinct spin states, even partial

wave collisions can occur (s-, d-, g-wave, etc...) so long

as the spin wave function is antisymmetric upon atom

exchange. As we described in Sec. III, the ability to turn

off s-wave collisions by spin polarizing the gas is a useful

feature of our system that we use to validate our assign-

ment of the PA lines.

The total spin angular momentum of the initial un-

bound molecular state is given by the vector sum of the

f quantum numbers for the isolated atoms: �G = �f1 + �f2.

Here �f1 = �s1 +�i1. In our experiment, the atoms are op-

tically pumped to the lowest hyperfine state before being

exposed to the photoassociation light. Therefore we have

that f1 = f2 =
1
2 and there are two allowed values of the

total spin: G = 0, 1. Certain values of G (specifically

G = f1 + f2, f1 + f2 − 2, . . .) are associated with spin

states symmetric with respect to interchange of the atoms

while the orbital states with even values of N are sym-

metric under the interchange of the atoms. Therefore all

even partial wave collisions (N = 0, 2, 4, . . .) have a total

spin of zero (G = 0) and all odd partial wave collisions

(N = 1, 3, 5, . . .) have a total spin of one (G = 1).

The final state is a molecule in the 1
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g potential. For

this triplet state, the total electronic spin is well defined

(S = 1) and the “gerade” symmetry signified by a sub-

script “g” denotes that all states with an even rotational

quantum number (N = 0, 2, 4, . . .) are symmetric under

the interchange of the two nuclei. Because the electronic

spin is well defined and fixed for this excited state, we

now consider interchanging just the nuclei while leaving

the electrons untouched. There are three possible values

of the total nuclear spin (I = 0, 1, 2) since the nuclear

spin of each atom is i = 1. Similar to the symmetry of

G, states with I = i1 + i2, i1 + i2 − 2 . . . (corresponding

here to I = 0 and I = 2) are symmetric with respect

to interchange of the nuclei whereas the I = 1 state is

antisymmetric. Since the nuclei are bosons the total wave

function must be symmetric under the interchange of the

nuclei. Putting this together, we have that the even (odd)

values of I occur with even (odd) values of N . The total

spin angular momentum quantum number G can take on

all values between and including |I + S| and |I − S|.
The possible quantum numbers for the ground and ex-

cited states are tabulated in Table IV. For a ground state

s-wave collision (N = 0) we find that there is only one

allowed value for the total spin: G = 0. From an ini-

tial state with N = 0 and G = 0, we see that there is

only one possible transition to the excited triplet state:

(N = 0, G = 0) → (N �
= 1, G�

= 0). For a ground state

p-wave collision, the initial state is (N = 1, G = 1) and

there are two possible transitions to the excited triplet

state: (N = 1, G = 1) → (N �
= 0, G�

= 1) and

(N = 1, G = 1) → (N �
= 2, G�

= 1). In both cases,

there are two possible values of the total nuclear spin:

I = 0 or 2.

In the preceding discussion, we have assumed that both

the spin-spin coupling, involving terms of the form �s1 ·�s2,

and the coupling of the total electronic spin, �S, with

the molecular rotation, �N , are negligible. In this case,

the total spin (characterized by �G) is a good quantum

number. However, while these couplings are small, we

nevertheless do resolve a splitting of the excited state

energy levels by observing three PA resonances as seen

in Fig. 2 instead of a single feature for an initial s-wave

collision. As we explain later, the ground state is not

split in this particular case because N = 0.

In order to properly label the three PA resonances (as-

sociated with ground state s-wave collisions) observed
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2-color PA spectroscopy results : here Ω1 is fixed and Ω2 is scanned
In the data that follows, the loss of atoms due to photo-association induced by Ω1 is suppressed by the AC 
Stark shift of the excited state levels induced by Ω2.  We specify the excited state v’ number and the J’ 
number and we specify the ground state v’’ number and N’’ number.

+
the relevant initial state is:
|S=1,N=0,J=1,I=1>
the intermediate state is:
|S=1,N=1,J=1,I=1>

the final state is:
|S=1,N=0,J=1,I=1> only one value of  J

v’’=1, N’’=0

Ω2 - Ω1

three features

(1) ∆J = ±1, 0

(2) f3 − f2

(3) f2 − f1

Are the terms in the Hamiltonian explicitly

(4) Ĥspin−rot = γv
�N · �S

(5) Ĥspin−spin = λv[Ŝ
2
z − Ŝ

2
/3]

... of the rotational levels, previously labeled by N , according to the J quantum

number, given by J = (N + S), (N + S − 1), (N + S − 2),· · · , |N − S|. Therefore,

each level with a given N(≥ S) consists of 2S + 1 sub-levels, and the number of

sub-levels is equal to the spin multiplicity. However, for N < S, the number of

sub-levels is equal to 2N + 1 (the rotational multiplicity). Hence, all N = 0 levels

do not split, as mentioned previously. For a particular ro-vibrational state, |ν, N �,
with a total spin S = 1, the rotational energy is given by

FJ=N+1 = BvN(N + 1) + (2N + 3)Bv − λv

−
�

(2N + 3)2B2
v + λ2

v − 2λvBv + γv(N + 1)

FJ=N = BvN(N + 1)

FJ=N−1 = BvN(N + 1)− (2N − 1)Bv − λv

+

�
(2N − 1)2B2

v + λ2
v − 2λvBv − γvN,(6)

where λv and γv are constants. Here, λv is related to the spin-spin interaction and

it describes the coupling between the total spin, �S, and the molecular axis; γv is

related to the spin-rotation interaction and it is a measure of the coupling between

�S and �N . Under most circumstances, these two constants describe small effects

which are not spectroscopically resolvable and are typically ignored in the Dunham

expansion. However, at the level of resolution in the current experiment, one needs

to take into account these second-order perturbations. In the case where spin-spin

and spin-rotation couplings are small (Bv � |λv|, |γv|) we can simplify Eq. 5 to

FJ=N+1 = BvN(N + 1)− 2N + 2

2N + 3
λv + γv(N + 1)

FJ=N = BvN(N + 1)

FJ=N−1 = BvN(N + 1)− 2N

2N − 1
λv − γvN.(7)

In addition, when spin-spin coupling is much more important than spin-rotation

coupling (|λv| � |γv|), the energy ordering results from the λv terms, and we can

label these three peaks in Table ??, energetically from low to high, as (N
�
= 1, J

�
=

1), (N
�
= 1, J

�
= 2), and (N

�
= 1, J

�
= 0) because λv is negative.
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TABLE II: Experimentally measured PA resonances for p-
wave collisions in an incoherent mixture of the |1� and |2�
states of 6Li held at a magnetic field of B = 185 G. Each
of these values was extracted by fitting a loss spectrum like
that shown in Fig. 4. These PA resonances correspond to
a transition from an initial unbound molecular state with
N = 1, G = 1 to the vth vibrational level of the 13Σ+

g ex-
cited state with N � = 0, G� = 1. While the precision in these
measurements is 0.001 cm−1, the uncertainty, limited by the
wavemeter, is ±0.002 cm−1

v� 1st 2nd 3rd
cm−1 cm−1 cm−1

20 12236.388 12236.407 12236.424
21 12393.629 12393.648 12393.664
22 12545.320 12545.338 12545.355
23 12691.446 12691.465 12691.480
24 12831.995 12832.012 12832.029
25 12966.957 12966.975 12966.991
26 13096.326 13096.346 13096.362

TABLE III: Experimentally measured PA resonances for p-
wave collisions in an incoherent mixture of the |1� and |2�
states of 6Li held at a magnetic field of B = 185 G. Each
of these values was extracted by fitting a loss spectrum like
that shown in Fig. 4. These PA resonances correspond to
a transition from an initial unbound molecular state with
N = 1, G = 1 to the vth vibrational level of the 13Σ+

g ex-
cited state with N � = 2, G� = 1. While the precision in these
measurements is 0.001 cm−1, the uncertainty, limited by the
wavemeter, is ±0.002 cm−1

v� 1st 2nd 3rd 4th
cm−1 cm−1 cm−1 cm−1

20 12238.757 12238.772 12238.780 12238.795
21 12395.936 12395.951 12395.958 12395.973
22 12547.567 12547.579 12547.587 12547.601
23 12693.628 12693.642 12693.648 12693.665
24 12834.113 12834.128 12834.134 12834.150
25 12969.011 12969.026 12969.032 12969.047
26 13098.315 13098.332 13098.339 13098.355

When varying the PA laser intensity from IPA =

0.19 kW cm
−2

to IPA = 1.27 kW cm
−2

we observed

that the centroid of the first feature (J �
= 1) associated

with the v� = 26 excited state shifted to higher frequen-

cies at a rate of 471± 433 kHz per kW cm
−2

. When the

CDT laser intensity was varied from 5.4 kW cm
−2

(145

mW total CDT power) to 140 kW cm
−2

(3.1 W total

CDT power) the PA feature centroid associated with the

v� = 24, J �
= 1 state shifted down in frequency at a rate

of −(19 ± 1.2) kHz per kW cm
−2

. The resonance po-

sitions reported in Table I were determined using a PA

laser intensity of IPA = 635 W cm
−2

, and a CDT inten-

sity of 7.5 kW cm
−2

. Assuming the differential AC Stark

shift is the same for all excited states, the reported val-

ues are therefore shifted lower by 142± 9 kHz due to the

CDT and higher by 300 ± 274 kHz due to the PA laser

than their extrapolated position at zero differential AC

Stark shift. The overall AC Stark shift of the resonance

positions is thus higher by 157 kHz with an uncertainty

of ±274 kHz. Both this shift and uncertainty are small

compared to the absolute uncertainty of the frequency

comb. For the resonance positions reported in Tables II

and III, the trapping power was larger (40 W total) and

the differential AC Stark shift due to the CDT is esti-

mated to be −(15± 1) MHz.

When the magnetic field was varied from 0 G to 10 G

the PA features associated with the v� = 24, J �
= 1,

J �
= 2, and J �

= 0 states were observed to shift and, in

the case of J �
= 1 and J �

= 2, to broaden and eventually

split into multiple resolvable peaks. In each case, we mea-

sured the PA feature center of mass and found that when

the magnetic field was varied from 0 to 1 G, the barycen-

ter of the PA features moved by −(91.2 ± 18.3) kHz for

the J �
= 1 state, +(46±28) kHz for the J �

= 2 state, and

+(74.5 ± 30.1) kHz for the J �
= 0 state. Since the res-

onance positions reported in Table I were determined in

the presence of a residual magnetic field below 400 mG,

the uncertainty in their positions due to the magnetic

field was below 50 kHz for all J states and thus small

compared to the absolute uncertainty of the frequency

comb.

IV. INTERPRETATION

In order to interpret our measurements, we begin with

a brief review of the symmetry properties and corre-

sponding selection rules relevant for the photoassociation

process. Molecules in the 1
3Σ+

g excited state are charac-

terized by the Hund’s case “b” coupling scheme in which

the total electronic (nuclear) spin �S = �s1+�s2 (�I =�i1+�i2)
is completely uncoupled from the internuclear axis. Here

�sj (�ij) is the electronic (nuclear) spin of atom “j”. This

occurs when Λ = 0, the projection of the orbital angular

momentum of the electrons along the internuclear axis

is zero, and there is therefore no axial magnetic field to

couple the total spin to the axis. For “Σ” states, the

orbital angular momentum of the electrons is zero and

therefore Λ is always identically zero; however, even in

some cases where Λ �= 0, especially for light molecules,

the coupling is sufficiently weak that Hund’s case “b” is

still the appropriate scheme [21]. The total angular mo-

mentum, apart from the spin, is �K ≡ �N + �Λ, the vector

sum of �Λ and the rotational angular momentum of the

nuclei �N . Therefore for “Σ” states �K = �N , and thus �K is

perpendicular to the internuclear axis. The total spin of

the molecule is �G = �S+�I and is a good quantum number

so long as the hyperfine interaction and spin-rotational

couplings are small. The total spin combines with the to-

tal angular momentum apart from spin �K to result in the

total angular momentum including spin as �J = �K + �G.

For electric dipole radiation, the selection rule is that

∆J = 0,±1 with the restriction that J = 0 � J = 0. In

6

addition, under the emission or absorption of a photon

the parity of the electronic orbital must change (+↔ −)

and for a homonuclear molecule, the symmetry of the

coordinate function under interchange of the two nuclei

must change from symmetric to anti-symmetric or vice

versa (g ↔ u). In the present scenario of Hund’s case

“b” coupling, the spin is so weakly coupled to the other

angular momenta that both quantum numbers S and K
are well defined and we have in addition the selection

rules ∆S = 0 (or equivalently ∆G = 0) and therefore

∆K = 0,±1 with the restriction that ∆K = 0 is for-

bidden for Σ → Σ transitions. Since we are here only

concerned with transitions to the 1
3Σ+

g excited state, we

have that ∆N = ±1 and ∆G = 0.

TABLE IV: Allowed rotational levels and corresponding nu-
clear spin configurations for 6Li2 molecules in the limit that
spin-spin and spin-rotation couplings are small enough that
G is a good quantum number.

State Electronic Nuclear Allowed Total
spin spin rotational states Spin

ground states
- - - N = 0, 2, 4 . . . G = 0
- - - N = 1, 3, 5 . . . G = 1

excited states
13Σ+

g : S = 1 I = 0 N = 0, 2, 4 . . . G = 1
I = 1 N = 1, 3, 5 . . . G = 0, 1, 2
I = 2 N = 0, 2, 4 . . . G = 1, 2, 3

We now discuss the allowed quantum numbers for the

initial and final states. In this work, we only consider

collisions between two
6
Li atoms, which are composite

fermions (consisting of 9 fermions: 3 protons, 3 neu-

trons, and 3 electrons), and we note that the 2-body

eigenstates, composed of a spin part and an orbital part,

must be antisymmetric upon exchange of the two atoms.

The consequence is that only certain spin states are pos-

sible given a particular orbital state. An important ex-

ample of this constraint imposed by exchange symmetry

is that the two-body position wave function (sometimes

called the “coordinate function” or orbital state) must

be antisymmetric for a collision between two fermions in

the same spin state (for which the spin wave function is

manifestly symmetric). Thus a spin polarized Fermi gas

can only have odd partial wave collisions (p-, f -, h-wave,

etc...) corresponding to odd values of the rotational an-

gular momentum of the complex (N = 1, 3, 5 . . .), which

are antisymmetric with respect to atom exchange. For

a gas composed of two distinct spin states, even partial

wave collisions can occur (s-, d-, g-wave, etc...) so long

as the spin wave function is antisymmetric upon atom

exchange. As we described in Sec. III, the ability to turn

off s-wave collisions by spin polarizing the gas is a useful

feature of our system that we use to validate our assign-

ment of the PA lines.

The total spin angular momentum of the initial un-

bound molecular state is given by the vector sum of the

f quantum numbers for the isolated atoms: �G = �f1 + �f2.

Here �f1 = �s1 +�i1. In our experiment, the atoms are op-

tically pumped to the lowest hyperfine state before being

exposed to the photoassociation light. Therefore we have

that f1 = f2 =
1
2 and there are two allowed values of the

total spin: G = 0, 1. Certain values of G (specifically

G = f1 + f2, f1 + f2 − 2, . . .) are associated with spin

states symmetric with respect to interchange of the atoms

while the orbital states with even values of N are sym-

metric under the interchange of the atoms. Therefore all

even partial wave collisions (N = 0, 2, 4, . . .) have a total

spin of zero (G = 0) and all odd partial wave collisions

(N = 1, 3, 5, . . .) have a total spin of one (G = 1).

The final state is a molecule in the 1
3Σ+

g potential. For

this triplet state, the total electronic spin is well defined

(S = 1) and the “gerade” symmetry signified by a sub-

script “g” denotes that all states with an even rotational

quantum number (N = 0, 2, 4, . . .) are symmetric under

the interchange of the two nuclei. Because the electronic

spin is well defined and fixed for this excited state, we

now consider interchanging just the nuclei while leaving

the electrons untouched. There are three possible values

of the total nuclear spin (I = 0, 1, 2) since the nuclear

spin of each atom is i = 1. Similar to the symmetry of

G, states with I = i1 + i2, i1 + i2 − 2 . . . (corresponding

here to I = 0 and I = 2) are symmetric with respect

to interchange of the nuclei whereas the I = 1 state is

antisymmetric. Since the nuclei are bosons the total wave

function must be symmetric under the interchange of the

nuclei. Putting this together, we have that the even (odd)

values of I occur with even (odd) values of N . The total

spin angular momentum quantum number G can take on

all values between and including |I + S| and |I − S|.
The possible quantum numbers for the ground and ex-

cited states are tabulated in Table IV. For a ground state

s-wave collision (N = 0) we find that there is only one

allowed value for the total spin: G = 0. From an ini-

tial state with N = 0 and G = 0, we see that there is

only one possible transition to the excited triplet state:

(N = 0, G = 0) → (N �
= 1, G�

= 0). For a ground state

p-wave collision, the initial state is (N = 1, G = 1) and

there are two possible transitions to the excited triplet

state: (N = 1, G = 1) → (N �
= 0, G�

= 1) and

(N = 1, G = 1) → (N �
= 2, G�

= 1). In both cases,

there are two possible values of the total nuclear spin:

I = 0 or 2.

