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Quantum control at ultracold temperatures

• Originated on the base of latest developments in ultracold gases

• Possibilities to generate ultracold molecules

• Offer internal structure

• Exhibit long-range, dipole-dipole interactions
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Control using Frequency Combs
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S.T. Cundiff and J. Ye, ``Femtosecond 

optical frequency combs,'' Rev. Mod. 

Phys. 75, 325 (2003)
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Implementation of femtosecond optical frequency comb 

to ultrafast control of population dynamics

 Two-photon absorption in cold 87Rb using a single phase-

modulated OFC. M.C. Stowe, A. Peer, J. Ye, ``Control of Four-Level Quantum 

Coherence via Discrete Spectral Shaping of an Optical Frequency Comb,'' Phys. Rev. 

Lett., 100, 203001(4) (2008)

The excited state population is proportional to cos2(Y/2), here
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Implementation of femtosecond optical frequency comb 

to ultrafast control of population dynamics

 Piecewise adiabatic passage in multi-level system using 

amplitude and phase modulated two pulse trains; 

application to KRb molecular cooling from Feshbach 

states. 

A. Peer, E.A. Shapiro, M.C. Stowe, M. Shapiro, J.Ye, ``Precise control of 

molecular dynamics with a femtosecond frequency comb'', Phys. Rev. Lett., 98, 

113004(4) (2007)
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 K.-K. Ni, S. Ospelkaus, M.H.G. de Miranda, A. Pe'er,B. Neyenhuis,J.J. Zirbel, S. 

Kotochigova, P.S. Juliene, D.S. Jin, J.Ye, ``A High Phase-Space-Density Gas of 

Polar Molecules'', Science 322, 231 (2008)

Creation of a High Phase-Space-Density Gas 

of Polar Molecules
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Femtosecond optical frequency comb

 OFC generated by the pulse train with the sin-phase 

modulation

 Standard OFC
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John L. Hall, L. Hollberg, T. Baer, H.G. Robinson, ``Optical heterodine 

saturation spectroscopy'', Appl. Phys. Lett. 39, 680 (1981).
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Power spectrum for a standard, sin and cos 

modulated OFC 

Pulse duration 0.25 [-1], train period T=6400, the Rabi 

frequency is  R= 1, carrier frequency L=5.9 , modulation 

frequency  =4.9 []. 
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Semi-Classical Model of Raman Transitions in three-

level Lsystem using an optical frequency comb
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Hamiltonian matrix elements in the interaction 

representation

2 1 2 1

3 2 3 2

( ) ( )

12

( ) ( )

23

11 22 33 13

0

0

( ) / sin ( )

L L

L L

i t iM i t iM

i t iM i t iM

H c e e

H c e e

H H H H

c E t M A t kT

     

     

 

      

      

   

   

   

    



Dept. of Physics and Engineering Physics 

Taking into account decoherence
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Resonant population transfer in the l-system using a 

standard optical frequency comb with period  T=0.2 ns

Black – state |1>

Red   – state |2>

Green – state |3>
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Resonant case: Population transfer in the lsystem 

using a sine-phase modulated OFC
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Population transfer in the three-level system using 

optical frequency comb with the cos modulation
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Weak field regime
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Detuned case: Population transfer in the lsystem using an 

OFC with carrier frequency L and modulation frequency 

detuned off resonance by d31/2

•Total population transfer occurs after 42 applied pulses. 

•The individual pulse duration is 3 fs.  

•The pulse train period is 23 ps, thus, total population transfer is 

accomplished within 1 ns 

•However, the population of the electronically excited state is substantial 

during the dynamics, reaching almost 50%.
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Population dynamics induced by a standard optical 

frequency comb in the presence of spontaneous decay 

and collisions
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Population dynamics induced by the phase modulated 

optical frequency comb (solid lines) vs the standard one 

(dashed lines)
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Population dynamics induced by sine/cosine 

and standard OFCs
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Population dynamics induced by sine/cosine 

and standard OFCs
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Population dynamics in the presence of 

experimental decoherence
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 For phase-modulated OFC, the condition for 

the Raman resonance is satisfied by making 

the difference (L-) equal to the two-photon 

transition frequency 31.

 Additionally, the modes that are multiples of fr
provide pairs of optical frequencies that differ 

by exactly the transition frequency 31 .

 For the standard OFC, the two-photon 

resonance condition is satisfied by optical 

frequencies that are multiples of fr and         

mfr – nfr=L-n’fr=31,                                    

here m,n,n’ are integer numbers.

Raman resonances

3

1

2

L

1

2

L
3



Dept. of Physics and Engineering Physics 

Summary

 Optical frequency comb may be efficiently used to perform  

internal state cooling from the Feshbach state.

 Parity of the chirp of the comb is of key importance in 

achieving a desired quantum yield. 

 Quantum Control techniques that implement specific pulse 

shapes and schemes may be successfully adapted to the 

presence of decoherence and mitigate its effects.
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