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Figure 9. Intuitive picture for the geometry-dependent stability of trapped
a dipolar BEC. (a) In a prolate (cigar-shaped) trap with the dipoles oriented
along the weak confinement axis of the trap, the main effect of the dipole-dipole
interaction is attractive, which leads to an instability of the condensate. (b)
In an oblate (pancake-shaped) trap with the dipoles oriented along the strong
confinement axis, the dipole-dipole interaction is essentially repulsive, and the
BEC is stable.

function of λ, and the asymptotic value of acrit for λ → 0 (resp. λ → ∞) should be
positive (resp. negative).

A simple way to go beyond this qualitative picture and obtain an estimate for
acrit(λ) is to use a variational method. For this purpose, we assume that the condensate
wavefunction ψ is gaussian, with an axial size σz and a radial size σρ that we take as
variational parameters:
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Here, aho =
√

!/(mω̄) is the harmonic oscillator length corresponding to the average
trap frequency ω̄ = (ω2

ρωz)1/3. Inserting Ansatz (5.4) into the energy functional (4.7)
leads to the following expression for the energy:

E(σρ, σz) = Ekin + Etrap + Eint, (5.5)

with the kinetic energy
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the potential energy due to the trap
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and the interaction (contact and dipolar) energy
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The dipolar contribution in the last part is most easily calculated in momentum space
as

Edd =
1

2

∫
n(r)n(r′)Udd(r − r′) d3r d3r′

=
1

2(2π)3

∫
Ũdd(k)ñ2(k) d3k, (5.9)

where ñ(k) is the Fourier transform of the density distribution (and therefore, in this
case, still a Gaussian). In (5.8), κ = σρ/σz is the aspect ratio of the cloud (which
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Suppose we can make quantum degenerate gases of fermionic polar 
molecules (or magnetic atoms), load them onto optical lattices, and cool the 
system to low temperatures.

What kinds of many-body phases do we get?

Are they all “boring,” i.e., known and studied in condensed matter physics?
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FIGURE 1. (a) Notations for the dipole-dipole interaction. (b) Dipoles placed side-to-side repel each
other. (c) Dipoles in a ‘head-to-tail’ configuration attract each other.

The corresponding potential is

Udd(r) =
Cdd
4!

1−3cos2"
r3

, (2)

where Cdd is the dipolar coupling constant (Cdd = µ0µ2 for magnetic moments µ ,
Cdd = d2/#0 for electric dipole moments d), and " the angle between the direction
joining the two dipoles and the dipole orientation (we assume here that all dipoles are
aligned along the same direction z). The DDI is anisotropic (dipoles placed side-to-
side repel each other, while dipoles in a head to tail configuration attract each other,
see Fig.1) and long range (the 1/r3 dependence implies for example that the scattering
cross-section is not isotropic in the low-energy limit).
To characterise the relative strength of the dipolar and contact interactions, it is

convenient to introduce the dimensionless parameter

#dd ≡
Cddm
12! h̄2a

. (3)

The numerical factors in #dd are chosen such that a homogeneous BEC with #dd > 1 is
unstable (see Sect.3.2.1 below). For the alkalis usually used in BEC experiments, the
value of #dd is extremely small (for example, for 87Rb, one has #dd # 0.007), making the
effects of the DDI negligible.

2.3. Ultra-cold systems with long-range interaction

There are several candidates to realize experimentally a dipolar quantum gas:
molecules having a permanent electric dipole moment d, Rydberg atoms, which can
have very large induced electric dipole moments, or ground state atoms having a large
magnetic moment µ . In this section, we are going to briefly describe the main character-
istics of those physical systems, and in the rest of this review, we will describe in detail
the case of ultra-cold Chromium atoms, the only ones for which at present quantum
degeneracy has been achieved.
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Dipole-dipole interaction is special



Comparing to other Fermi systems

fermions [2, 3]. A relatively new cold gas system, consisting of fermionic molecules with field-
induced electric dipole moments such as KRb, is ushering in another intriguing many-body Fermi
system whose unique properties have yet to be systematically investigated [4]. Motivated by current
and prospective experiments on dipolar Fermi gases, this proposal aims at predicting and under-
standing its global phase diagram, especially for dipolar gases confined in two-dimensional optical
lattices, using state of the art many-body techniques. Our focus is to discover new phases of matter
in dipolar Fermi gases. The strategic goal of the proposed work is to 1) provide input for cold gas
AMO experiments on where and what to look for, and 2) bridge between the scattering theory of
molecule collisions [5], an important subject of theoretical AMO physics which provides the bare
interaction between particles, and the quantum phases of the cold gas ensemble as a whole.

The novel features of dipolar Fermi gas are rooted in the dipole-dipole interaction between molecules.
Not only is it long-ranged, but also it is spatially anisotropic. The dipolar interaction, or the (long-
range part of) scattering pseudo-potential, is V (r) = d2(1−3 cos2 θ)/r3, where r is the inter-particle
distance, and θ is the angle between the dipole polarization and the relative position of the parti-
cles. V can either be positive or negative, depending on the relative position of two dipoles. As a
result, quantum degenerate gases of dipolar fermions show a rich array of unusual broken symmetry
phases at low temperatures. The table below compares dipolar gas to several other archetypical
Fermi systems:

Fermi System Interaction Typical Phases
2D electron gas Coulomb Fermi liquid, Wigner crystal
Fermi-Hubbard model onsite, repulsive antiferromagnet, d-wave superfluid(?)
2-component Fermi gas contact, attractive s-wave superfluid (BCS-BEC crossover)
dipolar Fermi gas dipole-dipole p-wave superfluid, CDW, bond order, ...

As we shall deliberate below, dipolar Fermi gas forms an arena for several disparate ordering
tendencies to compete and cooperate. For example, p-wave superfluidity, charge density wave
(CDW), supersolidity (i.e., coexistence of superfluidity and CDW), and stripe/liquid crystals have
been previously proposed and discussed in the literature. Recently, PI’s group and collaborators
have shown that exotic quantum phases with bond order arise in two-dimensional dipolar Fermi
gases over an extended parameter regime [6]. Our predictions highlight the unique features of the
dipolar Fermi gas as an exciting frontier.