In the preceding discussion, we have assumed that both

the spin-spin coupling, involving terms of the form �s1 ·�s2,

and the coupling of the total electronic spin, �S, with

the molecular rotation, �N , are negligible. In this case,

the total spin (characterized by �G) is a good quantum

number. However, while these couplings are small, we

nevertheless do resolve a splitting of the excited state

energy levels by observing three PA resonances as seen

in Fig. 2 instead of a single feature for an initial s-wave

collision. As we explain later, the ground state is not

split in this particular case because N = 0.

In order to properly label the three PA resonances (as-

sociated with ground state s-wave collisions) observed
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addition, under the emission or absorption of a photon

the parity of the electronic orbital must change (+↔ −)

and for a homonuclear molecule, the symmetry of the

coordinate function under interchange of the two nuclei

must change from symmetric to anti-symmetric or vice

versa (g ↔ u). In the present scenario of Hund’s case

“b” coupling, the spin is so weakly coupled to the other

angular momenta that both quantum numbers S and K
are well defined and we have in addition the selection

rules ∆S = 0 (or equivalently ∆G = 0) and therefore

∆K = 0,±1 with the restriction that ∆K = 0 is for-

bidden for Σ → Σ transitions. Since we are here only

concerned with transitions to the 1
3Σ+

g excited state, we

have that ∆N = ±1 and ∆G = 0.

TABLE IV: Allowed rotational levels and corresponding nu-
clear spin configurations for 6Li2 molecules in the limit that
spin-spin and spin-rotation couplings are small enough that
G is a good quantum number.

State Electronic Nuclear Allowed Total
spin spin rotational states Spin

ground states
- - - N = 0, 2, 4 . . . G = 0
- - - N = 1, 3, 5 . . . G = 1

excited states
13Σ+

g : S = 1 I = 0 N = 0, 2, 4 . . . G = 1
I = 1 N = 1, 3, 5 . . . G = 0, 1, 2
I = 2 N = 0, 2, 4 . . . G = 1, 2, 3

We now discuss the allowed quantum numbers for the

initial and final states. In this work, we only consider

collisions between two
6
Li atoms, which are composite

fermions (consisting of 9 fermions: 3 protons, 3 neu-

trons, and 3 electrons), and we note that the 2-body

eigenstates, composed of a spin part and an orbital part,

must be antisymmetric upon exchange of the two atoms.

The consequence is that only certain spin states are pos-

sible given a particular orbital state. An important ex-

ample of this constraint imposed by exchange symmetry

is that the two-body position wave function (sometimes

called the “coordinate function” or orbital state) must

be antisymmetric for a collision between two fermions in

the same spin state (for which the spin wave function is

manifestly symmetric). Thus a spin polarized Fermi gas

can only have odd partial wave collisions (p-, f -, h-wave,

etc...) corresponding to odd values of the rotational an-

gular momentum of the complex (N = 1, 3, 5 . . .), which

are antisymmetric with respect to atom exchange. For

a gas composed of two distinct spin states, even partial

wave collisions can occur (s-, d-, g-wave, etc...) so long

as the spin wave function is antisymmetric upon atom

exchange. As we described in Sec. III, the ability to turn

off s-wave collisions by spin polarizing the gas is a useful

feature of our system that we use to validate our assign-

ment of the PA lines.

The total spin angular momentum of the initial un-

bound molecular state is given by the vector sum of the

f quantum numbers for the isolated atoms: �G = �f1 + �f2.

Here �f1 = �s1 +�i1. In our experiment, the atoms are op-

tically pumped to the lowest hyperfine state before being

exposed to the photoassociation light. Therefore we have

that f1 = f2 =
1
2 and there are two allowed values of the

total spin: G = 0, 1. Certain values of G (specifically

G = f1 + f2, f1 + f2 − 2, . . .) are associated with spin

states symmetric with respect to interchange of the atoms

while the orbital states with even values of N are sym-

metric under the interchange of the atoms. Therefore all

even partial wave collisions (N = 0, 2, 4, . . .) have a total

spin of zero (G = 0) and all odd partial wave collisions

(N = 1, 3, 5, . . .) have a total spin of one (G = 1).

The final state is a molecule in the 1
3Σ+

g potential. For

this triplet state, the total electronic spin is well defined

(S = 1) and the “gerade” symmetry signified by a sub-

script “g” denotes that all states with an even rotational

quantum number (N = 0, 2, 4, . . .) are symmetric under

the interchange of the two nuclei. Because the electronic

spin is well defined and fixed for this excited state, we

now consider interchanging just the nuclei while leaving

the electrons untouched. There are three possible values

of the total nuclear spin (I = 0, 1, 2) since the nuclear

spin of each atom is i = 1. Similar to the symmetry of

G, states with I = i1 + i2, i1 + i2 − 2 . . . (corresponding

here to I = 0 and I = 2) are symmetric with respect

to interchange of the nuclei whereas the I = 1 state is

antisymmetric. Since the nuclei are bosons the total wave

function must be symmetric under the interchange of the

nuclei. Putting this together, we have that the even (odd)

values of I occur with even (odd) values of N . The total

spin angular momentum quantum number G can take on

all values between and including |I + S| and |I − S|.
The possible quantum numbers for the ground and ex-

cited states are tabulated in Table IV. For a ground state

s-wave collision (N = 0) we find that there is only one

allowed value for the total spin: G = 0. From an ini-

tial state with N = 0 and G = 0, we see that there is

only one possible transition to the excited triplet state:

(N = 0, G = 0) → (N �
= 1, G�

= 0). For a ground state

p-wave collision, the initial state is (N = 1, G = 1) and

there are two possible transitions to the excited triplet

state: (N = 1, G = 1) → (N �
= 0, G�

= 1) and

(N = 1, G = 1) → (N �
= 2, G�

= 1). In both cases,

there are two possible values of the total nuclear spin:

I = 0 or 2.

In the preceding discussion, we have assumed that both

the spin-spin coupling, involving terms of the form �s1 ·�s2,

and the coupling of the total electronic spin, �S, with

the molecular rotation, �N , are negligible. In this case,

the total spin (characterized by �G) is a good quantum

number. However, while these couplings are small, we

nevertheless do resolve a splitting of the excited state

energy levels by observing three PA resonances as seen

in Fig. 2 instead of a single feature for an initial s-wave

collision. As we explain later, the ground state is not

split in this particular case because N = 0.

In order to properly label the three PA resonances (as-

sociated with ground state s-wave collisions) observed
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2-color PA spectroscopy results : here Ω1 is fixed and Ω2 is scanned
In the data that follows, the loss of atoms due to photo-association induced by Ω1 is suppressed by the AC 
Stark shift of the excited state levels induced by Ω2.  We specify the excited state v’ number and the J’ 
number and we specify the ground state v’’ number and N’’ number.

+
the relevant initial state is:
|S=1,N=0,J=1,I=1>
the intermediate state is:
|S=1,N=1,J=1,I=1>

the final state is:
|S=1,N=0,J=1,I=1>

F = I + S = 0, 1, 2 (expect three hyperfine levels)

only one value of  J

v’’=1, N’’=0

three features

Ω2 - Ω1(1) ∆J = ±1, 0

(2) f3 − f2

(3) f2 − f1

Are the terms in the Hamiltonian explicitly

(4) Ĥspin−rot = γv
�N · �S

(5) Ĥspin−spin = λv[Ŝ
2
z − Ŝ

2
/3]

... of the rotational levels, previously labeled by N , according to the J quantum

number, given by J = (N + S), (N + S − 1), (N + S − 2),· · · , |N − S|. Therefore,

each level with a given N(≥ S) consists of 2S + 1 sub-levels, and the number of

sub-levels is equal to the spin multiplicity. However, for N < S, the number of

sub-levels is equal to 2N + 1 (the rotational multiplicity). Hence, all N = 0 levels

do not split, as mentioned previously. For a particular ro-vibrational state, |ν, N �,
with a total spin S = 1, the rotational energy is given by

FJ=N+1 = BvN(N + 1) + (2N + 3)Bv − λv

−
�

(2N + 3)2B2
v + λ2

v − 2λvBv + γv(N + 1)

FJ=N = BvN(N + 1)

FJ=N−1 = BvN(N + 1)− (2N − 1)Bv − λv

+

�
(2N − 1)2B2

v + λ2
v − 2λvBv − γvN,(6)

where λv and γv are constants. Here, λv is related to the spin-spin interaction and

it describes the coupling between the total spin, �S, and the molecular axis; γv is

related to the spin-rotation interaction and it is a measure of the coupling between

�S and �N . Under most circumstances, these two constants describe small effects

which are not spectroscopically resolvable and are typically ignored in the Dunham

expansion. However, at the level of resolution in the current experiment, one needs

to take into account these second-order perturbations. In the case where spin-spin

and spin-rotation couplings are small (Bv � |λv|, |γv|) we can simplify Eq. 5 to

FJ=N+1 = BvN(N + 1)− 2N + 2

2N + 3
λv + γv(N + 1)

FJ=N = BvN(N + 1)

FJ=N−1 = BvN(N + 1)− 2N

2N − 1
λv − γvN.(7)

In addition, when spin-spin coupling is much more important than spin-rotation

coupling (|λv| � |γv|), the energy ordering results from the λv terms, and we can

label these three peaks in Table ??, energetically from low to high, as (N
�
= 1, J

�
=

1), (N
�
= 1, J

�
= 2), and (N

�
= 1, J

�
= 0) because λv is negative.
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selection rules
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TABLE II: Experimentally measured PA resonances for p-
wave collisions in an incoherent mixture of the |1� and |2�
states of 6Li held at a magnetic field of B = 185 G. Each
of these values was extracted by fitting a loss spectrum like
that shown in Fig. 4. These PA resonances correspond to
a transition from an initial unbound molecular state with
N = 1, G = 1 to the vth vibrational level of the 13Σ+

g ex-
cited state with N � = 0, G� = 1. While the precision in these
measurements is 0.001 cm−1, the uncertainty, limited by the
wavemeter, is ±0.002 cm−1

v� 1st 2nd 3rd
cm−1 cm−1 cm−1

20 12236.388 12236.407 12236.424
21 12393.629 12393.648 12393.664
22 12545.320 12545.338 12545.355
23 12691.446 12691.465 12691.480
24 12831.995 12832.012 12832.029
25 12966.957 12966.975 12966.991
26 13096.326 13096.346 13096.362

TABLE III: Experimentally measured PA resonances for p-
wave collisions in an incoherent mixture of the |1� and |2�
states of 6Li held at a magnetic field of B = 185 G. Each
of these values was extracted by fitting a loss spectrum like
that shown in Fig. 4. These PA resonances correspond to
a transition from an initial unbound molecular state with
N = 1, G = 1 to the vth vibrational level of the 13Σ+

g ex-
cited state with N � = 2, G� = 1. While the precision in these
measurements is 0.001 cm−1, the uncertainty, limited by the
wavemeter, is ±0.002 cm−1

v� 1st 2nd 3rd 4th
cm−1 cm−1 cm−1 cm−1

20 12238.757 12238.772 12238.780 12238.795
21 12395.936 12395.951 12395.958 12395.973
22 12547.567 12547.579 12547.587 12547.601
23 12693.628 12693.642 12693.648 12693.665
24 12834.113 12834.128 12834.134 12834.150
25 12969.011 12969.026 12969.032 12969.047
26 13098.315 13098.332 13098.339 13098.355

When varying the PA laser intensity from IPA =

0.19 kW cm
−2

to IPA = 1.27 kW cm
−2

we observed

that the centroid of the first feature (J �
= 1) associated

with the v� = 26 excited state shifted to higher frequen-

cies at a rate of 471± 433 kHz per kW cm
−2

. When the

CDT laser intensity was varied from 5.4 kW cm
−2

(145

mW total CDT power) to 140 kW cm
−2

(3.1 W total

CDT power) the PA feature centroid associated with the

v� = 24, J �
= 1 state shifted down in frequency at a rate

of −(19 ± 1.2) kHz per kW cm
−2

. The resonance po-

sitions reported in Table I were determined using a PA

laser intensity of IPA = 635 W cm
−2

, and a CDT inten-

sity of 7.5 kW cm
−2

. Assuming the differential AC Stark

shift is the same for all excited states, the reported val-

ues are therefore shifted lower by 142± 9 kHz due to the

CDT and higher by 300 ± 274 kHz due to the PA laser

than their extrapolated position at zero differential AC

Stark shift. The overall AC Stark shift of the resonance

positions is thus higher by 157 kHz with an uncertainty

of ±274 kHz. Both this shift and uncertainty are small

compared to the absolute uncertainty of the frequency

comb. For the resonance positions reported in Tables II

and III, the trapping power was larger (40 W total) and

the differential AC Stark shift due to the CDT is esti-

mated to be −(15± 1) MHz.

When the magnetic field was varied from 0 G to 10 G

the PA features associated with the v� = 24, J �
= 1,

J �
= 2, and J �

= 0 states were observed to shift and, in

the case of J �
= 1 and J �

= 2, to broaden and eventually

split into multiple resolvable peaks. In each case, we mea-

sured the PA feature center of mass and found that when

the magnetic field was varied from 0 to 1 G, the barycen-

ter of the PA features moved by −(91.2 ± 18.3) kHz for

the J �
= 1 state, +(46±28) kHz for the J �

= 2 state, and

+(74.5 ± 30.1) kHz for the J �
= 0 state. Since the res-

onance positions reported in Table I were determined in

the presence of a residual magnetic field below 400 mG,

the uncertainty in their positions due to the magnetic

field was below 50 kHz for all J states and thus small

compared to the absolute uncertainty of the frequency

comb.

IV. INTERPRETATION

In order to interpret our measurements, we begin with

a brief review of the symmetry properties and corre-

sponding selection rules relevant for the photoassociation

process. Molecules in the 1
3Σ+

g excited state are charac-

terized by the Hund’s case “b” coupling scheme in which

the total electronic (nuclear) spin �S = �s1+�s2 (�I =�i1+�i2)
is completely uncoupled from the internuclear axis. Here

�sj (�ij) is the electronic (nuclear) spin of atom “j”. This

occurs when Λ = 0, the projection of the orbital angular

momentum of the electrons along the internuclear axis

is zero, and there is therefore no axial magnetic field to

couple the total spin to the axis. For “Σ” states, the

orbital angular momentum of the electrons is zero and

therefore Λ is always identically zero; however, even in

some cases where Λ �= 0, especially for light molecules,

the coupling is sufficiently weak that Hund’s case “b” is

still the appropriate scheme [21]. The total angular mo-

mentum, apart from the spin, is �K ≡ �N + �Λ, the vector

sum of �Λ and the rotational angular momentum of the

nuclei �N . Therefore for “Σ” states �K = �N , and thus �K is

perpendicular to the internuclear axis. The total spin of

the molecule is �G = �S+�I and is a good quantum number

so long as the hyperfine interaction and spin-rotational

couplings are small. The total spin combines with the to-

tal angular momentum apart from spin �K to result in the

total angular momentum including spin as �J = �K + �G.

For electric dipole radiation, the selection rule is that

∆J = 0,±1 with the restriction that J = 0 � J = 0. In
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addition, under the emission or absorption of a photon

the parity of the electronic orbital must change (+↔ −)

and for a homonuclear molecule, the symmetry of the

coordinate function under interchange of the two nuclei

must change from symmetric to anti-symmetric or vice

versa (g ↔ u). In the present scenario of Hund’s case

“b” coupling, the spin is so weakly coupled to the other

angular momenta that both quantum numbers S and K
are well defined and we have in addition the selection

rules ∆S = 0 (or equivalently ∆G = 0) and therefore

∆K = 0,±1 with the restriction that ∆K = 0 is for-

bidden for Σ → Σ transitions. Since we are here only

concerned with transitions to the 1
3Σ+

g excited state, we

have that ∆N = ±1 and ∆G = 0.

TABLE IV: Allowed rotational levels and corresponding nu-
clear spin configurations for 6Li2 molecules in the limit that
spin-spin and spin-rotation couplings are small enough that
G is a good quantum number.

State Electronic Nuclear Allowed Total
spin spin rotational states Spin

ground states
- - - N = 0, 2, 4 . . . G = 0
- - - N = 1, 3, 5 . . . G = 1

excited states
13Σ+

g : S = 1 I = 0 N = 0, 2, 4 . . . G = 1
I = 1 N = 1, 3, 5 . . . G = 0, 1, 2
I = 2 N = 0, 2, 4 . . . G = 1, 2, 3

We now discuss the allowed quantum numbers for the

initial and final states. In this work, we only consider

collisions between two
6
Li atoms, which are composite

fermions (consisting of 9 fermions: 3 protons, 3 neu-

trons, and 3 electrons), and we note that the 2-body

eigenstates, composed of a spin part and an orbital part,

must be antisymmetric upon exchange of the two atoms.

The consequence is that only certain spin states are pos-

sible given a particular orbital state. An important ex-

ample of this constraint imposed by exchange symmetry

is that the two-body position wave function (sometimes

called the “coordinate function” or orbital state) must

be antisymmetric for a collision between two fermions in

the same spin state (for which the spin wave function is

manifestly symmetric). Thus a spin polarized Fermi gas

can only have odd partial wave collisions (p-, f -, h-wave,

etc...) corresponding to odd values of the rotational an-

gular momentum of the complex (N = 1, 3, 5 . . .), which

are antisymmetric with respect to atom exchange. For

a gas composed of two distinct spin states, even partial

wave collisions can occur (s-, d-, g-wave, etc...) so long

as the spin wave function is antisymmetric upon atom

exchange. As we described in Sec. III, the ability to turn

off s-wave collisions by spin polarizing the gas is a useful

feature of our system that we use to validate our assign-

ment of the PA lines.

The total spin angular momentum of the initial un-

bound molecular state is given by the vector sum of the

f quantum numbers for the isolated atoms: �G = �f1 + �f2.

Here �f1 = �s1 +�i1. In our experiment, the atoms are op-

tically pumped to the lowest hyperfine state before being

exposed to the photoassociation light. Therefore we have

that f1 = f2 =
1
2 and there are two allowed values of the

total spin: G = 0, 1. Certain values of G (specifically

G = f1 + f2, f1 + f2 − 2, . . .) are associated with spin

states symmetric with respect to interchange of the atoms

while the orbital states with even values of N are sym-

metric under the interchange of the atoms. Therefore all

even partial wave collisions (N = 0, 2, 4, . . .) have a total

spin of zero (G = 0) and all odd partial wave collisions

(N = 1, 3, 5, . . .) have a total spin of one (G = 1).

The final state is a molecule in the 1
3Σ+

g potential. For

this triplet state, the total electronic spin is well defined

(S = 1) and the “gerade” symmetry signified by a sub-

script “g” denotes that all states with an even rotational

quantum number (N = 0, 2, 4, . . .) are symmetric under

the interchange of the two nuclei. Because the electronic

spin is well defined and fixed for this excited state, we

now consider interchanging just the nuclei while leaving

the electrons untouched. There are three possible values

of the total nuclear spin (I = 0, 1, 2) since the nuclear

spin of each atom is i = 1. Similar to the symmetry of

G, states with I = i1 + i2, i1 + i2 − 2 . . . (corresponding

here to I = 0 and I = 2) are symmetric with respect

to interchange of the nuclei whereas the I = 1 state is

antisymmetric. Since the nuclei are bosons the total wave

function must be symmetric under the interchange of the

nuclei. Putting this together, we have that the even (odd)

values of I occur with even (odd) values of N . The total

spin angular momentum quantum number G can take on

all values between and including |I + S| and |I − S|.
The possible quantum numbers for the ground and ex-

cited states are tabulated in Table IV. For a ground state

s-wave collision (N = 0) we find that there is only one

allowed value for the total spin: G = 0. From an ini-

tial state with N = 0 and G = 0, we see that there is

only one possible transition to the excited triplet state:

(N = 0, G = 0) → (N �
= 1, G�

= 0). For a ground state

p-wave collision, the initial state is (N = 1, G = 1) and

there are two possible transitions to the excited triplet

state: (N = 1, G = 1) → (N �
= 0, G�

= 1) and

(N = 1, G = 1) → (N �
= 2, G�

= 1). In both cases,

there are two possible values of the total nuclear spin:

I = 0 or 2.

In the preceding discussion, we have assumed that both

the spin-spin coupling, involving terms of the form �s1 ·�s2,

and the coupling of the total electronic spin, �S, with

the molecular rotation, �N , are negligible. In this case,

the total spin (characterized by �G) is a good quantum

number. However, while these couplings are small, we

nevertheless do resolve a splitting of the excited state

energy levels by observing three PA resonances as seen

in Fig. 2 instead of a single feature for an initial s-wave

collision. As we explain later, the ground state is not

split in this particular case because N = 0.

In order to properly label the three PA resonances (as-

sociated with ground state s-wave collisions) observed

6

addition, under the emission or absorption of a photon

the parity of the electronic orbital must change (+↔ −)

and for a homonuclear molecule, the symmetry of the

coordinate function under interchange of the two nuclei

must change from symmetric to anti-symmetric or vice

versa (g ↔ u). In the present scenario of Hund’s case

“b” coupling, the spin is so weakly coupled to the other

angular momenta that both quantum numbers S and K
are well defined and we have in addition the selection

rules ∆S = 0 (or equivalently ∆G = 0) and therefore

∆K = 0,±1 with the restriction that ∆K = 0 is for-

bidden for Σ → Σ transitions. Since we are here only

concerned with transitions to the 1
3Σ+

g excited state, we

have that ∆N = ±1 and ∆G = 0.

TABLE IV: Allowed rotational levels and corresponding nu-
clear spin configurations for 6Li2 molecules in the limit that
spin-spin and spin-rotation couplings are small enough that
G is a good quantum number.

State Electronic Nuclear Allowed Total
spin spin rotational states Spin

ground states
- - - N = 0, 2, 4 . . . G = 0
- - - N = 1, 3, 5 . . . G = 1

excited states
13Σ+

g : S = 1 I = 0 N = 0, 2, 4 . . . G = 1
I = 1 N = 1, 3, 5 . . . G = 0, 1, 2
I = 2 N = 0, 2, 4 . . . G = 1, 2, 3

We now discuss the allowed quantum numbers for the

initial and final states. In this work, we only consider

collisions between two
6
Li atoms, which are composite

fermions (consisting of 9 fermions: 3 protons, 3 neu-

trons, and 3 electrons), and we note that the 2-body

eigenstates, composed of a spin part and an orbital part,

must be antisymmetric upon exchange of the two atoms.

The consequence is that only certain spin states are pos-

sible given a particular orbital state. An important ex-

ample of this constraint imposed by exchange symmetry

is that the two-body position wave function (sometimes

called the “coordinate function” or orbital state) must

be antisymmetric for a collision between two fermions in

the same spin state (for which the spin wave function is

manifestly symmetric). Thus a spin polarized Fermi gas

can only have odd partial wave collisions (p-, f -, h-wave,

etc...) corresponding to odd values of the rotational an-

gular momentum of the complex (N = 1, 3, 5 . . .), which

are antisymmetric with respect to atom exchange. For

a gas composed of two distinct spin states, even partial

wave collisions can occur (s-, d-, g-wave, etc...) so long

as the spin wave function is antisymmetric upon atom

exchange. As we described in Sec. III, the ability to turn

off s-wave collisions by spin polarizing the gas is a useful

feature of our system that we use to validate our assign-

ment of the PA lines.

The total spin angular momentum of the initial un-

bound molecular state is given by the vector sum of the

f quantum numbers for the isolated atoms: �G = �f1 + �f2.

Here �f1 = �s1 +�i1. In our experiment, the atoms are op-

tically pumped to the lowest hyperfine state before being

exposed to the photoassociation light. Therefore we have

that f1 = f2 =
1
2 and there are two allowed values of the

total spin: G = 0, 1. Certain values of G (specifically

G = f1 + f2, f1 + f2 − 2, . . .) are associated with spin

states symmetric with respect to interchange of the atoms

while the orbital states with even values of N are sym-

metric under the interchange of the atoms. Therefore all

even partial wave collisions (N = 0, 2, 4, . . .) have a total

spin of zero (G = 0) and all odd partial wave collisions

(N = 1, 3, 5, . . .) have a total spin of one (G = 1).

The final state is a molecule in the 1
3Σ+

g potential. For

this triplet state, the total electronic spin is well defined

(S = 1) and the “gerade” symmetry signified by a sub-

script “g” denotes that all states with an even rotational

quantum number (N = 0, 2, 4, . . .) are symmetric under

the interchange of the two nuclei. Because the electronic

spin is well defined and fixed for this excited state, we

now consider interchanging just the nuclei while leaving

the electrons untouched. There are three possible values

of the total nuclear spin (I = 0, 1, 2) since the nuclear

spin of each atom is i = 1. Similar to the symmetry of

G, states with I = i1 + i2, i1 + i2 − 2 . . . (corresponding

here to I = 0 and I = 2) are symmetric with respect

to interchange of the nuclei whereas the I = 1 state is

antisymmetric. Since the nuclei are bosons the total wave

function must be symmetric under the interchange of the

nuclei. Putting this together, we have that the even (odd)

values of I occur with even (odd) values of N . The total

spin angular momentum quantum number G can take on

all values between and including |I + S| and |I − S|.
The possible quantum numbers for the ground and ex-

cited states are tabulated in Table IV. For a ground state

s-wave collision (N = 0) we find that there is only one

allowed value for the total spin: G = 0. From an ini-

tial state with N = 0 and G = 0, we see that there is

only one possible transition to the excited triplet state:

(N = 0, G = 0) → (N �
= 1, G�

= 0). For a ground state

p-wave collision, the initial state is (N = 1, G = 1) and

there are two possible transitions to the excited triplet

state: (N = 1, G = 1) → (N �
= 0, G�

= 1) and

(N = 1, G = 1) → (N �
= 2, G�

= 1). In both cases,

there are two possible values of the total nuclear spin:

I = 0 or 2.

In the preceding discussion, we have assumed that both

the spin-spin coupling, involving terms of the form �s1 ·�s2,

and the coupling of the total electronic spin, �S, with

the molecular rotation, �N , are negligible. In this case,

the total spin (characterized by �G) is a good quantum

number. However, while these couplings are small, we

nevertheless do resolve a splitting of the excited state

energy levels by observing three PA resonances as seen

in Fig. 2 instead of a single feature for an initial s-wave

collision. As we explain later, the ground state is not

split in this particular case because N = 0.

In order to properly label the three PA resonances (as-

sociated with ground state s-wave collisions) observed
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2-color PA spectroscopy results : here Ω1 is fixed and Ω2 is scanned
In the data that follows, the loss of atoms due to photo-association induced by Ω1 is suppressed by the AC 
Stark shift of the excited state levels induced by Ω2.  We specify the excited state v’ number and the J’ 
number and we specify the ground state v’’ number and N’’ number.

v’’=1, N’’=0

three features
hyperfine structure

F = I + S = 0, 1, 2 (expect three hyperfine levels)

+
the relevant initial state is:
|S=1,N=0,J=1,I=1>
the intermediate state is:
|S=1,N=1,J=1,I=1>

the final state is:
|S=1,N=0,J=1,I=1> only one value of  J

Ω2 - Ω1(1) ∆J = ±1, 0

(2) f3 − f2

(3) f2 − f1

Are the terms in the Hamiltonian explicitly

(4) Ĥspin−rot = γv
�N · �S

(5) Ĥspin−spin = λv[Ŝ
2
z − Ŝ

2
/3]

... of the rotational levels, previously labeled by N , according to the J quantum

number, given by J = (N + S), (N + S − 1), (N + S − 2),· · · , |N − S|. Therefore,

each level with a given N(≥ S) consists of 2S + 1 sub-levels, and the number of

sub-levels is equal to the spin multiplicity. However, for N < S, the number of

sub-levels is equal to 2N + 1 (the rotational multiplicity). Hence, all N = 0 levels

do not split, as mentioned previously. For a particular ro-vibrational state, |ν, N �,
with a total spin S = 1, the rotational energy is given by

FJ=N+1 = BvN(N + 1) + (2N + 3)Bv − λv

−
�

(2N + 3)2B2
v + λ2

v − 2λvBv + γv(N + 1)

FJ=N = BvN(N + 1)

FJ=N−1 = BvN(N + 1)− (2N − 1)Bv − λv

+

�
(2N − 1)2B2

v + λ2
v − 2λvBv − γvN,(6)

where λv and γv are constants. Here, λv is related to the spin-spin interaction and

it describes the coupling between the total spin, �S, and the molecular axis; γv is

related to the spin-rotation interaction and it is a measure of the coupling between

�S and �N . Under most circumstances, these two constants describe small effects

which are not spectroscopically resolvable and are typically ignored in the Dunham

expansion. However, at the level of resolution in the current experiment, one needs

to take into account these second-order perturbations. In the case where spin-spin

and spin-rotation couplings are small (Bv � |λv|, |γv|) we can simplify Eq. 5 to

FJ=N+1 = BvN(N + 1)− 2N + 2

2N + 3
λv + γv(N + 1)

FJ=N = BvN(N + 1)

FJ=N−1 = BvN(N + 1)− 2N

2N − 1
λv − γvN.(7)

In addition, when spin-spin coupling is much more important than spin-rotation

coupling (|λv| � |γv|), the energy ordering results from the λv terms, and we can

label these three peaks in Table ??, energetically from low to high, as (N
�
= 1, J

�
=

1), (N
�
= 1, J

�
= 2), and (N

�
= 1, J

�
= 0) because λv is negative.
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selection rules
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TABLE II: Experimentally measured PA resonances for p-
wave collisions in an incoherent mixture of the |1� and |2�
states of 6Li held at a magnetic field of B = 185 G. Each
of these values was extracted by fitting a loss spectrum like
that shown in Fig. 4. These PA resonances correspond to
a transition from an initial unbound molecular state with
N = 1, G = 1 to the vth vibrational level of the 13Σ+

g ex-
cited state with N � = 0, G� = 1. While the precision in these
measurements is 0.001 cm−1, the uncertainty, limited by the
wavemeter, is ±0.002 cm−1

v� 1st 2nd 3rd
cm−1 cm−1 cm−1

20 12236.388 12236.407 12236.424
21 12393.629 12393.648 12393.664
22 12545.320 12545.338 12545.355
23 12691.446 12691.465 12691.480
24 12831.995 12832.012 12832.029
25 12966.957 12966.975 12966.991
26 13096.326 13096.346 13096.362

TABLE III: Experimentally measured PA resonances for p-
wave collisions in an incoherent mixture of the |1� and |2�
states of 6Li held at a magnetic field of B = 185 G. Each
of these values was extracted by fitting a loss spectrum like
that shown in Fig. 4. These PA resonances correspond to
a transition from an initial unbound molecular state with
N = 1, G = 1 to the vth vibrational level of the 13Σ+

g ex-
cited state with N � = 2, G� = 1. While the precision in these
measurements is 0.001 cm−1, the uncertainty, limited by the
wavemeter, is ±0.002 cm−1

v� 1st 2nd 3rd 4th
cm−1 cm−1 cm−1 cm−1

20 12238.757 12238.772 12238.780 12238.795
21 12395.936 12395.951 12395.958 12395.973
22 12547.567 12547.579 12547.587 12547.601
23 12693.628 12693.642 12693.648 12693.665
24 12834.113 12834.128 12834.134 12834.150
25 12969.011 12969.026 12969.032 12969.047
26 13098.315 13098.332 13098.339 13098.355

When varying the PA laser intensity from IPA =

0.19 kW cm
−2

to IPA = 1.27 kW cm
−2

we observed

that the centroid of the first feature (J �
= 1) associated

with the v� = 26 excited state shifted to higher frequen-

cies at a rate of 471± 433 kHz per kW cm
−2

. When the

CDT laser intensity was varied from 5.4 kW cm
−2

(145

mW total CDT power) to 140 kW cm
−2

(3.1 W total

CDT power) the PA feature centroid associated with the

v� = 24, J �
= 1 state shifted down in frequency at a rate

of −(19 ± 1.2) kHz per kW cm
−2

. The resonance po-

sitions reported in Table I were determined using a PA

laser intensity of IPA = 635 W cm
−2

, and a CDT inten-

sity of 7.5 kW cm
−2

. Assuming the differential AC Stark

shift is the same for all excited states, the reported val-

ues are therefore shifted lower by 142± 9 kHz due to the

CDT and higher by 300 ± 274 kHz due to the PA laser

than their extrapolated position at zero differential AC

Stark shift. The overall AC Stark shift of the resonance

positions is thus higher by 157 kHz with an uncertainty

of ±274 kHz. Both this shift and uncertainty are small

compared to the absolute uncertainty of the frequency

comb. For the resonance positions reported in Tables II

and III, the trapping power was larger (40 W total) and

the differential AC Stark shift due to the CDT is esti-

mated to be −(15± 1) MHz.

When the magnetic field was varied from 0 G to 10 G

the PA features associated with the v� = 24, J �
= 1,

J �
= 2, and J �

= 0 states were observed to shift and, in

the case of J �
= 1 and J �

= 2, to broaden and eventually

split into multiple resolvable peaks. In each case, we mea-

sured the PA feature center of mass and found that when

the magnetic field was varied from 0 to 1 G, the barycen-

ter of the PA features moved by −(91.2 ± 18.3) kHz for

the J �
= 1 state, +(46±28) kHz for the J �

= 2 state, and

+(74.5 ± 30.1) kHz for the J �
= 0 state. Since the res-

onance positions reported in Table I were determined in

the presence of a residual magnetic field below 400 mG,

the uncertainty in their positions due to the magnetic

field was below 50 kHz for all J states and thus small

compared to the absolute uncertainty of the frequency

comb.