The rich, enigmatic phase diagram of dipolar gas itself justifies curiosity-driven scientific research.
Furthermore, predicting the collective behaviors of dipolar Fermi gas poses a great, new theoretical
challenge. This challenge directly drives this proposal, and dictates PI’s choices of theoretical
techniques to tackle the problems. Last but not least, the research on cold molecules has a long
and rich history. Besides quantum simulation and many-body physics, it has many other important
scientific or technological goals ranging from precision measurement, few-body physics, ultracold
chemistry, to quantum computing [7]. Understanding the many-body physics of the cold gas, and
the resultant better control over the system, will likely help to achieve these parallel goals as well.

The experimental progress. Significant progress has been made in recent years in trapping
and cooling atoms or molecules with either magnetic or electric dipole moment. In a landmark
experiment, BEC of 52Cr atoms was realized in 2005 [8], and this year BEC of 164Dy atoms was
reported [9]. The magnetic dipole moment of Dy atom is 10µB, roughly twice that of Cr, and
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Candidate phases of dipolar fermions:
! anisotropic Fermi liquid
! charge density waves (CDW)
! p-wave superfluid
! stripes, quantum liquid crystals?
! supersolid? ...
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This talk: dipolar fermions on square lattice
3

FIG. 2. (a) Schematic representation of quadrupolar fermions
on a square lattice. Alignment of the quadrupoles is given by
the quantization axis of the external field F, pointing along
F̂ = (θF ,φF ). The nearest-neighbor interaction is repre-
sented by green and red solid lines, while the next-nearest
neighbor interaction is shown in blue. (b) 3D plot showing
the interactions Vx̂ (red), Vŷ (green), and Vx̂+ŷ (blue) as a
function of the angles (θF ,φF ); “∗” marks the point in the
vicinity of which both Vx̂,ŷ and Vx̂+ŷ change the sign.

unit of length and t as a unit of energy. As schemat-
ically shown in Fig. 2 (a), the interaction strength Vij

depends on the orientation of the vector connecting the
quadrupoles, r = ri − rj , relative to the field direction,

F̂ , via Vr ≡ Vij = 〈ij|V qq |ij〉 = V [3− 30(r̂ · F̂ )2 + 35(r̂ ·
F̂ )4]/r5. Thus, one can immediately observe that the in-
teraction between two quadrupoles can be tuned either
attractive or repulsive, by changing the orientation of the
external field F with respect to the interparticle radius-
vector r. Fig. 2 (b) shows the (θF ,φF )-dependence of
the interaction matrix element between the nearest- and
next-nearest neighbors. The richness of the quadrupolar
interaction becomes apparent in this figure. There are
several regions in which the signs and the relative mag-
nitudes of {Vx̂, Vŷ, Vx̂+ŷ} show distinctive characteristics.
For example, in the region (θF ! 25◦, 0◦ ≤ φF ≤ 45◦),
both nearest- and next-nearest neighbor interactions are
repulsive, while they all become attractive in the region
(30◦ ! θF ! 60◦,φF ∼ 45◦). Furthermore, one can iden-

tify finite regions where either one or two of {Vx̂, Vŷ,
Vx̂+ŷ} is attractive while the rest is repulsive.
Interactions of opposite sign can result in competition

between quantum phases of different symmetry, resulting
in frustration. Thus, fermions with dominant quadrupo-
lar interactions provide an interesting setup for studying
many-body physics with competing phases. For example,
in the vicinity of (90◦, 45◦) both Vx̂ and Vŷ are attractive,
while Vx̂+ŷ is repulsive (see Fig. 2). On general grounds,
one would expect a BCS type ground state resulting from
condensation of Cooper pairs due to the attractive Vx̂

and Vŷ couplings. However, the repulsive Vx̂+ŷ interac-
tion, if significant, may lead to the insurgence of some
other phase, and therefore needs to be quantitatively
accounted for. As another intriguing example, in the
vicinity of (40◦, 5◦), Vx̂ is strongly attractive while Vŷ is
strongly repulsive. As we show below, the ground state
in this region is neither a BCS state nor the conventional
CDW (such as checkerboard or CDWs). These two ex-
amples show that, due to anisotropy, the actual ground
state may be of an unexpected nature. Exposing the
true ground state thus demands a theory that is (i) unbi-
ased with respect to the initial ansatz – condensation of
particle-particle or particle-hole pairs; and (ii) includes
fluctuations.
Issue (ii) can be adequately addressed within the renor-

malization group (RG) analysis at weak couplings, where
the low energy physics near the Fermi surface is ex-
tracted by successively integrating out the high energy
degrees of freedom [16]. In order to satisfy criterion (i)
as well, we employ the exact (or “functional”) renor-
malization group (FRG) which keeps track of all the
interaction vertices, including both the particle-particle
and particle-hole channels, and treats all instabilities (in-
cipient orders) on equal footing [17]. Specifically, all
Feynman diagrams up to one-loop order are included
for calculating the flow of the most general 4-point ver-
tex function U!(k1,k2,k3). Here k1,2,3 are momenta
on the Fermi surface, with k4 = k1 + k2 − k3, and #
the FRG flow parameter starting with the initial value
# = 0 for the bare quadrupolar interaction. The BCS and
CDW instabilities are indicated by the diverging flow of
the corresponding vertex functions U!(k1,−k1,k2) and
U!(k1,−k2,k1 + Q) respectively. Here Q = (±π,±π)
are the nesting vectors. The most divergent flow indi-
cates a broken symmetry phase, the order parameter of
which has an orbital symmetry given by the correspond-
ing eigenvector of the diverging vertex function. For the
example considered above, in the vicinity of (90◦, 45◦),
the system favors a BCS state with py orbital symmetry,
shown in Fig. 3 (b).
The FRG phase diagram, Fig. 3 (a), features sev-

eral different kinds of BCS and CDW phases. CDWs

is the familiar charge density wave phase with a checker-
board modulation of on-site densities, occurring in re-
gions where the repulsive interaction between nearest

predicted in the phase diagram [31]. The superfluid to normal transition temperature was computed
as a function of the dipole tilt angle [31].

Theoretical work on dipolar fermions in optical lattices is by comparison less systematic. PI and
collaborators investigated the possibility of nematic order on the square lattice [32, 33]. Mikelsons
and Freericks carried detailed numerical analysis of the CDW ordering pattern on square lattice
at half-filling [34]. PI and collaborators also discussed strongly interacting dipolar particles on
a generalized kagome lattice, and showed that it has the potential to realize the quantum dimer
model and topological phases [35]. One-dimensional and weakly coupled one-dimensional dipolar
Fermi gases are known to exhibit a multitude of phases [36], including liquid crystal states [37]. In
a broader context, new phenomena in more complicated systems, such as inter-layer pairing and
superfluidity in multi-layer dipolar gases [38, 39, 40], and triplet pairing in two-component dipolar
gases [41], have been discussed. Finally, by exploiting the rotational degrees of freedom of polar
molecules in optical lattices, the dipolar gas can serve as an emulator for the t-J model [42].

Open questions and theoretical challenges. We will focus on single species (spinless) polar
molecules in two-dimensional optical lattices. The simplest system we start with is fermions at half-
filling on the square lattice, as illustrated in Fig. 1a. The electric dipole moment d is controlled
by an external electric field. Its direction is given by polar angle θF and azimuthal angle φF . The
Hamiltonian in the tight-binding limit has the form

H = −t

�

�ij�

a
†
iaj +

1
2

�

i�=j

Vdd(rij)ninj ,

where t is the nearest neighbor hopping, i is the short-hand notation for lattice site ri = ixaLx̂ +
iyaLŷ, aL is the lattice spacing and our length unit, and ix, iy are integers. In terms of the relative
position rij ≡ ri − rj , the dipole-dipole interaction Vdd(rij) = d

2[1− 3 sin2 θF(r̂ij · d̂)2]/r
3
ij , and we

define the interaction strength Vd ≡ d
2
/a

3
L. While our discussion focuses on molecules with electric

dipoles, the theory can be equally applied to fermions with magnetic dipoles. Note the short-range
contact interaction is irrelevant for spinless fermions.

What is phase diagram of this system, as function of θF , φF and interaction parameter Vd/t? On
a crude examination, one expects to find a checkerboard charge density wave for θF close to 0,
when the dipole moments all point perpendicular to the 2D plane, so the dipole-dipole interaction
is purely repulsive. When the dipole tilt angle θF is close to 90◦, i.e., when the dipoles are aligned
in the xy plane, the attractive interaction binds fermions into Cooper pairs. And the system
becomes a predominately p-wave superfluid. The main open question is then what happens in the
intermediate θF regime? Is it the coexistence of pairing and density wave, i.e., a supersolid [43], or
a first order phase transition between the charge density wave and superfluid, or some completely
different phase?

The main theoretical challenge is therefore to describe this regime of intermediate θF , where differ-
ent orders compete or cooperate. This problem of competing order is at the heart of the many-body
physics of dipolar fermions, and intrinsically related to the long-range, anisotropic nature of the
dipole-dipole interaction. Simple mean field theory with single order parameter is usually insuffi-
cient (or unreliable) to answer these open questions. Traditional perturbation theories, including
single-channel renormalization group or random phase approximation, are also ill-prepared to de-
scribe the competing orders in the intermediate regime. Thus, there is urgent need for a theoretical
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We will obtain the theoretical phase diagram,
and present evidences for an unusual quantum phase in this system.

by polar and azimuthal angles !F and "F, respectively, as
illustrated in the schematic of Fig. 1(a).

The interaction between dipoles can be attractive or
repulsive, depending on !F,"F, and rij. For example [refer
to Fig. 1(a)], if "F ¼ 0, Vy " VddðaLŷÞ is always repul-
sive, while Vx " VddðaLx̂Þ and V3 " VddðaLx̂þ aLŷÞ
become negative for !F > #c1 & 35:26' and !F > #c2 ¼
cos(1ð1=

ffiffiffi
3

p
Þ & 54:74', respectively. We shall show that

these two critical points, #c1 and #c2, roughly set the phase
boundary between the checkerboard charge density wave
(cb-CDW), the BOSp, and the Bardeen-Cooper-Schrieffer
(BCS) superfluid phase, for the "F ¼ 0 case.

We now discuss the T ¼ 0 phase diagram at half filling.
First, we analyze the weakly interacting limit, Vd < t,
using the FRG. In this approach, no assumptions about
possible dominant orders are necessary. Rather, the method
includes all processes near the Fermi surface of the non-
interacting system via the generalized four-point vertex
function: U‘ðk1;k2;k3Þ, where k1;2 (k3;4) are incoming
(outgoing) momenta and k4 ¼ k1 þ k2 ( k3. Here, ‘ is
the renormalization group flow parameter that relates the
energy cutoff! to the initial cutoff!0 (chosen to be 4t) via
!‘ ¼ !0e

(‘. Starting with the bare vertex U0, progres-
sively tracing out the high energy degrees of freedom, a set
of coupled integro-differential equations gives the FRG
flow for all the vertices.

The renormalized vertices for specific channels of inter-
est, e.g.,

UNEST
‘ ðk1;k2Þ ¼ U‘ðk1;k2;k1 þQÞ;
UBCS

‘ ðk1;k2Þ ¼ U‘ðk1;(k1;k2Þ;
(2)

are extracted by appropriately constraining the incoming
and outgoing momenta. Here, Q ¼ ð#;)#Þ is the nesting
vector at half filling for the square lattice and UNEST

‘ is the

same as UCDW
‘ of Ref. [24]. The channel matrix with the

largest divergent eigenvalue $ corresponds to the most
dominant instability of the Fermi liquid. The correspond-
ing eigenvector c , defined on the Fermi surface, indicates
the symmetry of the incipient order parameter associated
with the instability.
We perform the FRG analysis for a range of values of