IV. INTERPRETATION

In order to interpret our measurements, we begin with

a brief review of the symmetry properties and corre-

sponding selection rules relevant for the photoassociation

process. Molecules in the 1
3Σ+

g excited state are charac-

terized by the Hund’s case “b” coupling scheme in which

the total electronic (nuclear) spin �S = �s1+�s2 (�I =�i1+�i2)
is completely uncoupled from the internuclear axis. Here

�sj (�ij) is the electronic (nuclear) spin of atom “j”. This

occurs when Λ = 0, the projection of the orbital angular

momentum of the electrons along the internuclear axis

is zero, and there is therefore no axial magnetic field to

couple the total spin to the axis. For “Σ” states, the

orbital angular momentum of the electrons is zero and

therefore Λ is always identically zero; however, even in

some cases where Λ �= 0, especially for light molecules,

the coupling is sufficiently weak that Hund’s case “b” is

still the appropriate scheme [21]. The total angular mo-

mentum, apart from the spin, is �K ≡ �N + �Λ, the vector

sum of �Λ and the rotational angular momentum of the

nuclei �N . Therefore for “Σ” states �K = �N , and thus �K is

perpendicular to the internuclear axis. The total spin of

the molecule is �G = �S+�I and is a good quantum number

so long as the hyperfine interaction and spin-rotational

couplings are small. The total spin combines with the to-

tal angular momentum apart from spin �K to result in the

total angular momentum including spin as �J = �K + �G.

For electric dipole radiation, the selection rule is that

∆J = 0,±1 with the restriction that J = 0 � J = 0. In

6

addition, under the emission or absorption of a photon

the parity of the electronic orbital must change (+↔ −)

and for a homonuclear molecule, the symmetry of the

coordinate function under interchange of the two nuclei

must change from symmetric to anti-symmetric or vice

versa (g ↔ u). In the present scenario of Hund’s case

“b” coupling, the spin is so weakly coupled to the other

angular momenta that both quantum numbers S and K
are well defined and we have in addition the selection

rules ∆S = 0 (or equivalently ∆G = 0) and therefore

∆K = 0,±1 with the restriction that ∆K = 0 is for-

bidden for Σ → Σ transitions. Since we are here only

concerned with transitions to the 1
3Σ+

g excited state, we

have that ∆N = ±1 and ∆G = 0.

TABLE IV: Allowed rotational levels and corresponding nu-
clear spin configurations for 6Li2 molecules in the limit that
spin-spin and spin-rotation couplings are small enough that
G is a good quantum number.

State Electronic Nuclear Allowed Total
spin spin rotational states Spin

ground states
- - - N = 0, 2, 4 . . . G = 0
- - - N = 1, 3, 5 . . . G = 1

excited states
13Σ+

g : S = 1 I = 0 N = 0, 2, 4 . . . G = 1
I = 1 N = 1, 3, 5 . . . G = 0, 1, 2
I = 2 N = 0, 2, 4 . . . G = 1, 2, 3

We now discuss the allowed quantum numbers for the

initial and final states. In this work, we only consider

collisions between two
6
Li atoms, which are composite

fermions (consisting of 9 fermions: 3 protons, 3 neu-

trons, and 3 electrons), and we note that the 2-body

eigenstates, composed of a spin part and an orbital part,

must be antisymmetric upon exchange of the two atoms.

The consequence is that only certain spin states are pos-

sible given a particular orbital state. An important ex-

ample of this constraint imposed by exchange symmetry

is that the two-body position wave function (sometimes

called the “coordinate function” or orbital state) must

be antisymmetric for a collision between two fermions in

the same spin state (for which the spin wave function is

manifestly symmetric). Thus a spin polarized Fermi gas

can only have odd partial wave collisions (p-, f -, h-wave,

etc...) corresponding to odd values of the rotational an-

gular momentum of the complex (N = 1, 3, 5 . . .), which

are antisymmetric with respect to atom exchange. For

a gas composed of two distinct spin states, even partial

wave collisions can occur (s-, d-, g-wave, etc...) so long

as the spin wave function is antisymmetric upon atom

exchange. As we described in Sec. III, the ability to turn

off s-wave collisions by spin polarizing the gas is a useful

feature of our system that we use to validate our assign-

ment of the PA lines.

The total spin angular momentum of the initial un-

bound molecular state is given by the vector sum of the

f quantum numbers for the isolated atoms: �G = �f1 + �f2.

Here �f1 = �s1 +�i1. In our experiment, the atoms are op-

tically pumped to the lowest hyperfine state before being

exposed to the photoassociation light. Therefore we have

that f1 = f2 =
1
2 and there are two allowed values of the

total spin: G = 0, 1. Certain values of G (specifically

G = f1 + f2, f1 + f2 − 2, . . .) are associated with spin

states symmetric with respect to interchange of the atoms

while the orbital states with even values of N are sym-

metric under the interchange of the atoms. Therefore all

even partial wave collisions (N = 0, 2, 4, . . .) have a total

spin of zero (G = 0) and all odd partial wave collisions

(N = 1, 3, 5, . . .) have a total spin of one (G = 1).

The final state is a molecule in the 1
3Σ+

g potential. For

this triplet state, the total electronic spin is well defined

(S = 1) and the “gerade” symmetry signified by a sub-

script “g” denotes that all states with an even rotational

quantum number (N = 0, 2, 4, . . .) are symmetric under

the interchange of the two nuclei. Because the electronic

spin is well defined and fixed for this excited state, we

now consider interchanging just the nuclei while leaving

the electrons untouched. There are three possible values

of the total nuclear spin (I = 0, 1, 2) since the nuclear

spin of each atom is i = 1. Similar to the symmetry of

G, states with I = i1 + i2, i1 + i2 − 2 . . . (corresponding

here to I = 0 and I = 2) are symmetric with respect

to interchange of the nuclei whereas the I = 1 state is

antisymmetric. Since the nuclei are bosons the total wave

function must be symmetric under the interchange of the

nuclei. Putting this together, we have that the even (odd)

values of I occur with even (odd) values of N . The total

spin angular momentum quantum number G can take on

all values between and including |I + S| and |I − S|.
The possible quantum numbers for the ground and ex-

cited states are tabulated in Table IV. For a ground state

s-wave collision (N = 0) we find that there is only one

allowed value for the total spin: G = 0. From an ini-

tial state with N = 0 and G = 0, we see that there is

only one possible transition to the excited triplet state:

(N = 0, G = 0) → (N �
= 1, G�

= 0). For a ground state

p-wave collision, the initial state is (N = 1, G = 1) and

there are two possible transitions to the excited triplet

state: (N = 1, G = 1) → (N �
= 0, G�

= 1) and

(N = 1, G = 1) → (N �
= 2, G�

= 1). In both cases,

there are two possible values of the total nuclear spin:

I = 0 or 2.

In the preceding discussion, we have assumed that both

the spin-spin coupling, involving terms of the form �s1 ·�s2,

and the coupling of the total electronic spin, �S, with

the molecular rotation, �N , are negligible. In this case,

the total spin (characterized by �G) is a good quantum

number. However, while these couplings are small, we

nevertheless do resolve a splitting of the excited state

energy levels by observing three PA resonances as seen

in Fig. 2 instead of a single feature for an initial s-wave

collision. As we explain later, the ground state is not

split in this particular case because N = 0.

In order to properly label the three PA resonances (as-

sociated with ground state s-wave collisions) observed
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addition, under the emission or absorption of a photon

the parity of the electronic orbital must change (+↔ −)

and for a homonuclear molecule, the symmetry of the

coordinate function under interchange of the two nuclei

must change from symmetric to anti-symmetric or vice

versa (g ↔ u). In the present scenario of Hund’s case

“b” coupling, the spin is so weakly coupled to the other

angular momenta that both quantum numbers S and K
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∆K = 0,±1 with the restriction that ∆K = 0 is for-
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3Σ+
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State Electronic Nuclear Allowed Total
spin spin rotational states Spin
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= 2, G�

= 1). In both cases,

there are two possible values of the total nuclear spin:

I = 0 or 2.

In the preceding discussion, we have assumed that both

the spin-spin coupling, involving terms of the form �s1 ·�s2,

and the coupling of the total electronic spin, �S, with

the molecular rotation, �N , are negligible. In this case,

the total spin (characterized by �G) is a good quantum

number. However, while these couplings are small, we

nevertheless do resolve a splitting of the excited state

energy levels by observing three PA resonances as seen

in Fig. 2 instead of a single feature for an initial s-wave

collision. As we explain later, the ground state is not

split in this particular case because N = 0.

In order to properly label the three PA resonances (as-

sociated with ground state s-wave collisions) observed
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2-color PA spectroscopy results : here Ω1 is fixed and Ω2 is scanned
In the data that follows, the loss of atoms due to photo-association induced by Ω1 is suppressed by the AC 
Stark shift of the excited state levels induced by Ω2.  We specify the excited state v’ number and the J’ 
number and we specify the ground state v’’ number and N’’ number.
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... of the rotational levels, previously labeled by N , according to the J quantum

number, given by J = (N + S), (N + S − 1), (N + S − 2),· · · , |N − S|. Therefore,

each level with a given N(≥ S) consists of 2S + 1 sub-levels, and the number of

sub-levels is equal to the spin multiplicity. However, for N < S, the number of

sub-levels is equal to 2N + 1 (the rotational multiplicity). Hence, all N = 0 levels

do not split, as mentioned previously. For a particular ro-vibrational state, |ν, N �,
with a total spin S = 1, the rotational energy is given by

FJ=N+1 = BvN(N + 1) + (2N + 3)Bv − λv

−
�

(2N + 3)2B2
v + λ2

v − 2λvBv + γv(N + 1)

FJ=N = BvN(N + 1)
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+

�
(2N − 1)2B2

v + λ2
v − 2λvBv − γvN,(5)

where λv and γv are constants. Here, λv is related to the spin-spin interaction and

it describes the coupling between the total spin, �S, and the molecular axis; γv is

related to the spin-rotation interaction and it is a measure of the coupling between

�S and �N . Under most circumstances, these two constants describe small effects

which are not spectroscopically resolvable and are typically ignored in the Dunham

expansion. However, at the level of resolution in the current experiment, one needs

to take into account these second-order perturbations. In the case where spin-spin

and spin-rotation couplings are small (Bv � |λv|, |γv|) we can simplify Eq. 5 to
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2N + 3
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=
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(2) Ĥspin−rot = γv
�N · �S
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with a total spin S = 1, the rotational energy is given by

FJ=N+1 = BvN(N + 1) + (2N + 3)Bv − λv

−
�

(2N + 3)2B2
v + λ2

v − 2λvBv + γv(N + 1)

FJ=N = BvN(N + 1)

FJ=N−1 = BvN(N + 1)− (2N − 1)Bv − λv

+

�
(2N − 1)2B2

v + λ2
v − 2λvBv − γvN,(5)

where λv and γv are constants. Here, λv is related to the spin-spin interaction and

it describes the coupling between the total spin, �S, and the molecular axis; γv is

related to the spin-rotation interaction and it is a measure of the coupling between

�S and �N . Under most circumstances, these two constants describe small effects

which are not spectroscopically resolvable and are typically ignored in the Dunham

expansion. However, at the level of resolution in the current experiment, one needs

to take into account these second-order perturbations. In the case where spin-spin

and spin-rotation couplings are small (Bv � |λv|, |γv|) we can simplify Eq. 5 to

FJ=N+1 = BvN(N + 1)− 2N + 2

2N + 3
λv + γv(N + 1)

FJ=N = BvN(N + 1)

FJ=N−1 = BvN(N + 1)− 2N

2N − 1
λv − γvN.(6)

In addition, when spin-spin coupling is much more important than spin-rotation

coupling (|λv| � |γv|), the energy ordering results from the λv terms, and we can

label these three peaks in Table ??, energetically from low to high, as (N
�
= 1, J

�
=

1), (N
�
= 1, J

�
= 2), and (N

�
= 1, J

�
= 0) because λv is negative.

1

hyperfine coupling 
constant varies weakly if 
at all with v



N=0 peak splittings
(1) f2 − f1

Are the terms in the Hamiltonian explicitly
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... we see five features



2-color PA spectroscopy results : here Ω1 is fixed and Ω2 is scanned

v’’=8, N’’=0



what follows is unchanged and what was presented, but after the 
talk Mariusz and Will sent me a correction : the data plotted in red 
were not obtained with Ω1 tuned to the J=0 state, rather it was 
obtained with Ω1 tuned to the J=2 state!  So the conclusions are, as 
stated, incorrect.
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Controlling Collisions of Ultracold Atoms with dc Electric Fields

R. V. Krems*
Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada

(Received 14 August 2005; revised manuscript received 12 March 2006; published 28 March 2006)

It is demonstrated that elastic collisions of ultracold atoms forming a heteronuclear collision complex
can be manipulated by laboratory practicable dc electric fields. The mechanism of electric field control is
based on the interaction of the instantaneous dipole moment of the collision pair with external electric
fields. It is shown that this interaction is dramatically enhanced in the presence of a p-wave shape or
Feshbach scattering resonance near the collision threshold, which leads to novel electric-field-induced
Feshbach resonances.
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The creation of ultracold atoms and molecules has led to
many ground-breaking discoveries described in recent re-
view articles [1]. Particularly interesting is the possibility
to control interactions of ultracold atoms and molecules
with external electric and magnetic fields [2]. External field
control of atomic and molecular dynamics may lead to
novel spectroscopy methods, provide detailed information
on mechanisms of chemical reactions, and allow for the
development of a scalable quantum computer [3]. External
fields may be used to tune the scattering length for mo-
lecular interactions and alleviate the evaporative cooling of
molecules to ultracold temperatures [4]. Collisions of ul-
tracold atoms can be controlled by magnetic fields using
Feshbach resonances [5] or by lasers [6,7]. Here, we show
that ultracold collisions of atoms forming a heteronuclear
collision complex can also be controlled by dc electric
fields due to the interaction of the instantaneous dipole mo-
ment of the collision pair with external fields. The interac-
tion is dramatically enhanced in the presence of a p-wave
scattering resonance near collision threshold, which allows
for the possibility to tune the scattering length of ultracold
atoms by laboratory available electric fields. This provides
a new mechanism to control elastic scattering, inelastic
energy transfer and chemical reactions in collisions of
atoms and molecules at zero absolute temperature.

Electric field control of atomic and molecular interac-
tions may offer several advantages over magnetic field
control and optical methods. The evaporative cooling of
atoms and molecules is most easily achieved in a magnetic
trap, where magnetic field control of collisions may be
complicated due to varying magnetic fields of the trap.
Electric fields induce anisotropic interactions. The study
and control of anisotropic collision properties at ultracold
temperatures may uncover new phenomena in condensed
matter physics—hence the recent interest in polar Bose-
Einstein condensates [8]. Anisotropic interactions may
also be used to connect qubits in a quantum computer
[3], and schemes for electric field control of atomic and
molecular interactions are particularly relevant for quan-
tum computation. Electric field control may be applicable
to systems without magnetic moments or systems, for

which s-wave Feshbach resonances cannot be induced in
a practicable interval of magnetic fields. Finally, electric
field control of atomic collisions may provide a sensitive
probe of scattering resonances corresponding to nonzero
partial waves so the mechanism described here can be used
for high-precision measurements of molecular states near
the dissociation threshold.

Marinescu and You [9] proposed to control interactions
in ultracold atomic gases by polarizing atoms with strong
electric fields. The polarization changes the long-range
form of the atom-atom interaction potential and modifies
the scattering length. The interaction between an atom and
an electric field is, however, extremely weak, and fields of
as much as 250 to 700 kV=cm were required to alter the
elastic scattering cross section of ultracold atoms in the
calculation of Marinescu and You. The maximum dc elec-
tric field currently available in the laboratory is about
200 kV=cm [10]. We propose an alternative mechanism
for electric field control of ultracold atom interactions and
demonstrate that the scattering length of ultracold atoms
can be manipulated by electric fields below 100 kV=cm.

We consider collisions in binary mixtures of ultracold
gases. Mixtures of ultracold alkali metal atoms have been
created by several experimental groups [11,12]. When two
different atoms collide, they form a heteronuclear colli-
sion complex which has an instantaneous dipole moment
so it can interact with an external electric field. The inter-
action is weak. The dipole moment function of the colli-
sion complex is typically peaked around the equilib-
rium distance of the diatomic molecule in the vibration-
ally ground state and quickly decreases as the atoms sepa-
rate. Only a small part of the scattering wave function
samples the interatomic distances, where the dipole mo-
ment function is significant. At the same time, the inter-
action with an electric field couples states of different
orbital angular momenta. The zero angular momentum
s-wave motion of ultracold atoms is coupled to an ex-
cited p-wave scattering state, in which the colliding atoms
rotate about each other with the angular momentum l "
1 a:u: The probability density of the p-wave scattering
wave function at small interatomic separations is very
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Electric-field-induced Feshbach resonances in ultracold alkali-metal mixtures
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We present a detailed analysis of Feshbach resonances in ultracold collisions of Li and Cs atoms in the
presence of superimposed electric and magnetic fields. We show that electric fields induce resonances through
couplings between the s- and p-wave scattering channels and modify the scattering length to a great extent.
Electric-field-induced resonances lead to the anisotropy of ultracold scattering and provide the diagnostics for
magnetic p-wave resonances in ultracold gases. We show that the electric field couplings may shift the
positions of s-wave magnetic resonances, thereby making the electric field control of ultracold atoms possible
even far away from p-wave resonances. Finally, we demonstrate that electric fields may rotate and spin up the
collision complex of ultracold atoms at substantial rates.

DOI: 10.1103/PhysRevA.75.032709 PACS number!s": 34.50.  s, 34.20.Gj

I. INTRODUCTION

The creation of ultracold atoms and molecules has gener-
ated an upheaval in atomic, molecular, and optical physics
#1–8$ and may lead to groundbreaking discoveries in
condensed-matter physics #9–23$, nuclear physics #24–27$,
quantum computation #28–30$, and chemical physics
#31–35$. The development of experimental techniques for the
production of dense ultracold gases is therefore pursued by
many researchers !see #7$ and references therein". Ultracold
gases offer the possibility of controlling atomic and molecu-
lar systems at the single-quantum level, which is exploited in
studies of quantum information processing #28–30$ and co-
herent matter-light interactions #11$. External control of
atomic interactions can be achieved by applying static mag-
netic or resonant laser fields to induce Feshbach scattering
resonances #36–39$. Ultracold atoms and molecules are usu-
ally confined in magnetic or magneto-optical traps, and mag-
netic Feshbach resonances are particularly important for
studies of ultracold gases. They have been used to create
molecular Bose-Einstein condensates !BEC’s" and explore
the dynamics of ultracold correlated systems in the BEC-
BCS crossover regime #13,16$. Collision cross sections of
ultracold atoms and molecules change dramatically as the
magnetic field is varied through a resonance. Feshbach reso-
nances thus provide a mechanism for controlling atomic and
molecular collisions with magnetic fields.

In the present paper, we explore the possibility of induc-
ing Feshbach resonances in ultracold atomic gases with dc
electric fields. Electric fields can be tuned much faster than
magnetic fields, so electric field control of interatomic inter-
actions may prove to be more versatile for quantum informa-
tion processing than magnetic Feshbach resonances. Using
electric fields for inducing scattering resonances may also be
important for experiments with gases in deep magnetic traps
where large field gradients complicate the dynamics of mag-
netic resonances or when magnetic resonances cannot be
tuned in the available interval of magnetic fields. Magnetic
field control of interatomic interactions is limited to para-

magnetic species, so the possibility of inducing scattering
resonances with electric fields may expand the scope of stud-
ies of correlation phenomena in ultracold gases.

Marinescu and You #40$ and Melezhik and Hu #41$ pro-
posed to control interactions in ultracold atomic gases by
polarizing atoms with strong electric fields. The polarization
changes the long-range form of the atom-atom interaction
potential and modifies the scattering cross section in the limit
of zero collision energy. The interaction between an atom
and an electric field is, however, extremely weak, and fields
of as much as 250–700 kV/cm were required to alter the
elastic scattering cross section of ultracold atoms in these
calculations. We have recently proposed an alternative
mechanism for electric field control of ultracold atom inter-
actions #42$ and demonstrated that collisions and interactions
in binary mixtures of ultracold atoms can be effectively ma-
nipulated by electric fields below 100 kV/cm. The mecha-
nism of electric field control is based on the interaction of the
instantaneous dipole moment of the collision pair with exter-
nal electric fields. The duration of an ultracold collision is so
long that this interaction, while insignificant in thermal
gases, may dramatically change the dynamics of atomic col-
lisions at temperatures near absolute zero.

This is an extension of our preceding Letter #42$. To elu-
cidate the possibility of inducing Feshbach resonances with
electric fields, we study the collision dynamics in a binary
mixture of ultracold Li and Cs atoms. Ultracold mixtures of
Li and Cs gases have been recently created by Mudrich et al.
#43,44$ in order to produce ultracold polar LiCs molecules
#45$, and accurate interaction potentials for the LiCs mol-
ecule have been derived from high-precision spectroscopy
measurements #46$. We use the interaction potentials of
Staanum et al. #46$ to calculate the positions and widths of
magnetic Feshbach resonances that may be used to link ul-
tracold atoms together for the creation of ultracold molecules
either directly #43–45$ or by enhancing the probability of
photoassociation #47$. We then show that applying superim-
posed magnetic and electric fields may result in three-state
Feshbach resonances tunable by electric fields. We explore
the main features of such resonances. In particular, we show
that the positions of the electric-field-induced resonances de-
pend on the strength of the electric field and demonstrate that
electric fields may modify the magnetic Feshbach reso-*Electronic address: rkrems@chem.ubc.ca

PHYSICAL REVIEW A 75, 032709 !2007"

1050-2947/2007/75!3"/032709!8" ©2007 The American Physical Society032709-1

Effects of electric fields on heteronuclear Feshbach resonances in ultracold 6Li-87Rb mixtures
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The effects of combined external electric and magnetic fields on elastic collisions in ultracold Li-Rb mix-
tures are studied using recently obtained experimentally verified potentials. Our analysis provides both quan-
titative predictions for and a detailed physical interpretation of the phenomena arising from electric-field-
induced interactions. It is shown that the electric field shifts the positions of intrinsic magnetic Feshbach
resonances, generates copies of resonances previously restricted to a particular partial-wave collision to other
partial-wave channels, and splits Feshbach resonances into multiple resonances for states of nonzero angular
momenta. It was recently observed that the magnetic dipole-dipole interaction can also lift the degeneracy of
a p-wave state splitting of the associated p-wave Feshbach resonance into two distinct resonances at different
magnetic fields. Our work shows that the splitting of the resonances produced by an applied electric field is
more than 1 order of magnitude larger. This phenomenon offers a complementary way to produce and tune an
anisotropic interaction and to study its effect on the many-body physics of heteronuclear atomic gases.

DOI: 10.1103/PhysRevA.79.042711 PACS number!s": 34.50.Cx, 34.20.!b

I. INTRODUCTION

The discovery of magnetic-field tunable Feshbach reso-
nances !FRs" has led to many ground-breaking experiments
in the field of ultracold atomic and molecular physics #1–3$.
Magnetic FRs provide a powerful tool to control microscopic
interactions in ultracold quantum gases #4,5$, offer an ex-
tremely sensitive probe of interatomic interaction potentials
for collisions at ultracold temperatures #6–8$, and can be
used to create ultracold molecules by coherently linking ul-
tracold atoms #9,10$. FRs arise due to coupling between a
quasibound molecular state in a closed collision channel and
the scattering wave function of the colliding atoms in an
open channel. Because the quasibound states and the free
atomic pair have, in general, different magnetic moments,
both their absolute energy and relative energy difference can
be tuned using an external magnetic field. When the energy
of the quasibound state is degenerate with the energy of the
free atomic pair, a resonant scattering process occurs, the
s-wave scattering length diverges, and both elastic and in-
elastic collisions are dramatically enhanced. Recent theoret-
ical work has also demonstrated the possibility of inducing
FRs in heteronuclear mixtures of atomic gases by applying a
static electric field #11,12$. The mechanism is based on the
interaction of the instantaneous dipole moment of the hetero-
nuclear collision complex with the external electric field.
This interaction is distinct from and for bi-alkali-metal mix-
tures with a large electric dipole moment, much larger than
that responsible for electric-field control of ultracold colli-
sions based on the electric polarization of colliding atoms
and the resulting dipole-dipole interaction #13–15$. The in-
teraction considered here, for heteronuclear collisions,
couples collision states of different orbital angular momenta,
and the coupling becomes very significant near a FR. This
coupling gives rise to new s-wave scattering resonances in-
duced by the presence of FRs in higher partial-wave states
and can shift the positions of the quasibound states resulting
in a shift in the positions of the intrinsic magnetic FRs !i.e.,

those present in the absence of an external electric field".
Moreover, the electric field can induce a strong anisotropy of
ultracold scattering by exerting a torque on the collision
complex of ultracold atoms #12$.

The use of combined electric and magnetic fields to con-
trol interatomic and intermolecular interactions has several
distinct advantages over using magnetic fields alone. It has
been demonstrated that the combination of electric and mag-
netic fields may be used to control both the position and
width of FRs independently even for homonuclear collisions,
leading to complete control over the character of ultracold
collisions #15$. In addition, for the relevant field strengths
considered here !"100 kV /cm and "1 kG", the electric
fields can be varied much faster than the magnetic fields, in
large part, because the corresponding field energy density is
ten times smaller. Electric fields introduce anisotropic inter-
actions and angle-dependent scattering at ultracold tempera-
tures, which may affect the dynamics of quantum degenerate
gases in unanticipated ways. It is also interesting to note that
the electric-field control of heteronuclear collisions can be
achieved at fields low enough that they do not perturb the
separated atoms or nonpolar molecules since they only inter-
act significantly with electric field when in a collision com-
plex. For these reasons, electric-field control of interatomic
interactions may also be preferable to magnetically or opti-
cally tunable scattering resonances in certain applications.

Silber et al. #16$ recently created a quantum degenerate
Bose-Fermi mixture of 6Li and 87Rb atoms in a magnetic
trap and detected interspecies FRs #17$. These resonances
may eventually be useful to improve the efficiency of sym-
pathetic cooling in this mixture and for the study of boson-
mediated BCS pairing #18$. These FRs also provide a
method to create loosely bound LiRb dimers. LiRb mol-
ecules have a relatively large electric dipole moment !up to
4.2 D" #19$, which makes the Li-Rb system a good candidate
for research on ultracold dipolar gases and the experimental
study of electric-field-induced FRs #11,12$. Recently, we
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moment with the vibrational level of the X and a states,

obtained after averaging the dipole moment function over the

vibrational wave functions of the potential functions V!R"
=V!!R"+V

cc

ind. This figure partly reflects the R dependence

drawn in Fig. 3: the ground state dipole moment is almost

constant for the lowest forty levels for the less polar species,

while it varies more rapidly for LiRb, LiCs, NaRb. As ex-

pected, all these curves vanish at large distances !not shown
on the figure".

For the purpose of comparison with other works, we

summarize our results for the ground state in a tabular form

!Table VI", displaying the value of the permanent dipole mo-
ment at the equilibrium distance R

e

X, at its extremum value

R
m

X , and averaged for the v=0 vibrational level. To the best
of our knowledge, the other available theoretical values for

the permanent dipole moment of the mixed alkali pairs con-

cern the ground state at its equlibrium distance R
e

X. In con-

trast, only the value of the permanent dipole moment for a

given vibrational level of molecules is obtainable in an ex-

periment, limited to v=0 up to now. Note that for simplicity
we reported absolute values in Table VI: indeed, the experi-

mentalists cannot determine the sign of the dipole moment,

while it is not always clear in the theoretical papers what is

the choice of the authors for the orientation of the molecular

axis.

As expected, the dipole moment of v=0 is close to the
value of the dipole function at the equilibrium distance. Our

results are in good agreement with the available experimen-

tal values, within a 2% for LiK, NaK, and NaCs, and slightly

more !6%" for NaRb. The difference is found much larger
!around 20%" for the less polar molecule LiNa. We confirm
that the approximate scaling law proposed in Ref. 64 over-

estimates the dipole moment, except for the less polar mol-

ecules KRb and RbCs, which in contrast are underestimated.

Our results are in excellent agreement with those of Ref. 51,

which a similar approach without the ! dependence of the
core-polarization terms.

We have already mentioned that very few other theoret-

ical variations of the permanent dipole moment with the in-

teratomic distance are available in the literature. The R de-

pendence of the dipole moment in the ground state of NaLi

molecule obtained by Bertoncini et al.
55
and by Rosmus and

Meyer
56
disagree with each other both in sign and in magni-

tude. Our negative value for LiNa supports the prediction of

Rosmus and Meyer but not their R variation. Note that the

authors of Ref. 56, and later on in another paper,
49
under-

lined the great sensivity of the dipole moment of NaLi to

valence correlations and core polarization effects. Similarly,

results by Stevens et al. on NaK !Ref. 54" also differ strongly
from ours, which can be attributed to the absence of an !
dependence in the effective core potentials, included after-

wards in the NaK study of Magnier and Millié.
34

TABLE V. Size of the molecular basis set generated from methods A, B, and C.

Molecule LiNa LiK LiRb LiCs NaK NaRb NaCs KRb KCs RbCs

Basis A 98 104 89 89 114 99 99 105 105 90

Basis B 142 148 162 149 136 143 137 156 143 157

Basis C ¯ ¯ ¯ 162 ¯ ¯ 156 ¯ 156 170

FIG. 1. !Color online." The potential curves V!!R" #including only the 1/R
term of Vcc!R"$ around their minimum for !a" the X 1!+ and !b" the a 3!+

states of RbCs, as obtained through the three approaches A !black full lines",
B !red dashed lines", C !blue dashed line with dots", described in the text. In
!a", results for B and C approaches are superimposed. In addition, the black
dot-dashed lines represent V!!R"+V
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• induce new Feshbach resonances
mixing of partial waves

• shift position of intrinsic resonances
bound state level repulsion

• split resonances into l+1 multiplets
    tunable anisotropic interactions

polar collision + electric field
Ed B
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The discovery of magnetic field tunable Feshbach resonances has led to many groundbreaking

experiments in the field of ultracold atomic and molecular physics [? ? ? ]. Magnetic

Feshbach resonances provide a powerful tool to control microscopic interactions in ultracold

quantum gases [? ? ], offer an extremely sensitive probe of interatomic interaction potentials

for collisions at ultracold temperatures [? ? ? ], and can be used to create ultracold

molecules by linking ultracold atoms [? ? ]. Feshbach resonances arise due to coupling

between a quasi-molecular bound state in a closed collision channel and the scattering wave

function of the colliding atoms in an open channel. The position of the bound state can

be tuned by changing the energy splitting between different Zeeman states by external

magnetic fields. When the energy of the bound state is degenerate with the energy of the

atomic pair, a resonant scattering process occurs, the s-wave scattering length diverges and

both elastic and inelastic collisions are dramatically enhanced. Recent theoretical work has

also demonstrated the possibility of inducing Feshbach resonances in heteronuclear mixtures

of atomic gases by applying a dc electric field [? ? ? ? ? ]. The mechanism is based

on the interaction of the instantaneous dipole moment of the collision complex with the

external electric field. This interaction couples collision states of different angular momenta

and the coupling becomes very significant at the location of a Feshbach resonance. This

coupling gives rise to s-wave resonances in the presence of p-wave resonances and may shift

the positions of s-wave magnetic resonances even far away from p-wave resonances. The

electric field may also induce the anisotropy of ultracold scattering by rotating and spinning

up the collision complex of ultracold atoms.

Electric-field-induced Feshbach resonances may offer several advantages to study fun-

damental problems and explore new phenomena in ultracold physics. Electric fields can

be tuned much faster than magnetic fields. Electric field control of atomic collisions may

therefore be more versatile for quantum computation schemes than magnetic Feshbach reso-

nances. Electric-field-induced Feshbach resonances may be used to detect p-wave resonances

and the measurements of p-wave resonances in ultracold gases may provide essential infor-

mation for the analysis of interatomic interactions, especially for systems with anisotropic
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be tuned by changing the energy splitting between different Zeeman states by external

magnetic fields. When the energy of the bound state is degenerate with the energy of the

atomic pair, a resonant scattering process occurs, the s-wave scattering length diverges and

both elastic and inelastic collisions are dramatically enhanced. Recent theoretical work has

also demonstrated the possibility of inducing Feshbach resonances in heteronuclear mixtures

of atomic gases by applying a dc electric field [? ? ? ? ? ]. The mechanism is based

on the interaction of the instantaneous dipole moment of the collision complex with the

external electric field. This interaction couples collision states of different angular momenta

and the coupling becomes very significant at the location of a Feshbach resonance. This

coupling gives rise to s-wave resonances in the presence of p-wave resonances and may shift

the positions of s-wave magnetic resonances even far away from p-wave resonances. The

electric field may also induce the anisotropy of ultracold scattering by rotating and spinning

up the collision complex of ultracold atoms.

Electric-field-induced Feshbach resonances may offer several advantages to study fun-

damental problems and explore new phenomena in ultracold physics. Electric fields can

be tuned much faster than magnetic fields. Electric field control of atomic collisions may

therefore be more versatile for quantum computation schemes than magnetic Feshbach reso-

nances. Electric-field-induced Feshbach resonances may be used to detect p-wave resonances

and the measurements of p-wave resonances in ultracold gases may provide essential infor-

mation for the analysis of interatomic interactions, especially for systems with anisotropic
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ing experiments in the field of ultracold atomic and molecular physics [1–3]. Magnetic

Feshbach resonances provide a powerful tool to control microscopic interactions in ultracold

quantum gases [4, 5], offer an extremely sensitive probe of interatomic interaction potentials

for collisions at ultracold temperatures [6–8], and can be used to create ultracold molecules

by linking ultracold atoms [9, 10]. Feshbach resonances arise due to coupling between a

quasi-molecular bound state in a closed collision channel and the scattering wave function

of the colliding atoms in an open channel. The position of the bound state can be tuned by

changing the energy splitting between different Zeeman states by external magnetic fields.

When the energy of the bound state is degenerate with the energy of the atomic pair, a

resonant scattering process occurs, the s-wave scattering length diverges and both elastic

and inelastic collisions are dramatically enhanced. Recent theoretical work has also demon-

strated the possibility of inducing Feshbach resonances in heteronuclear mixtures of atomic

gases by applying a dc electric field [11–15]. The mechanism is based on the interaction of

the instantaneous dipole moment of the collision complex with the external electric field.

This interaction couples collision states of different angular momenta and the coupling be-

comes very significant at the location of a Feshbach resonance. This coupling gives rise

to s-wave resonances in the presence of p-wave resonances and may shift the positions of

s-wave magnetic resonances even far away from p-wave resonances. The electric field may

also induce the anisotropy of ultracold scattering by rotating and spinning up the collision

complex of ultracold atoms.