Vd, !F, and "F, producing a 3D phase diagram, visualized
in Fig. 1(b) as slice cuts along two different planes. To
capture and emphasize the key elements of the phase
diagram, first we fix "F ¼ 0, generating a 2D phase
diagram in the !F-Vd plane shown in the left panel of
Fig. 1(b). Next, we fix Vd ¼ 0:5t instead, yielding the
!F-"F plane shown in the right panel of Fig. 1(b).
The !F-Vd phase diagram shows the existence of three

phases separated by two critical angles !F ¼ !1 and !2,
with no appreciable dependence on Vd. For 0 * !F < !1,
the nesting channel has the largest (most divergent)
eigenvalue $. The corresponding eigenvector c NEST, as
illustrated in the top panel of Fig. 2(a), is almost constant,
with only small modulation along the Fermi surface. This
implies the onset of CDW order with s-wave symmetry,
identified as a checkerboard modulation of on-site
density—the cb-CDW shown in Fig. 1(e). The physical
origin of this phase can be traced by observing that !1 &
#c1; thus, Vx; Vy; V3 > 0 in this regime, allowing for a low-
energy configuration with density concentrated on the
next-to-nearest-neighbor sites, consistent with the perfect
nesting of the Fermi surface. For !2 * !F * 90', the BCS
channel exhibiting a p-wave symmetry is the most diverg-
ing under the FRG flow [see Fig. 2(a)]. In real space, this
corresponds to the onset of nearest-neighbor pairing,
haiaiþx̂i ¼ (haiai(x̂i, generated by couplings Vx and
V3, both becoming attractive for !F > !2 + #c2. The

FIG. 1 (color online). Dipolar fermions on square lattice. (a) Schematic of the dipolar fermions confined to a square optical lattice
potential. The induced dipole moment d points along the direction d̂ ¼ cos!Fẑþ sin!F cos"Fx̂þ sin!F sin"Fŷ. (b) Phase diagram
obtained via the FRG indicating four phases: p-wave bond order solid (BOSp), d-wave bond order solid (BOSd), checkerboard charge
density wave (cb-CDW), and p-wave BCS superfluid (BCS). Left: phase diagram in the !F-Vd plane at "F ¼ 0. Right: phase diagram
in the !F-"F plane at Vd ¼ 0:5t. The phase boundary (solid line) is determined by the abrupt change in the symmetry of the
eigenvector of the dominant instability (see Fig. 2). The smooth crossover from the cb-CDW and the BOSd is indicated by a gradual
change of the color shading. (c)–(e) Schematics of the bond or density modulation pattern for the BOSp, BOSd, and cb-CDW phases,
respectively.
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1.  Toward degenerate dipolar Fermi gas on optical lattice

• Ground state polar molecules of KRb in optical lattice (JILA)
• Degenerate Fermi gas of  161Dy atoms (UIUC-Stanford)

2. Dipolar fermions on 2D square lattice

• Competing orders and how we deal with it
• What is bond order and when it is favored

3. Generalization: two-component dipolar fermions 

• p-wave spin density waves

4. Proposal: quadrupolar quantum gases?



Ground state KRb in optical lattice at JILA

4× 104 rovibrational ground state KRb molecules
T ∼ 400nK ∼ 3TF , near quantum degeneracy
d ∼ 0.5 Debye

Ni et al, Science 322, 231-235 (2008)

STIRAP

the molecules in the lab frame. Although experiments explor-
ing molecular dipolar interactions have not yet reached the
quantum gas regime, they are well into the quantum regime
of collisions.7 When a modest electric field of a few kilovolts
per centimeter is applied to a KRb gas, a significant net 
dipole moment of up to 0.22 debye per molecule
(1 D = 3.3 × 10−30 C·m, a typical dipole moment for an isolated
polar molecule) is observed. Even though KRb’s dipole
 moment is small compared to other bialkali species, its effect
on collisions is already dominant.

In the KRb system, the primary effect of  dipole– dipole
interactions comes from the attraction of molecules oriented
head to tail, which can facilitate reactions by lowering the
p-wave centrifugal barrier. As shown by the blue data in fig-
ure 5, at induced dipole moments above 0.1 D the rate coef-
ficient for the chemical reactions increases as the sixth power
of the dipole moment, and by 0.22 D, the centrifugal barrier
has almost entirely disappeared for head-to-tail collisions
and the reaction rate is nearly 100 times faster.

From the point of view of ultracold chemistry, the data
represent a remarkable demonstration of control over the bi-
molecular reaction rate. But from the point of view of creating

novel quantum matter, the rapid increase in reaction rate
presents a serious obstacle, since the desired quantum gas of
oriented molecules becomes unstable. In principle, the sim-
plest solution is to use a molecule that cannot undergo chem-
ical reactions. Indeed, recent calculations predict that several
bialkali dimer species do not have any exothermic bimolec-
ular chemical reaction channels, and experiments are under
way to create ultracold polar molecules using those species. 

In the JILA KRb experiments we instead took the ap-
proach of placing fermionic polar molecules in a confined
geometry.17 Specifically, confinement in a two-dimensional
geometry can prevent the head-to-tail collisions that would
otherwise result in chemical reactions. True 2D confinement,
in which the size of the cloud in the third dimension is
smaller than the interaction length scale, requires an ex-
tremely tight trap and a large dipole moment. But it turns out
that quasi-2D confinement is sufficient to suppress chemical
reactions for fermionic polar molecules, because quantum
statistics and dipolar interaction both help to prevent mole-
cules from reaching short range. As shown by the black data
in figure 5, when molecules are confined in a 1D optical lat-
tice (a stack of pancake-shaped traps created by counterprop-
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cules must tunnel through a centrifugal barrier.
The reaction rate as measured by the decay co-
efficient of the number of atoms in the trap
(blue triangles and black circles) is therefore
low and proportional to temperature. On the
other hand, when the molecules are in a mix-
ture of hyperfine states, the reaction can pro-
ceed via the barrierless s-wave channel, and the
reaction rate (green squares) is much higher
and independent of temperature. In both cases,
experimental data agree well with theory 
(black and green lines). (Adapted from ref. 7,
Ospelkaus et al.)
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Once the atoms are loaded in the 3D lattice, we ramp
an external magnetic field across an s-wave Feshbach
resonance at 546.78 G to form loosely bound 40K87Rb
molecules with an efficiency of about 10%. With the
Feshbach molecules at B ¼ 545:8 G, where their binding
energy is h" 400 kHz, we use two-photon stimulated
Raman adiabatic passage (STIRAP) to coherently transfer
the Feshbach molecules to the ro-vibrational ground state
[7], with a typical one-way transfer efficiency of 80%.
All the molecules are in a single nuclear spin state in
the rotational ground state, jN ¼ 0; mN ¼ 0; mK

I ¼
#4; mRb

I ¼ 1=2i, following the notation defined in [8].
During this procedure, unpaired K and Rb atoms are
removed using resonant light pulses. To measure the num-
ber of ground-state molecules in the lattice, we reverse the
STIRAP process and then image the resultant Feshbach
molecules using the absorption of a probe beam that is
tuned to the imaging transition for K atoms.