Electric-field-induced Feshbach resonances may offer several advantages to study fun-

damental problems and explore new phenomena in ultracold physics. Electric fields can

be tuned much faster than magnetic fields. Electric field control of atomic collisions may

therefore be more versatile for quantum computation schemes than magnetic Feshbach reso-

nances. Electric-field-induced Feshbach resonances may be used to detect p-wave resonances

and the measurements of p-wave resonances in ultracold gases may provide essential infor-

mation for the analysis of interatomic interactions, especially for systems with anisotropic
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The discovery of magnetic field tunable Feshbach resonances has led to many groundbreaking

experiments in the field of ultracold atomic and molecular physics [? ? ? ]. Magnetic

Feshbach resonances provide a powerful tool to control microscopic interactions in ultracold

quantum gases [? ? ], offer an extremely sensitive probe of interatomic interaction potentials

for collisions at ultracold temperatures [? ? ? ], and can be used to create ultracold

molecules by linking ultracold atoms [? ? ]. Feshbach resonances arise due to coupling

between a quasi-molecular bound state in a closed collision channel and the scattering wave

function of the colliding atoms in an open channel. The position of the bound state can

be tuned by changing the energy splitting between different Zeeman states by external

magnetic fields. When the energy of the bound state is degenerate with the energy of the

atomic pair, a resonant scattering process occurs, the s-wave scattering length diverges and

both elastic and inelastic collisions are dramatically enhanced. Recent theoretical work has

also demonstrated the possibility of inducing Feshbach resonances in heteronuclear mixtures

of atomic gases by applying a dc electric field [? ? ? ? ? ]. The mechanism is based

on the interaction of the instantaneous dipole moment of the collision complex with the

external electric field. This interaction couples collision states of different angular momenta

and the coupling becomes very significant at the location of a Feshbach resonance. This

coupling gives rise to s-wave resonances in the presence of p-wave resonances and may shift

the positions of s-wave magnetic resonances even far away from p-wave resonances. The

electric field may also induce the anisotropy of ultracold scattering by rotating and spinning

up the collision complex of ultracold atoms.

Electric-field-induced Feshbach resonances may offer several advantages to study fun-

damental problems and explore new phenomena in ultracold physics. Electric fields can

be tuned much faster than magnetic fields. Electric field control of atomic collisions may

therefore be more versatile for quantum computation schemes than magnetic Feshbach reso-

nances. Electric-field-induced Feshbach resonances may be used to detect p-wave resonances

and the measurements of p-wave resonances in ultracold gases may provide essential infor-

mation for the analysis of interatomic interactions, especially for systems with anisotropic
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The discovery of magnetic field tunable Feshbach resonances has led to many groundbreak-

ing experiments in the field of ultracold atomic and molecular physics [1–3]. Magnetic

Feshbach resonances provide a powerful tool to control microscopic interactions in ultracold

quantum gases [4, 5], offer an extremely sensitive probe of interatomic interaction potentials

for collisions at ultracold temperatures [6–8], and can be used to create ultracold molecules

by linking ultracold atoms [9, 10]. Feshbach resonances arise due to coupling between a

quasi-molecular bound state in a closed collision channel and the scattering wave function

of the colliding atoms in an open channel. The position of the bound state can be tuned by

changing the energy splitting between different Zeeman states by external magnetic fields.

When the energy of the bound state is degenerate with the energy of the atomic pair, a

resonant scattering process occurs, the s-wave scattering length diverges and both elastic

and inelastic collisions are dramatically enhanced. Recent theoretical work has also demon-

strated the possibility of inducing Feshbach resonances in heteronuclear mixtures of atomic

gases by applying a dc electric field [11–15]. The mechanism is based on the interaction of

the instantaneous dipole moment of the collision complex with the external electric field.

This interaction couples collision states of different angular momenta and the coupling be-

comes very significant at the location of a Feshbach resonance. This coupling gives rise

to s-wave resonances in the presence of p-wave resonances and may shift the positions of

s-wave magnetic resonances even far away from p-wave resonances. The electric field may

also induce the anisotropy of ultracold scattering by rotating and spinning up the collision

complex of ultracold atoms.

Electric-field-induced Feshbach resonances may offer several advantages to study fun-

damental problems and explore new phenomena in ultracold physics. Electric fields can

be tuned much faster than magnetic fields. Electric field control of atomic collisions may

therefore be more versatile for quantum computation schemes than magnetic Feshbach reso-

nances. Electric-field-induced Feshbach resonances may be used to detect p-wave resonances

and the measurements of p-wave resonances in ultracold gases may provide essential infor-

mation for the analysis of interatomic interactions, especially for systems with anisotropic
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The discovery of magnetic field tunable Feshbach resonances has led to many groundbreak-

ing experiments in the field of ultracold atomic and molecular physics [1–3]. Magnetic

Feshbach resonances provide a powerful tool to control microscopic interactions in ultracold

quantum gases [4, 5], offer an extremely sensitive probe of interatomic interaction potentials

for collisions at ultracold temperatures [6–8], and can be used to create ultracold molecules

by linking ultracold atoms [9, 10]. Feshbach resonances arise due to coupling between a

quasi-molecular bound state in a closed collision channel and the scattering wave function

of the colliding atoms in an open channel. The position of the bound state can be tuned by

changing the energy splitting between different Zeeman states by external magnetic fields.

When the energy of the bound state is degenerate with the energy of the atomic pair, a

resonant scattering process occurs, the s-wave scattering length diverges and both elastic

and inelastic collisions are dramatically enhanced. Recent theoretical work has also demon-

strated the possibility of inducing Feshbach resonances in heteronuclear mixtures of atomic

gases by applying a dc electric field [11–15]. The mechanism is based on the interaction of

the instantaneous dipole moment of the collision complex with the external electric field.

This interaction couples collision states of different angular momenta and the coupling be-

comes very significant at the location of a Feshbach resonance. This coupling gives rise

to s-wave resonances in the presence of p-wave resonances and may shift the positions of

s-wave magnetic resonances even far away from p-wave resonances. The electric field may

also induce the anisotropy of ultracold scattering by rotating and spinning up the collision

complex of ultracold atoms.

Electric-field-induced Feshbach resonances may offer several advantages to study fun-

damental problems and explore new phenomena in ultracold physics. Electric fields can

be tuned much faster than magnetic fields. Electric field control of atomic collisions may

therefore be more versatile for quantum computation schemes than magnetic Feshbach reso-

nances. Electric-field-induced Feshbach resonances may be used to detect p-wave resonances

and the measurements of p-wave resonances in ultracold gases may provide essential infor-

mation for the analysis of interatomic interactions, especially for systems with anisotropic
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The discovery of magnetic field tunable Feshbach resonances has led to many groundbreaking

experiments in the field of ultracold atomic and molecular physics [? ? ? ]. Magnetic

Feshbach resonances provide a powerful tool to control microscopic interactions in ultracold

quantum gases [? ? ], offer an extremely sensitive probe of interatomic interaction potentials

for collisions at ultracold temperatures [? ? ? ], and can be used to create ultracold

molecules by linking ultracold atoms [? ? ]. Feshbach resonances arise due to coupling

between a quasi-molecular bound state in a closed collision channel and the scattering wave

function of the colliding atoms in an open channel. The position of the bound state can

be tuned by changing the energy splitting between different Zeeman states by external

magnetic fields. When the energy of the bound state is degenerate with the energy of the

atomic pair, a resonant scattering process occurs, the s-wave scattering length diverges and

both elastic and inelastic collisions are dramatically enhanced. Recent theoretical work has

also demonstrated the possibility of inducing Feshbach resonances in heteronuclear mixtures

of atomic gases by applying a dc electric field [? ? ? ? ? ]. The mechanism is based

on the interaction of the instantaneous dipole moment of the collision complex with the

external electric field. This interaction couples collision states of different angular momenta

and the coupling becomes very significant at the location of a Feshbach resonance. This

coupling gives rise to s-wave resonances in the presence of p-wave resonances and may shift

the positions of s-wave magnetic resonances even far away from p-wave resonances. The

electric field may also induce the anisotropy of ultracold scattering by rotating and spinning

up the collision complex of ultracold atoms.

Electric-field-induced Feshbach resonances may offer several advantages to study fun-

damental problems and explore new phenomena in ultracold physics. Electric fields can

be tuned much faster than magnetic fields. Electric field control of atomic collisions may

therefore be more versatile for quantum computation schemes than magnetic Feshbach reso-

nances. Electric-field-induced Feshbach resonances may be used to detect p-wave resonances

and the measurements of p-wave resonances in ultracold gases may provide essential infor-

mation for the analysis of interatomic interactions, especially for systems with anisotropic
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The discovery of magnetic field tunable Feshbach resonances has led to many groundbreak-

ing experiments in the field of ultracold atomic and molecular physics [1–3]. Magnetic

Feshbach resonances provide a powerful tool to control microscopic interactions in ultracold

quantum gases [4, 5], offer an extremely sensitive probe of interatomic interaction potentials

for collisions at ultracold temperatures [6–8], and can be used to create ultracold molecules

by linking ultracold atoms [9, 10]. Feshbach resonances arise due to coupling between a

quasi-molecular bound state in a closed collision channel and the scattering wave function

of the colliding atoms in an open channel. The position of the bound state can be tuned by

changing the energy splitting between different Zeeman states by external magnetic fields.

When the energy of the bound state is degenerate with the energy of the atomic pair, a

resonant scattering process occurs, the s-wave scattering length diverges and both elastic

and inelastic collisions are dramatically enhanced. Recent theoretical work has also demon-

strated the possibility of inducing Feshbach resonances in heteronuclear mixtures of atomic

gases by applying a dc electric field [11–15]. The mechanism is based on the interaction of

the instantaneous dipole moment of the collision complex with the external electric field.

This interaction couples collision states of different angular momenta and the coupling be-

comes very significant at the location of a Feshbach resonance. This coupling gives rise

to s-wave resonances in the presence of p-wave resonances and may shift the positions of

s-wave magnetic resonances even far away from p-wave resonances. The electric field may

also induce the anisotropy of ultracold scattering by rotating and spinning up the collision

complex of ultracold atoms.

Electric-field-induced Feshbach resonances may offer several advantages to study fun-

damental problems and explore new phenomena in ultracold physics. Electric fields can

be tuned much faster than magnetic fields. Electric field control of atomic collisions may

therefore be more versatile for quantum computation schemes than magnetic Feshbach reso-

nances. Electric-field-induced Feshbach resonances may be used to detect p-wave resonances

and the measurements of p-wave resonances in ultracold gases may provide essential infor-

mation for the analysis of interatomic interactions, especially for systems with anisotropic
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The discovery of magnetic field tunable Feshbach resonances has led to many groundbreak-

ing experiments in the field of ultracold atomic and molecular physics [1–3]. Magnetic

Feshbach resonances provide a powerful tool to control microscopic interactions in ultracold

quantum gases [4, 5], offer an extremely sensitive probe of interatomic interaction potentials

for collisions at ultracold temperatures [6–8], and can be used to create ultracold molecules

by linking ultracold atoms [9, 10]. Feshbach resonances arise due to coupling between a

quasi-molecular bound state in a closed collision channel and the scattering wave function

of the colliding atoms in an open channel. The position of the bound state can be tuned by

changing the energy splitting between different Zeeman states by external magnetic fields.

When the energy of the bound state is degenerate with the energy of the atomic pair, a

resonant scattering process occurs, the s-wave scattering length diverges and both elastic

and inelastic collisions are dramatically enhanced. Recent theoretical work has also demon-

strated the possibility of inducing Feshbach resonances in heteronuclear mixtures of atomic

gases by applying a dc electric field [11–15]. The mechanism is based on the interaction of

the instantaneous dipole moment of the collision complex with the external electric field.

This interaction couples collision states of different angular momenta and the coupling be-

comes very significant at the location of a Feshbach resonance. This coupling gives rise

to s-wave resonances in the presence of p-wave resonances and may shift the positions of

s-wave magnetic resonances even far away from p-wave resonances. The electric field may

also induce the anisotropy of ultracold scattering by rotating and spinning up the collision

complex of ultracold atoms.

Electric-field-induced Feshbach resonances may offer several advantages to study fun-

damental problems and explore new phenomena in ultracold physics. Electric fields can

be tuned much faster than magnetic fields. Electric field control of atomic collisions may

therefore be more versatile for quantum computation schemes than magnetic Feshbach reso-

nances. Electric-field-induced Feshbach resonances may be used to detect p-wave resonances

and the measurements of p-wave resonances in ultracold gases may provide essential infor-

mation for the analysis of interatomic interactions, especially for systems with anisotropic
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The discovery of magnetic field tunable Feshbach resonances has led to many groundbreaking

experiments in the field of ultracold atomic and molecular physics [? ? ? ]. Magnetic

Feshbach resonances provide a powerful tool to control microscopic interactions in ultracold

quantum gases [? ? ], offer an extremely sensitive probe of interatomic interaction potentials

for collisions at ultracold temperatures [? ? ? ], and can be used to create ultracold

molecules by linking ultracold atoms [? ? ]. Feshbach resonances arise due to coupling

between a quasi-molecular bound state in a closed collision channel and the scattering wave

function of the colliding atoms in an open channel. The position of the bound state can

be tuned by changing the energy splitting between different Zeeman states by external

magnetic fields. When the energy of the bound state is degenerate with the energy of the

atomic pair, a resonant scattering process occurs, the s-wave scattering length diverges and

both elastic and inelastic collisions are dramatically enhanced. Recent theoretical work has

also demonstrated the possibility of inducing Feshbach resonances in heteronuclear mixtures

of atomic gases by applying a dc electric field [? ? ? ? ? ]. The mechanism is based

on the interaction of the instantaneous dipole moment of the collision complex with the

external electric field. This interaction couples collision states of different angular momenta

and the coupling becomes very significant at the location of a Feshbach resonance. This

coupling gives rise to s-wave resonances in the presence of p-wave resonances and may shift

the positions of s-wave magnetic resonances even far away from p-wave resonances. The

electric field may also induce the anisotropy of ultracold scattering by rotating and spinning

up the collision complex of ultracold atoms.

Electric-field-induced Feshbach resonances may offer several advantages to study fun-

damental problems and explore new phenomena in ultracold physics. Electric fields can

be tuned much faster than magnetic fields. Electric field control of atomic collisions may

therefore be more versatile for quantum computation schemes than magnetic Feshbach reso-

nances. Electric-field-induced Feshbach resonances may be used to detect p-wave resonances

and the measurements of p-wave resonances in ultracold gases may provide essential infor-

mation for the analysis of interatomic interactions, especially for systems with anisotropic
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The discovery of magnetic field tunable Feshbach resonances has led to many groundbreak-

ing experiments in the field of ultracold atomic and molecular physics [1–3]. Magnetic

Feshbach resonances provide a powerful tool to control microscopic interactions in ultracold

quantum gases [4, 5], offer an extremely sensitive probe of interatomic interaction potentials

for collisions at ultracold temperatures [6–8], and can be used to create ultracold molecules

by linking ultracold atoms [9, 10]. Feshbach resonances arise due to coupling between a

quasi-molecular bound state in a closed collision channel and the scattering wave function

of the colliding atoms in an open channel. The position of the bound state can be tuned by

changing the energy splitting between different Zeeman states by external magnetic fields.

When the energy of the bound state is degenerate with the energy of the atomic pair, a

resonant scattering process occurs, the s-wave scattering length diverges and both elastic

and inelastic collisions are dramatically enhanced. Recent theoretical work has also demon-

strated the possibility of inducing Feshbach resonances in heteronuclear mixtures of atomic

gases by applying a dc electric field [11–15]. The mechanism is based on the interaction of

the instantaneous dipole moment of the collision complex with the external electric field.

This interaction couples collision states of different angular momenta and the coupling be-

comes very significant at the location of a Feshbach resonance. This coupling gives rise

to s-wave resonances in the presence of p-wave resonances and may shift the positions of

s-wave magnetic resonances even far away from p-wave resonances. The electric field may

also induce the anisotropy of ultracold scattering by rotating and spinning up the collision

complex of ultracold atoms.

Electric-field-induced Feshbach resonances may offer several advantages to study fun-

damental problems and explore new phenomena in ultracold physics. Electric fields can

be tuned much faster than magnetic fields. Electric field control of atomic collisions may

therefore be more versatile for quantum computation schemes than magnetic Feshbach reso-

nances. Electric-field-induced Feshbach resonances may be used to detect p-wave resonances

and the measurements of p-wave resonances in ultracold gases may provide essential infor-

mation for the analysis of interatomic interactions, especially for systems with anisotropic
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The discovery of magnetic field tunable Feshbach resonances has led to many groundbreak-

ing experiments in the field of ultracold atomic and molecular physics [1–3]. Magnetic

Feshbach resonances provide a powerful tool to control microscopic interactions in ultracold

quantum gases [4, 5], offer an extremely sensitive probe of interatomic interaction potentials

for collisions at ultracold temperatures [6–8], and can be used to create ultracold molecules

by linking ultracold atoms [9, 10]. Feshbach resonances arise due to coupling between a

quasi-molecular bound state in a closed collision channel and the scattering wave function

of the colliding atoms in an open channel. The position of the bound state can be tuned by

changing the energy splitting between different Zeeman states by external magnetic fields.