Figure 1 shows a time-dependent evolution of the
ground-state molecule population in the 3D lattice. In the
first few hundreds of ms, the measured number of mole-
cules exhibits relatively large variations in repeated itera-
tions of the experiment and is consistent with some fast
initial decay. In all our measurements of ground-state
molecules in deep 3D lattices (for example, in the data
for Fig. 2), we observe a similar feature. One possible
explanation for this fast decay is collisions of the ground-
state molecules with impurities, such as molecules in
excited internal states that might be produced in the
STIRAP process. Fitting the data for times greater than
1 s to an exponential decay, which is consistent with a
single-body loss mechanism, gives a 1=e lifetime of

16:3$ 1:5 s. This is much longer than previously mea-
sured lifetimes of trapped ultracold polar molecules of
about 1 s in an ODT [9] or in a 1D lattice [11].
The long lifetime for ground-state molecules in a rea-

sonably deep 3D lattice can be understood simply from the
fact that the optical lattice localizes the molecules and
therefore prevents bimolecular reactions. It was previously
seen that an applied electric field strongly increased the
chemical reaction rate [10]. However, for molecules indi-
vidually isolated in a 3D lattice, we expect no dependence
of the lifetime on the strength of an applied electric field. In
the inset to Fig. 1, we show that indeed we do not observe
any decrease of the lifetime for polarized molecules with
an induced dipole moment of 0.17 D.
To understand what limits the lifetime of the molecules

in the 3D lattice, we investigate its dependence on the
lattice strength as summarized in Fig. 2. First, we explore
the transition from a 2D lattice (an array of one-
dimensional tubes) to a 3D lattice. For a molecular gas
confined in the tubes with no lattice in z, we find a lifetime
of approximately 1 s. However, as soon as a small lattice
potential is added along z, the lifetime is dramatically
increased, reaching 5 s at 12 ER and 20 s at 17 ER (point
a in Fig. 2). To verify that bimolecular reactions are the
dominant loss mechanism, we have checked that the life-
time in uncorrugated tubes decreases significantly (to 0.1 s)
when we apply an electric field (oriented along the tubes)
that gives an induced dipole moment of 0.17 D. In addition,
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FIG. 1 (color online). Loss of ground-state KRb molecules as a
function of time in a 3D lattice with depths of 56, 56, and 70 ER

in x, y, and z, respectively, where ER ¼ @2k2=2m is the KRb
recoil energy, k is the magnitude of the lattice beam wave vector,
and m the molecular mass. Neglecting the very short time points
(red solid circles), the number of molecules for times larger than
1 s (black solid circles) are fit to a single exponential decay,
yielding a 1=e lifetime of 16:3$ 1:5 s. Inset: Lifetime in an
isotropic lattice with a depth of 50 ER, with (blue open squares,
0.17 D) and without (black squares, 0 D) an applied electric
field. The lifetimes at 0.17 D (15$ 4 s) and 0 D agree within
uncertainty.
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34 ER (point b). For higher lattice intensities, the lifetime
decreases, which is consistent with loss due to off-resonant light
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lattices where the radial confinement was also varied. The red
squares correspond to lifetimes measured with an additional
traveling-wave beam at 1064 nm illuminating the molecules in
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with an intensity of 3:2 kW=cm2 (b with 3:7 kW=cm2) plus the
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PRL 108, 080405 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

24 FEBRUARY 2012

080405-2

3D

2D

Chotia et al, PRL 108, 080405 (2012)

Long life time when loaded in
3D and 2D optical lattice:



µ = 10µB

Nuclear spin I = 5/2, total electronic angular momentum J = 8.
F = I + J = 21/2. E.g. ground state |F,mF � = |21/2,−21/2�.

Fermi-Dirac statistics than a Gaussian arising from a
classical, Maxwell-Boltzmann distribution.

Figure 3 shows a collection of such fits as a function
of trap population and evaporation time. The T=TF data
are extracted from density profiles using three methods:
(1) The high momentum wings are fit to a Maxwell-
Boltzmann distribution to determine T [26,27,31], and
the Fermi temperature is calculated from measured trap
parameters and population, kBTF ¼ @ !!ð6NÞ1=3; (2) similar
to (1), but fitting the entire density profile with a TF
distribution to determine T; (3) fitting the fugacity to
directly extract T=TF (see Supplemental Material [25]).
The last method is known to be inaccurate at higher
temperatures, while the Gaussian fit tends to overestimate
the temperature below T=TF ¼ 1 [26,27]. The evaporation
does not yet seem to reach a plateau in cooling efficiency at
19 s; poor imaging signal to noise hampers measurements
at longer evaporation times.

Data in Fig. 3(c) show that thermal equilibrium between
the bosons and fermions is maintained throughout the
evaporation, and the BEC of 162Dy within the mixture is
nearly reached for an evaporation of 19 s. We estimate
the corresponding critical temperature Tc $ 40 nK of
cotrapped 162Dy by scaling the measured Tc $ 120 nK
of singly trapped 162Dy with the cube root of their relative
trap populations. (162Dy has been Bose condensed in the
absence of 161Dy [32].) The nearly doubly degenerate
dipolar Bose-Fermi mixture may lead to interesting
dipolar and many-body physics once cooling efficiency
improves.

While interacting BECs invert their anisotropic aspect
ratio upon time-of-flight expansion, anisotropic degenerate
Fermi gases tend to a spherical shape. As the DDI strength
increases, the degenerate Fermi gas will expand into
a prolate ellipsoid oriented along the magnetization
direction regardless of trap aspect ratio. Furthermore, the
gas may become unstable when the quantity !dd ¼
"0"

2ðm3 !!=16#2@5Þ1=2 > 1 [5]. At the lowest attained
T=TF, !dd ¼ 0:2 for 161Dy, and the ratio is lDDI=lF is
0.05. This DDI strength should lead to Fermi surface dis-
tortions (as yet unmeasured) at the percent level [5]. Both
ratios could be enhanced %3& by increasing trap fre-
quency using a more spherical confinement—while main-
taining the stability of the dipolar Bose gas—and by
increasing trap population. While we obtain only several
thousand atoms at T=TF ¼ 0:2, we trap 104 atoms at
T=TF ¼ 0:5, comparable, e.g., to the first (unpolarized)
173Yb degenerate Fermi gas [33].
Surprisingly, we achieve the forced evaporative cooling

of spin-polarized 161Dy without 162Dy to T=TF ¼ 0:7 at
TF ¼ 500 nK [see Fig. 3(b)]. As mentioned above, achiev-
ing quantum degeneracy with spin-polarized identical fer-
mions alone is usually not possible due to the suppression
of elastic scattering below the p-wave threshold 50 "K
[23]. That such a low temperature ratio is achieved may be
a novel consequence of the highly dipolar nature of this
gas, namely, that a significant elastic cross section persists
to low temperatures due to the as yet unobserved phenome-
non of universal dipolar scattering [34]. The associated
scattering rate is expected to scale as m3=2"4 regardless

FIG. 3 (color online). (a) Three measures [Maxwell-Boltzmann (dark points), Fermi-Dirac (light-gray points), fugacity (light-grey,
square points)] of 161Dy $̂ temperature-to-Fermi temperature TF as trap population decreases due to forced evaporation of the spin-
polarized Bose-Fermi mixture. (b) Single isotope evaporative cooling of spin-polarized fermionic 161Dy to below TF. (c) The dipolar
Bose-Fermi mixture remains in thermal contact throughout the evaporation sequence as measured by fits of TOF densities to Gaussian
or TF distributions. The orange dashed line demarcates the boundary below which the temperature of 161Dy is lower than TF. Likewise,
the purple dashed line demarcates the temperature below which Tc for 162Dy Bose degeneracy would be reached given the trap
frequencies and population at 19 s. (d) Trap populations of the spin-polarized Bose-Fermi mixture versus evaporation time.
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Fermi-Dirac statistics than a Gaussian arising from a
classical, Maxwell-Boltzmann distribution.

Figure 3 shows a collection of such fits as a function
of trap population and evaporation time. The T=TF data
are extracted from density profiles using three methods:
(1) The high momentum wings are fit to a Maxwell-
Boltzmann distribution to determine T [26,27,31], and
the Fermi temperature is calculated from measured trap
parameters and population, kBTF ¼ @ !!ð6NÞ1=3; (2) similar
to (1), but fitting the entire density profile with a TF
distribution to determine T; (3) fitting the fugacity to
directly extract T=TF (see Supplemental Material [25]).
The last method is known to be inaccurate at higher
temperatures, while the Gaussian fit tends to overestimate
the temperature below T=TF ¼ 1 [26,27]. The evaporation
does not yet seem to reach a plateau in cooling efficiency at
19 s; poor imaging signal to noise hampers measurements
at longer evaporation times.

Data in Fig. 3(c) show that thermal equilibrium between
the bosons and fermions is maintained throughout the
evaporation, and the BEC of 162Dy within the mixture is
nearly reached for an evaporation of 19 s. We estimate
the corresponding critical temperature Tc $ 40 nK of
cotrapped 162Dy by scaling the measured Tc $ 120 nK
of singly trapped 162Dy with the cube root of their relative
trap populations. (162Dy has been Bose condensed in the
absence of 161Dy [32].) The nearly doubly degenerate
dipolar Bose-Fermi mixture may lead to interesting
dipolar and many-body physics once cooling efficiency
improves.

While interacting BECs invert their anisotropic aspect
ratio upon time-of-flight expansion, anisotropic degenerate
Fermi gases tend to a spherical shape. As the DDI strength
increases, the degenerate Fermi gas will expand into
a prolate ellipsoid oriented along the magnetization
direction regardless of trap aspect ratio. Furthermore, the
gas may become unstable when the quantity !dd ¼
"0"

2ðm3 !!=16#2@5Þ1=2 > 1 [5]. At the lowest attained
T=TF, !dd ¼ 0:2 for 161Dy, and the ratio is lDDI=lF is
0.05. This DDI strength should lead to Fermi surface dis-
tortions (as yet unmeasured) at the percent level [5]. Both
ratios could be enhanced %3& by increasing trap fre-
quency using a more spherical confinement—while main-
taining the stability of the dipolar Bose gas—and by
increasing trap population. While we obtain only several
thousand atoms at T=TF ¼ 0:2, we trap 104 atoms at
T=TF ¼ 0:5, comparable, e.g., to the first (unpolarized)
173Yb degenerate Fermi gas [33].
Surprisingly, we achieve the forced evaporative cooling

of spin-polarized 161Dy without 162Dy to T=TF ¼ 0:7 at
TF ¼ 500 nK [see Fig. 3(b)]. As mentioned above, achiev-
ing quantum degeneracy with spin-polarized identical fer-
mions alone is usually not possible due to the suppression
of elastic scattering below the p-wave threshold 50 "K
[23]. That such a low temperature ratio is achieved may be
a novel consequence of the highly dipolar nature of this
gas, namely, that a significant elastic cross section persists
to low temperatures due to the as yet unobserved phenome-
non of universal dipolar scattering [34]. The associated
scattering rate is expected to scale as m3=2"4 regardless