When the energy of the bound state is degenerate with the energy of the atomic pair, a

resonant scattering process occurs, the s-wave scattering length diverges and both elastic

and inelastic collisions are dramatically enhanced. Recent theoretical work has also demon-

strated the possibility of inducing Feshbach resonances in heteronuclear mixtures of atomic

gases by applying a dc electric field [11–15]. The mechanism is based on the interaction of

the instantaneous dipole moment of the collision complex with the external electric field.

This interaction couples collision states of different angular momenta and the coupling be-

comes very significant at the location of a Feshbach resonance. This coupling gives rise

to s-wave resonances in the presence of p-wave resonances and may shift the positions of

s-wave magnetic resonances even far away from p-wave resonances. The electric field may

also induce the anisotropy of ultracold scattering by rotating and spinning up the collision

complex of ultracold atoms.

Electric-field-induced Feshbach resonances may offer several advantages to study fun-

damental problems and explore new phenomena in ultracold physics. Electric fields can

be tuned much faster than magnetic fields. Electric field control of atomic collisions may

therefore be more versatile for quantum computation schemes than magnetic Feshbach reso-

nances. Electric-field-induced Feshbach resonances may be used to detect p-wave resonances

and the measurements of p-wave resonances in ultracold gases may provide essential infor-

mation for the analysis of interatomic interactions, especially for systems with anisotropic
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The discovery of magnetic field tunable Feshbach resonances has led to many groundbreaking

experiments in the field of ultracold atomic and molecular physics [? ? ? ]. Magnetic

Feshbach resonances provide a powerful tool to control microscopic interactions in ultracold

quantum gases [? ? ], offer an extremely sensitive probe of interatomic interaction potentials

for collisions at ultracold temperatures [? ? ? ], and can be used to create ultracold

molecules by linking ultracold atoms [? ? ]. Feshbach resonances arise due to coupling

between a quasi-molecular bound state in a closed collision channel and the scattering wave

function of the colliding atoms in an open channel. The position of the bound state can

be tuned by changing the energy splitting between different Zeeman states by external

magnetic fields. When the energy of the bound state is degenerate with the energy of the

atomic pair, a resonant scattering process occurs, the s-wave scattering length diverges and

both elastic and inelastic collisions are dramatically enhanced. Recent theoretical work has

also demonstrated the possibility of inducing Feshbach resonances in heteronuclear mixtures

of atomic gases by applying a dc electric field [? ? ? ? ? ]. The mechanism is based

on the interaction of the instantaneous dipole moment of the collision complex with the

external electric field. This interaction couples collision states of different angular momenta

and the coupling becomes very significant at the location of a Feshbach resonance. This

coupling gives rise to s-wave resonances in the presence of p-wave resonances and may shift

the positions of s-wave magnetic resonances even far away from p-wave resonances. The

electric field may also induce the anisotropy of ultracold scattering by rotating and spinning

up the collision complex of ultracold atoms.

Electric-field-induced Feshbach resonances may offer several advantages to study fun-

damental problems and explore new phenomena in ultracold physics. Electric fields can

be tuned much faster than magnetic fields. Electric field control of atomic collisions may
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up the collision complex of ultracold atoms.

Electric-field-induced Feshbach resonances may offer several advantages to study fun-

damental problems and explore new phenomena in ultracold physics. Electric fields can

be tuned much faster than magnetic fields. Electric field control of atomic collisions may

therefore be more versatile for quantum computation schemes than magnetic Feshbach reso-

nances. Electric-field-induced Feshbach resonances may be used to detect p-wave resonances

and the measurements of p-wave resonances in ultracold gases may provide essential infor-

mation for the analysis of interatomic interactions, especially for systems with anisotropic

2

I. INTRODUCTION

l = 1 (1)

The discovery of magnetic field tunable Feshbach resonances has led to many groundbreak-

ing experiments in the field of ultracold atomic and molecular physics [1–3]. Magnetic

Feshbach resonances provide a powerful tool to control microscopic interactions in ultracold

quantum gases [4, 5], offer an extremely sensitive probe of interatomic interaction potentials

for collisions at ultracold temperatures [6–8], and can be used to create ultracold molecules

by linking ultracold atoms [9, 10]. Feshbach resonances arise due to coupling between a

quasi-molecular bound state in a closed collision channel and the scattering wave function

of the colliding atoms in an open channel. The position of the bound state can be tuned by

changing the energy splitting between different Zeeman states by external magnetic fields.

When the energy of the bound state is degenerate with the energy of the atomic pair, a

resonant scattering process occurs, the s-wave scattering length diverges and both elastic

and inelastic collisions are dramatically enhanced. Recent theoretical work has also demon-

strated the possibility of inducing Feshbach resonances in heteronuclear mixtures of atomic

gases by applying a dc electric field [11–15]. The mechanism is based on the interaction of

the instantaneous dipole moment of the collision complex with the external electric field.

This interaction couples collision states of different angular momenta and the coupling be-

comes very significant at the location of a Feshbach resonance. This coupling gives rise

to s-wave resonances in the presence of p-wave resonances and may shift the positions of

s-wave magnetic resonances even far away from p-wave resonances. The electric field may

also induce the anisotropy of ultracold scattering by rotating and spinning up the collision

complex of ultracold atoms.

Electric-field-induced Feshbach resonances may offer several advantages to study fun-

damental problems and explore new phenomena in ultracold physics. Electric fields can

be tuned much faster than magnetic fields. Electric field control of atomic collisions may

therefore be more versatile for quantum computation schemes than magnetic Feshbach reso-

nances. Electric-field-induced Feshbach resonances may be used to detect p-wave resonances

and the measurements of p-wave resonances in ultracold gases may provide essential infor-

mation for the analysis of interatomic interactions, especially for systems with anisotropic

2

I. INTRODUCTION

l = 2 (1)

The discovery of magnetic field tunable Feshbach resonances has led to many groundbreak-

ing experiments in the field of ultracold atomic and molecular physics [1–3]. Magnetic

Feshbach resonances provide a powerful tool to control microscopic interactions in ultracold

quantum gases [4, 5], offer an extremely sensitive probe of interatomic interaction potentials

for collisions at ultracold temperatures [6–8], and can be used to create ultracold molecules

by linking ultracold atoms [9, 10]. Feshbach resonances arise due to coupling between a

quasi-molecular bound state in a closed collision channel and the scattering wave function

of the colliding atoms in an open channel. The position of the bound state can be tuned by

changing the energy splitting between different Zeeman states by external magnetic fields.

When the energy of the bound state is degenerate with the energy of the atomic pair, a

resonant scattering process occurs, the s-wave scattering length diverges and both elastic

and inelastic collisions are dramatically enhanced. Recent theoretical work has also demon-

strated the possibility of inducing Feshbach resonances in heteronuclear mixtures of atomic

gases by applying a dc electric field [11–15]. The mechanism is based on the interaction of

the instantaneous dipole moment of the collision complex with the external electric field.

This interaction couples collision states of different angular momenta and the coupling be-

comes very significant at the location of a Feshbach resonance. This coupling gives rise

to s-wave resonances in the presence of p-wave resonances and may shift the positions of

s-wave magnetic resonances even far away from p-wave resonances. The electric field may

also induce the anisotropy of ultracold scattering by rotating and spinning up the collision

complex of ultracold atoms.

Electric-field-induced Feshbach resonances may offer several advantages to study fun-

damental problems and explore new phenomena in ultracold physics. Electric fields can

be tuned much faster than magnetic fields. Electric field control of atomic collisions may

therefore be more versatile for quantum computation schemes than magnetic Feshbach reso-

nances. Electric-field-induced Feshbach resonances may be used to detect p-wave resonances

and the measurements of p-wave resonances in ultracold gases may provide essential infor-

mation for the analysis of interatomic interactions, especially for systems with anisotropic

2

Open channel

Closed channel

Energy

d-wave

p-wave

s-wave
coupling leads to

level repulsion,
state mixing, and
lift of degeneracy

s and d mixing

p mixing

A new twist on Feshbach resonances: 
polar collision + electric field

Effects of electric fields on heteronuclear Feshbach resonances 
in ultracold 6Li-87Rb mixtures, PRA 79, 042711 (2009).



LETTERS
PUBLISHED ONLINE: 6 APRIL 2009 | DOI: 10.1038/NPHYS1232

Control of a magnetic Feshbach resonance
with laser light
Dominik M. Bauer, Matthias Lettner, Christoph Vo, Gerhard Rempe and Stephan Dürr*

The capability to tune the strength of the elastic interparticle
interaction is crucial for many experiments with ultracold
gases. Magnetic Feshbach resonances1,2 are widely harnessed
for this purpose, but future experiments3–8 would benefit
from extra flexibility, in particular from the capability to
spatially modulate the interaction strength on short length
scales. Optical Feshbach resonances9–15 do offer this possibility
in principle, but in alkali atoms they induce rapid loss of
particles due to light-induced inelastic collisions. Here, we
report experiments that demonstrate that light near-resonant
with a molecular bound-to-bound transition in 87Rb can be
used to shift the magnetic field at which a magnetic Feshbach
resonance occurs. This enables us to tune the interaction
strength with laser light, but with considerably less loss than
using an optical Feshbach resonance.

Using light to change the s-wave scattering length a in ultracold
gases offers more flexibility than a magnetic Feshbach resonance
because it is possible to apply an almost arbitrary spatial pattern
of light using holographic masks. The light intensity can vary
on a length scale of typically one optical wavelength and the
pattern can also be varied rapidly in time. This could be used for
a variety of applications, such as the simulation of the physics
of black holes3,4, the controlled creation of solitons5, studies of
the collapse of a Bose–Einstein condensate (BEC) in an unusual
regime6 and the simulation of certain Hamiltonians in which the
scattering length needs to be different at different sites of an
optical lattice7,8. Moreover, if each lattice site contains exactly two
atoms16 and a is varied only on every second lattice site, one could
associate molecules at every second lattice site by ramping the
magnetic field across the Feshbach resonance, thus producing a
quantum state that resembles that of a supersolid. Another possible
application for the manipulation of a with light exists in gases
consisting of a mixture of different species or spin states. It would
be desirable to tune the various scattering lengths in such systems
independently, but for that purpose more control parameters than
just the magnetic field are needed. Furthermore, if a spatially
random light intensity pattern is applied, the scattering length
would vary randomly with position, which might give rise to new
quantum phases of the atomic gas.

A known scheme to manipulate a using light uses a
photoassociation resonance, sometimes also called an optical
Feshbach resonance. But so far, photoassociation resonances have
rarely been used to tune a because they induce rapid loss of
particles. The experiments in refs 12, 13 both demonstrated a
change of Re(a)/abg −1∼ ±1 in 87Rb, where abg is the background
value of a. For these parameters, both experiments incurred losses
characterized by a two-body rate coefficient K2 with an estimated
value of ∼10−10 cm3 s−1. Typical densities of the order of 1014 cm−3

result in lifetimes of the order of 100 µs, which is too short for
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Figure 1 | Level scheme of the experiment. The Feshbach resonance
couples atoms at the threshold in the incoming channel |a� to a bound
dimer state |g� in a different potential. A laser is near-resonant with a
bound-to-bound transition from |g� to an electronically excited dimer
state |e�.
many applications. Alkaline earth atoms offer the possibility to use
photoassociation on narrow intercombination lines, which results
in smaller loss rates15. But this is not feasible in the large number of
experiments with alkali atoms.

Here, we experimentally demonstrate that laser light can
noticeably shift a magnetic Feshbach resonance in 87Rb and at
the same time induce considerably smaller rates of particle loss
than an optical Feshbach resonance. We study the magnetic field
dependence of Re(a) for a large detuning of the laser from a bound-
to-bound resonance and find a change in Re(a) similar to that
reported for optical Feshbach resonances. Furthermore, we study
the system for smaller detunings and observe an Autler–Townes
doublet in the particle loss. Our results are in good agreement with
a theoretical model.

A basic level-scheme for our experiment is shown in Fig. 1.
A light field is near-resonant with a bound-to-bound transition
from the dimer state |g � in the electronic ground state to an
electronically excited dimer state |e�. In our system, the Feshbach
resonance coupling between state |g � and the free-atom state
|a� is much weaker than the bound-to-bound coupling due to
the light field. In the limits of low density or high laser power
this becomes true for arbitrary resonances, but for a very broad
Feshbach resonance it might be difficult to reach this regime.
Furthermore, we use one specific excited state |e� throughout
this manuscript, for which the photoassociation coupling between
states |a� and |e� is negligible. To understand the physics, it is
useful to consider the energy eigenstates that are created from
the two dimer states when applying the light. These eigenstates
are superpositions of states |g � and |e� with corresponding energy
shifts. The Feshbach resonance coupling probes the |g � components
of both energy eigenstates, resulting in two resonances as a function
of magnetic field B, in analogy to an Autler–Townes doublet17.
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Control of a magnetic Feshbach resonance
with laser light
Dominik M. Bauer, Matthias Lettner, Christoph Vo, Gerhard Rempe and Stephan Dürr*

The capability to tune the strength of the elastic interparticle
interaction is crucial for many experiments with ultracold
gases. Magnetic Feshbach resonances1,2 are widely harnessed
for this purpose, but future experiments3–8 would benefit
from extra flexibility, in particular from the capability to
spatially modulate the interaction strength on short length
scales. Optical Feshbach resonances9–15 do offer this possibility
in principle, but in alkali atoms they induce rapid loss of
particles due to light-induced inelastic collisions. Here, we
report experiments that demonstrate that light near-resonant
with a molecular bound-to-bound transition in 87Rb can be
used to shift the magnetic field at which a magnetic Feshbach
resonance occurs. This enables us to tune the interaction
strength with laser light, but with considerably less loss than
using an optical Feshbach resonance.

Using light to change the s-wave scattering length a in ultracold
gases offers more flexibility than a magnetic Feshbach resonance
because it is possible to apply an almost arbitrary spatial pattern
of light using holographic masks. The light intensity can vary
on a length scale of typically one optical wavelength and the
pattern can also be varied rapidly in time. This could be used for
a variety of applications, such as the simulation of the physics
of black holes3,4, the controlled creation of solitons5, studies of
the collapse of a Bose–Einstein condensate (BEC) in an unusual
regime6 and the simulation of certain Hamiltonians in which the
scattering length needs to be different at different sites of an
optical lattice7,8. Moreover, if each lattice site contains exactly two
atoms16 and a is varied only on every second lattice site, one could
associate molecules at every second lattice site by ramping the
magnetic field across the Feshbach resonance, thus producing a
quantum state that resembles that of a supersolid. Another possible
application for the manipulation of a with light exists in gases
consisting of a mixture of different species or spin states. It would
be desirable to tune the various scattering lengths in such systems
independently, but for that purpose more control parameters than
just the magnetic field are needed. Furthermore, if a spatially
random light intensity pattern is applied, the scattering length
would vary randomly with position, which might give rise to new
quantum phases of the atomic gas.

A known scheme to manipulate a using light uses a
photoassociation resonance, sometimes also called an optical
Feshbach resonance. But so far, photoassociation resonances have
rarely been used to tune a because they induce rapid loss of
particles. The experiments in refs 12, 13 both demonstrated a
change of Re(a)/abg −1∼ ±1 in 87Rb, where abg is the background
value of a. For these parameters, both experiments incurred losses
characterized by a two-body rate coefficient K2 with an estimated
value of ∼10−10 cm3 s−1. Typical densities of the order of 1014 cm−3

result in lifetimes of the order of 100 µs, which is too short for
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Figure 1 | Level scheme of the experiment. The Feshbach resonance
couples atoms at the threshold in the incoming channel |a� to a bound
dimer state |g� in a different potential. A laser is near-resonant with a
bound-to-bound transition from |g� to an electronically excited dimer
state |e�.
many applications. Alkaline earth atoms offer the possibility to use
photoassociation on narrow intercombination lines, which results
in smaller loss rates15. But this is not feasible in the large number of
experiments with alkali atoms.

Here, we experimentally demonstrate that laser light can
noticeably shift a magnetic Feshbach resonance in 87Rb and at
the same time induce considerably smaller rates of particle loss
than an optical Feshbach resonance. We study the magnetic field
dependence of Re(a) for a large detuning of the laser from a bound-
to-bound resonance and find a change in Re(a) similar to that
reported for optical Feshbach resonances. Furthermore, we study
the system for smaller detunings and observe an Autler–Townes
doublet in the particle loss. Our results are in good agreement with
a theoretical model.

A basic level-scheme for our experiment is shown in Fig. 1.
A light field is near-resonant with a bound-to-bound transition
from the dimer state |g � in the electronic ground state to an
electronically excited dimer state |e�. In our system, the Feshbach
resonance coupling between state |g � and the free-atom state
|a� is much weaker than the bound-to-bound coupling due to
the light field. In the limits of low density or high laser power
this becomes true for arbitrary resonances, but for a very broad
Feshbach resonance it might be difficult to reach this regime.
Furthermore, we use one specific excited state |e� throughout
this manuscript, for which the photoassociation coupling between
states |a� and |e� is negligible. To understand the physics, it is
useful to consider the energy eigenstates that are created from
the two dimer states when applying the light. These eigenstates
are superpositions of states |g � and |e� with corresponding energy
shifts. The Feshbach resonance coupling probes the |g � components
of both energy eigenstates, resulting in two resonances as a function
of magnetic field B, in analogy to an Autler–Townes doublet17.
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 Rb + Li

• shift position of intrinsic Feshbach resonances
bound state level repulsion

• induce new Feshbach resonances
mixing of partial waves

• split resonances into l+1 multiplets
    tunable anisotropic interactions

polar collision + electric field
Ed B

Effects of electric fields on heteronuclear Feshbach resonances in 
ultracold 6Li-87Rb mixtures, PRA 79, 042711 (2009).