FIG. 3 (color online). (a) Three measures [Maxwell-Boltzmann (dark points), Fermi-Dirac (light-gray points), fugacity (light-grey,
square points)] of 161Dy $̂ temperature-to-Fermi temperature TF as trap population decreases due to forced evaporation of the spin-
polarized Bose-Fermi mixture. (b) Single isotope evaporative cooling of spin-polarized fermionic 161Dy to below TF. (c) The dipolar
Bose-Fermi mixture remains in thermal contact throughout the evaporation sequence as measured by fits of TOF densities to Gaussian
or TF distributions. The orange dashed line demarcates the boundary below which the temperature of 161Dy is lower than TF. Likewise,
the purple dashed line demarcates the temperature below which Tc for 162Dy Bose degeneracy would be reached given the trap
frequencies and population at 19 s. (d) Trap populations of the spin-polarized Bose-Fermi mixture versus evaporation time.
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Fermi-Dirac statistics than a Gaussian arising from a
classical, Maxwell-Boltzmann distribution.

Figure 3 shows a collection of such fits as a function
of trap population and evaporation time. The T=TF data
are extracted from density profiles using three methods:
(1) The high momentum wings are fit to a Maxwell-
Boltzmann distribution to determine T [26,27,31], and
the Fermi temperature is calculated from measured trap
parameters and population, kBTF ¼ @ !!ð6NÞ1=3; (2) similar
to (1), but fitting the entire density profile with a TF
distribution to determine T; (3) fitting the fugacity to
directly extract T=TF (see Supplemental Material [25]).
The last method is known to be inaccurate at higher
temperatures, while the Gaussian fit tends to overestimate
the temperature below T=TF ¼ 1 [26,27]. The evaporation
does not yet seem to reach a plateau in cooling efficiency at
19 s; poor imaging signal to noise hampers measurements
at longer evaporation times.

Data in Fig. 3(c) show that thermal equilibrium between
the bosons and fermions is maintained throughout the
evaporation, and the BEC of 162Dy within the mixture is
nearly reached for an evaporation of 19 s. We estimate
the corresponding critical temperature Tc $ 40 nK of
cotrapped 162Dy by scaling the measured Tc $ 120 nK
of singly trapped 162Dy with the cube root of their relative
trap populations. (162Dy has been Bose condensed in the
absence of 161Dy [32].) The nearly doubly degenerate
dipolar Bose-Fermi mixture may lead to interesting
dipolar and many-body physics once cooling efficiency
improves.

While interacting BECs invert their anisotropic aspect
ratio upon time-of-flight expansion, anisotropic degenerate
Fermi gases tend to a spherical shape. As the DDI strength
increases, the degenerate Fermi gas will expand into
a prolate ellipsoid oriented along the magnetization
direction regardless of trap aspect ratio. Furthermore, the
gas may become unstable when the quantity !dd ¼
"0"

2ðm3 !!=16#2@5Þ1=2 > 1 [5]. At the lowest attained
T=TF, !dd ¼ 0:2 for 161Dy, and the ratio is lDDI=lF is
0.05. This DDI strength should lead to Fermi surface dis-
tortions (as yet unmeasured) at the percent level [5]. Both
ratios could be enhanced %3& by increasing trap fre-
quency using a more spherical confinement—while main-
taining the stability of the dipolar Bose gas—and by
increasing trap population. While we obtain only several
thousand atoms at T=TF ¼ 0:2, we trap 104 atoms at
T=TF ¼ 0:5, comparable, e.g., to the first (unpolarized)
173Yb degenerate Fermi gas [33].
Surprisingly, we achieve the forced evaporative cooling

of spin-polarized 161Dy without 162Dy to T=TF ¼ 0:7 at
TF ¼ 500 nK [see Fig. 3(b)]. As mentioned above, achiev-
ing quantum degeneracy with spin-polarized identical fer-
mions alone is usually not possible due to the suppression
of elastic scattering below the p-wave threshold 50 "K
[23]. That such a low temperature ratio is achieved may be
a novel consequence of the highly dipolar nature of this
gas, namely, that a significant elastic cross section persists
to low temperatures due to the as yet unobserved phenome-
non of universal dipolar scattering [34]. The associated
scattering rate is expected to scale as m3=2"4 regardless

FIG. 3 (color online). (a) Three measures [Maxwell-Boltzmann (dark points), Fermi-Dirac (light-gray points), fugacity (light-grey,
square points)] of 161Dy $̂ temperature-to-Fermi temperature TF as trap population decreases due to forced evaporation of the spin-
polarized Bose-Fermi mixture. (b) Single isotope evaporative cooling of spin-polarized fermionic 161Dy to below TF. (c) The dipolar
Bose-Fermi mixture remains in thermal contact throughout the evaporation sequence as measured by fits of TOF densities to Gaussian
or TF distributions. The orange dashed line demarcates the boundary below which the temperature of 161Dy is lower than TF. Likewise,
the purple dashed line demarcates the temperature below which Tc for 162Dy Bose degeneracy would be reached given the trap
frequencies and population at 19 s. (d) Trap populations of the spin-polarized Bose-Fermi mixture versus evaporation time.
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Fermi-Dirac statistics than a Gaussian arising from a
classical, Maxwell-Boltzmann distribution.

Figure 3 shows a collection of such fits as a function
of trap population and evaporation time. The T=TF data
are extracted from density profiles using three methods:
(1) The high momentum wings are fit to a Maxwell-
Boltzmann distribution to determine T [26,27,31], and
the Fermi temperature is calculated from measured trap
parameters and population, kBTF ¼ @ !!ð6NÞ1=3; (2) similar
to (1), but fitting the entire density profile with a TF
distribution to determine T; (3) fitting the fugacity to
directly extract T=TF (see Supplemental Material [25]).
The last method is known to be inaccurate at higher
temperatures, while the Gaussian fit tends to overestimate
the temperature below T=TF ¼ 1 [26,27]. The evaporation
does not yet seem to reach a plateau in cooling efficiency at
19 s; poor imaging signal to noise hampers measurements
at longer evaporation times.