A new twist on Feshbach resonances:
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Regal, Ticknor, Bohn, Jin, PRL 90, 053201 (2003), and PRA 69, 042712 (2004).
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Experimental challenge: adding the E field

fused silica vacuum cell

Li+Rb MOT
how to add 
electrodes

while keeping 
good

optical access?

we want a 
field of about 
30 kV/cm



Experimental challenge: adding the E field

fused silica vacuum cell

3 cm



Experimental challenge: adding the E field

transparent electrode

3 cm

-

+

120 kV

fused silica vacuum cell



transparent
indium tin oxide coated glass slide

inside a glass sandwich

with epoxy filling

high
voltage
coax





Experimental challenges and mysteries

Status:
We have generated and verified fields of 
18kV/cm and have another factor of 2 in voltage.

Mysteries:
1) Field peculiarities (evidence of shielding)
2) Trap loss associated with energizing plates



Feshbach resonances in 6Li+85Rb mixtures 
the strength of resonances
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PRA 82, 020701(R) (2010)

• broadest resonances known in 
any hetero-nuclear mixture

• large mass imbalance
Efimov physics
Bose Fermi pairing physics

• large electric dipole moment
electric field tuning of FRs

-2 -1
0 1 2

-1/2 1/2

Lower hyperfine states: 10 combinations
FRb = 2, MF = 2,1,0,-1,-2
FLi = 1/2, MF = 1/2,-1/2
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inelastic collision cross sections, the width of the loss features
cannot be predicted in a quantitative way. Nevertheless, we
provide a qualitative estimate for the expected width from
the theoretically computed s-wave elastic cross section, σel,
based on the assumption that the Li loss rate due to Li-Rb
collisions, and therefore the loss feature shape, is proportional
to σel. This assumption neglects, among other things, saturation
effects discussed earlier. To deduce the expected widths, we
first observe that σel > 3.62 × 105a0 in a 47-G-wide region
from 442.8 to 489.8 G, corresponding to the half width of
the experimentally observed loss feature at 466.4 G. We then
report the width of the magnetic field ranges in which σel
exceeds this threshold for each of the other five FRs in Table I.
The expected widths estimated in this qualitative way are
in reasonable agreement with the experimentally measured
values.

Our analysis of the data is based on our previous analysis of
FRs in 6Li-87Rb mixtures [27]. We use the model triplet a 3"
and singlet X 1" interaction potentials of LiRb that we deter-
mined previously. These potentials correctly reproduced the
experimentally measured FR spectrum of 6Li-87Rb mixtures
and were adjusted to reproduce the overall shape expected
from the ab initio potential calculations for LiRb [19] and
the number of bound states for the LiRb dimer determined
from Fourier transform spectroscopy performed in the group
of Tiemann and reported in [28]. The van der Waals coefficients
were also taken from that work [28]: C6 = 2550.0EH a6

B and
C8 = 2.3416 × 105EH a8

B (where the Bohr radius is aB =
0.529 × 10−10 m and EH = 4.35974 × 10−18 J).

We first used these potentials in a full coupled-channels
scattering calculation to compute both the s- and p-wave
elastic collision cross sections as a function of the magnetic
field for a distribution of collision energies corresponding
to the temperature in our experiment (150 µK). Based on
our previous analysis of 6Li-87Rb mixtures, we chose not to
include dipole-dipole interactions in these calculations as they
produce negligibly small shifts to the FR spectrum. More
details of our calculation methods are described in [27].

Our calculations provided a FR spectrum for the 6Li-85Rb
mixture for the each of the ten spin states in the lowest
hyperfine manifold. The agreement between the experimental
and theoretical FR spectra was initially good, but the resonance
locations were not in perfect agreement. By optically pumping
our 85Rb sample to eliminate population in particular spin
states, we were able to eliminate the corresponding loss
features and thus verify the spin-state assignment of the FRs.
With this information in hand, we proceeded to fine-tune our
potentials to match as well as possible the experimentally
measured locations of the six distinct FRs. Since the long-range
behavior of the potentials is well known, the potentials could
only be refined by making small adjustments to the short-range
repulsive wall while keeping the long-range behavior fixed. To
simplify the search, we employed the asymptotic bound-state
model (ABM) to first determine the energies of the least
bound states of the triplet and singlet potentials consistent
with the experimentally observed location of the FRs. Details
of the model and how this search is done are described
in [27]. We then adjusted the potential curves to reproduce
these bound-state energies. With these updated potentials,
we computed the locations and widths of the FRs using the
full coupled-channels scattering calculation and made final
refinements to reproduce as closely as possible the location and
widths of the experimentally observed Feshbach resonances.
For the optimal singlet and triplet potentials, the energies
of the least bound states are Esinglet = −0.09669 cm−1 and
Etriplet = −0.1312 cm−1. The calculated singlet and triplet
scattering lengths are 8.87 and −14.88aB respectively. These
values are similar to, but not in perfect agreement with, those
inferred for this isotope combination from an analysis of FRs
in 6Li-87Rb and 7Li-87Rb mixtures [28].

The s-wave scattering length near a FR has the form
a(B) = abg(1 − #B/(B − B0)), where abg is the background
scattering length, B0 is the position, and #B is the width of
the resonance [1]. The strength of a FR can be characterized
by an effective length scale re = h̄2/(2mR|abg|µrel#B) and
corresponding energy scale Eres = h̄2/(2mRr2

e ), where mR is

TABLE II. The calculated characteristics of seven large FRs for stable Fermi-Bose mixtures of 6Li-85Rb and 6Li-87Rb. The background
scattering length abg and effective range of the resonance re are given in units of the Bohr radius, a0. The value for µrel, the difference
in the magnetic moments of the closed channel (molecule) and the open-channel threshold, is given in units of the Bohr magneton µB =
9.27400915(23) J T−1. For each FR, the magnetic fields at which the mixture is energetically stable with respect to two-body spin relaxation is
provided. In some cases, because of nearby resonances, we can only provide an approximate lower bound on the resonance width.

Atomic states B0 #B µrel abg re Stability
|f,mf 〉 ⊗ |f,mf 〉 (G) (G) (µB) (a0) (a0) (G)

6Li-85Rb

| 1
2 , 1

2 〉 ⊗ |2,2〉 40.7 >40 1.66 −14.9 <231 ground state

| 1
2 , − 1

2 〉 ⊗ |2,1〉 402.5 27.3 1.58 −14.9 358 !149

| 1
2 , − 1

2 〉 ⊗ |2,0〉 643.7 61.0 1.34 −14.9 189 !141

| 1
2 , − 1

2 〉 ⊗ |2,−1〉 961.3 75.6 1.81 −14.7 113 !133

| 1
2 , − 1

2 〉 ⊗ |2,−2〉 466.7 >100 0.58 −14.8 <264 !0
6Li-87Rb

| 1
2 , 1

2 〉 ⊗ |1,1〉 1065.0 11.5 2.36 −19.0 442 ground state

| 1
2 , − 1

2 〉 ⊗ |1,1〉 1108.6 11.0 2.36 −19.0 463 !75

020701-3

RAPID COMMUNICATIONS

GIANT FESHBACH RESONANCES IN 6Li -85Rb . . . PHYSICAL REVIEW A 82, 020701(R) (2010)

inelastic collision cross sections, the width of the loss features
cannot be predicted in a quantitative way. Nevertheless, we
provide a qualitative estimate for the expected width from
the theoretically computed s-wave elastic cross section, σel,
based on the assumption that the Li loss rate due to Li-Rb
collisions, and therefore the loss feature shape, is proportional
to σel. This assumption neglects, among other things, saturation
effects discussed earlier. To deduce the expected widths, we
first observe that σel > 3.62 × 105a0 in a 47-G-wide region
from 442.8 to 489.8 G, corresponding to the half width of
the experimentally observed loss feature at 466.4 G. We then
report the width of the magnetic field ranges in which σel
exceeds this threshold for each of the other five FRs in Table I.
The expected widths estimated in this qualitative way are
in reasonable agreement with the experimentally measured
values.

Our analysis of the data is based on our previous analysis of
FRs in 6Li-87Rb mixtures [27]. We use the model triplet a 3"
and singlet X 1" interaction potentials of LiRb that we deter-
mined previously. These potentials correctly reproduced the
experimentally measured FR spectrum of 6Li-87Rb mixtures
and were adjusted to reproduce the overall shape expected
from the ab initio potential calculations for LiRb [19] and
the number of bound states for the LiRb dimer determined
from Fourier transform spectroscopy performed in the group
of Tiemann and reported in [28]. The van der Waals coefficients
were also taken from that work [28]: C6 = 2550.0EH a6

B and
C8 = 2.3416 × 105EH a8

B (where the Bohr radius is aB =
0.529 × 10−10 m and EH = 4.35974 × 10−18 J).

We first used these potentials in a full coupled-channels
scattering calculation to compute both the s- and p-wave
elastic collision cross sections as a function of the magnetic
field for a distribution of collision energies corresponding
to the temperature in our experiment (150 µK). Based on
our previous analysis of 6Li-87Rb mixtures, we chose not to
include dipole-dipole interactions in these calculations as they
produce negligibly small shifts to the FR spectrum. More
details of our calculation methods are described in [27].

Our calculations provided a FR spectrum for the 6Li-85Rb
mixture for the each of the ten spin states in the lowest
hyperfine manifold. The agreement between the experimental
and theoretical FR spectra was initially good, but the resonance
locations were not in perfect agreement. By optically pumping
our 85Rb sample to eliminate population in particular spin
states, we were able to eliminate the corresponding loss
features and thus verify the spin-state assignment of the FRs.
With this information in hand, we proceeded to fine-tune our
potentials to match as well as possible the experimentally
measured locations of the six distinct FRs. Since the long-range
behavior of the potentials is well known, the potentials could
only be refined by making small adjustments to the short-range
repulsive wall while keeping the long-range behavior fixed. To
simplify the search, we employed the asymptotic bound-state
model (ABM) to first determine the energies of the least
bound states of the triplet and singlet potentials consistent
with the experimentally observed location of the FRs. Details
of the model and how this search is done are described
in [27]. We then adjusted the potential curves to reproduce
these bound-state energies. With these updated potentials,
we computed the locations and widths of the FRs using the
full coupled-channels scattering calculation and made final
refinements to reproduce as closely as possible the location and
widths of the experimentally observed Feshbach resonances.
For the optimal singlet and triplet potentials, the energies
of the least bound states are Esinglet = −0.09669 cm−1 and
Etriplet = −0.1312 cm−1. The calculated singlet and triplet
scattering lengths are 8.87 and −14.88aB respectively. These
values are similar to, but not in perfect agreement with, those
inferred for this isotope combination from an analysis of FRs
in 6Li-87Rb and 7Li-87Rb mixtures [28].

The s-wave scattering length near a FR has the form
a(B) = abg(1 − #B/(B − B0)), where abg is the background
scattering length, B0 is the position, and #B is the width of
the resonance [1]. The strength of a FR can be characterized
by an effective length scale re = h̄2/(2mR|abg|µrel#B) and
corresponding energy scale Eres = h̄2/(2mRr2

e ), where mR is

TABLE II. The calculated characteristics of seven large FRs for stable Fermi-Bose mixtures of 6Li-85Rb and 6Li-87Rb. The background
scattering length abg and effective range of the resonance re are given in units of the Bohr radius, a0. The value for µrel, the difference
in the magnetic moments of the closed channel (molecule) and the open-channel threshold, is given in units of the Bohr magneton µB =
9.27400915(23) J T−1. For each FR, the magnetic fields at which the mixture is energetically stable with respect to two-body spin relaxation is
provided. In some cases, because of nearby resonances, we can only provide an approximate lower bound on the resonance width.

Atomic states B0 #B µrel abg re Stability
|f,mf 〉 ⊗ |f,mf 〉 (G) (G) (µB) (a0) (a0) (G)

6Li-85Rb

| 1
2 , 1

2 〉 ⊗ |2,2〉 40.7 >40 1.66 −14.9 <231 ground state

| 1
2 , − 1

2 〉 ⊗ |2,1〉 402.5 27.3 1.58 −14.9 358 !149

| 1
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2 〉 ⊗ |2,0〉 643.7 61.0 1.34 −14.9 189 !141
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inelastic collision cross sections, the width of the loss features
cannot be predicted in a quantitative way. Nevertheless, we
provide a qualitative estimate for the expected width from
the theoretically computed s-wave elastic cross section, σel,
based on the assumption that the Li loss rate due to Li-Rb
collisions, and therefore the loss feature shape, is proportional
to σel. This assumption neglects, among other things, saturation
effects discussed earlier. To deduce the expected widths, we
first observe that σel > 3.62 × 105a0 in a 47-G-wide region
from 442.8 to 489.8 G, corresponding to the half width of
the experimentally observed loss feature at 466.4 G. We then
report the width of the magnetic field ranges in which σel
exceeds this threshold for each of the other five FRs in Table I.
The expected widths estimated in this qualitative way are
in reasonable agreement with the experimentally measured
values.

Our analysis of the data is based on our previous analysis of
FRs in 6Li-87Rb mixtures [27]. We use the model triplet a 3"
and singlet X 1" interaction potentials of LiRb that we deter-
mined previously. These potentials correctly reproduced the
experimentally measured FR spectrum of 6Li-87Rb mixtures
and were adjusted to reproduce the overall shape expected
from the ab initio potential calculations for LiRb [19] and
the number of bound states for the LiRb dimer determined
from Fourier transform spectroscopy performed in the group
of Tiemann and reported in [28]. The van der Waals coefficients
were also taken from that work [28]: C6 = 2550.0EH a6

B and
C8 = 2.3416 × 105EH a8

B (where the Bohr radius is aB =
0.529 × 10−10 m and EH = 4.35974 × 10−18 J).

We first used these potentials in a full coupled-channels
scattering calculation to compute both the s- and p-wave
elastic collision cross sections as a function of the magnetic
field for a distribution of collision energies corresponding
to the temperature in our experiment (150 µK). Based on
our previous analysis of 6Li-87Rb mixtures, we chose not to
include dipole-dipole interactions in these calculations as they
produce negligibly small shifts to the FR spectrum. More
details of our calculation methods are described in [27].

Our calculations provided a FR spectrum for the 6Li-85Rb
mixture for the each of the ten spin states in the lowest
hyperfine manifold. The agreement between the experimental
and theoretical FR spectra was initially good, but the resonance
locations were not in perfect agreement. By optically pumping
our 85Rb sample to eliminate population in particular spin
states, we were able to eliminate the corresponding loss
features and thus verify the spin-state assignment of the FRs.
With this information in hand, we proceeded to fine-tune our
potentials to match as well as possible the experimentally
measured locations of the six distinct FRs. Since the long-range
behavior of the potentials is well known, the potentials could
only be refined by making small adjustments to the short-range
repulsive wall while keeping the long-range behavior fixed. To
simplify the search, we employed the asymptotic bound-state
model (ABM) to first determine the energies of the least
bound states of the triplet and singlet potentials consistent
with the experimentally observed location of the FRs. Details
of the model and how this search is done are described
in [27]. We then adjusted the potential curves to reproduce
these bound-state energies. With these updated potentials,
we computed the locations and widths of the FRs using the
full coupled-channels scattering calculation and made final
refinements to reproduce as closely as possible the location and
widths of the experimentally observed Feshbach resonances.
For the optimal singlet and triplet potentials, the energies
of the least bound states are Esinglet = −0.09669 cm−1 and
Etriplet = −0.1312 cm−1. The calculated singlet and triplet
scattering lengths are 8.87 and −14.88aB respectively. These
values are similar to, but not in perfect agreement with, those
inferred for this isotope combination from an analysis of FRs
in 6Li-87Rb and 7Li-87Rb mixtures [28].

The s-wave scattering length near a FR has the form
a(B) = abg(1 − #B/(B − B0)), where abg is the background
scattering length, B0 is the position, and #B is the width of
the resonance [1]. The strength of a FR can be characterized
by an effective length scale re = h̄2/(2mR|abg|µrel#B) and
corresponding energy scale Eres = h̄2/(2mRr2

e ), where mR is

TABLE II. The calculated characteristics of seven large FRs for stable Fermi-Bose mixtures of 6Li-85Rb and 6Li-87Rb. The background
scattering length abg and effective range of the resonance re are given in units of the Bohr radius, a0. The value for µrel, the difference
in the magnetic moments of the closed channel (molecule) and the open-channel threshold, is given in units of the Bohr magneton µB =
9.27400915(23) J T−1. For each FR, the magnetic fields at which the mixture is energetically stable with respect to two-body spin relaxation is
provided. In some cases, because of nearby resonances, we can only provide an approximate lower bound on the resonance width.
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