Data in Fig. 3(c) show that thermal equilibrium between
the bosons and fermions is maintained throughout the
evaporation, and the BEC of 162Dy within the mixture is
nearly reached for an evaporation of 19 s. We estimate
the corresponding critical temperature Tc $ 40 nK of
cotrapped 162Dy by scaling the measured Tc $ 120 nK
of singly trapped 162Dy with the cube root of their relative
trap populations. (162Dy has been Bose condensed in the
absence of 161Dy [32].) The nearly doubly degenerate
dipolar Bose-Fermi mixture may lead to interesting
dipolar and many-body physics once cooling efficiency
improves.

While interacting BECs invert their anisotropic aspect
ratio upon time-of-flight expansion, anisotropic degenerate
Fermi gases tend to a spherical shape. As the DDI strength
increases, the degenerate Fermi gas will expand into
a prolate ellipsoid oriented along the magnetization
direction regardless of trap aspect ratio. Furthermore, the
gas may become unstable when the quantity !dd ¼
"0"

2ðm3 !!=16#2@5Þ1=2 > 1 [5]. At the lowest attained
T=TF, !dd ¼ 0:2 for 161Dy, and the ratio is lDDI=lF is
0.05. This DDI strength should lead to Fermi surface dis-
tortions (as yet unmeasured) at the percent level [5]. Both
ratios could be enhanced %3& by increasing trap fre-
quency using a more spherical confinement—while main-
taining the stability of the dipolar Bose gas—and by
increasing trap population. While we obtain only several
thousand atoms at T=TF ¼ 0:2, we trap 104 atoms at
T=TF ¼ 0:5, comparable, e.g., to the first (unpolarized)
173Yb degenerate Fermi gas [33].
Surprisingly, we achieve the forced evaporative cooling

of spin-polarized 161Dy without 162Dy to T=TF ¼ 0:7 at
TF ¼ 500 nK [see Fig. 3(b)]. As mentioned above, achiev-
ing quantum degeneracy with spin-polarized identical fer-
mions alone is usually not possible due to the suppression
of elastic scattering below the p-wave threshold 50 "K
[23]. That such a low temperature ratio is achieved may be
a novel consequence of the highly dipolar nature of this
gas, namely, that a significant elastic cross section persists
to low temperatures due to the as yet unobserved phenome-
non of universal dipolar scattering [34]. The associated
scattering rate is expected to scale as m3=2"4 regardless

FIG. 3 (color online). (a) Three measures [Maxwell-Boltzmann (dark points), Fermi-Dirac (light-gray points), fugacity (light-grey,
square points)] of 161Dy $̂ temperature-to-Fermi temperature TF as trap population decreases due to forced evaporation of the spin-
polarized Bose-Fermi mixture. (b) Single isotope evaporative cooling of spin-polarized fermionic 161Dy to below TF. (c) The dipolar
Bose-Fermi mixture remains in thermal contact throughout the evaporation sequence as measured by fits of TOF densities to Gaussian
or TF distributions. The orange dashed line demarcates the boundary below which the temperature of 161Dy is lower than TF. Likewise,
the purple dashed line demarcates the temperature below which Tc for 162Dy Bose degeneracy would be reached given the trap
frequencies and population at 19 s. (d) Trap populations of the spin-polarized Bose-Fermi mixture versus evaporation time.
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! ¼ "1; 0 and hðxÞ is defined in the Supplemental Material
[25], accounts for the contributions of even, odd, or all
partial waves to the scattering process.

We choose, therefore, to seek a degenerate dipolar Fermi
gas with Dy by sympathetically cooling 161Dy with the
boson 162Dy while both are spin polarized in their strong-
magnetic-field seeking ground states: jF;mFi ¼ j21=2;
%21=2i for 161Dy and jJ;mJi ¼ j8;%8i for 162Dy. See
Figs. 1(a)–1(c) for energy level schemes. We choose to
focus this work on isotope 161Dy because, unlike the more
abundant 163Dy, its negative nuclear magnetic moment
makes it insusceptible to hyperfine changing collisions
after the MOT stage [29]. Preparation of this ultracold
Bose-Fermi mixture—the first such mixture for a strongly
dipolar species—builds on our single-species technique
[18] for Bose condensing 164Dy and relies on the laser
cooling and trapping of two isotopes before loading both
into an ODT for forced evaporative cooling. We sketch
here the experimental procedure; further details are pro-
vided in the supplement.

Isotopes 161Dy and 162Dy are collected sequentially in a
repumperless MOToperating on the 421-nm transition [24]
[Fig. 1(d)], with final MOT populations of N ¼ 2& 107

and 4& 107, respectively. Next, simultaneous narrow-line,
blue-detuned MOTs [18,30] cool both isotopes to 10 "K
via the 741-nm transition [Fig. 1(e)] for 5 s to allow any
remaining metastable atoms to decay to the ground state.
The blue-detuned MOTs also serve to spin polarize [18,30]
both isotopes to their maximally high-field-seeking (meta-
stable) states mF ¼ þF (mJ ¼ þJ) for 161Dy (162Dy).

The blue-detuned MOTs of the two isotopes can be
spatially separated due to the dependence of the MOTs’
positions on laser detuning [18,30]. This allows the iso-
topes to be sequentially loaded into the 1064-nm ODT1 in
Fig. 1(f), which is aligned above the 161DyMOT but below
the 162Dy MOT. First 162Dy, and then 161Dy, is loaded into
ODT1 by shifting the quadrupole center with a vertical bias
field. All 741-nm light is extinguished before the spin of
both isotopes are rotated via radiofrequency (rf) adiabatic
rapid passage (ARP) into their absolute ground states
mF ¼ %F (mJ ¼ %J) for 161Dy (162Dy). The ODT1 pop-
ulations of 161Dy and 162Dy are both initially 1& 106

before plain evaporation cools the gases to 1–2 "K within
1 s. A 0.9 G field is applied close to the trap axis of
symmetry ẑ throughout plain and forced evaporation.
This provides a !m ¼ 1 Zeeman shift equivalent to 50
(70) "K for 161Dy (162Dy). Because this is much larger
than the temperatures of the gases, the field serves to
maintain spin polarization while stabilizing the strongly
dipolar 162Dy Bose gas against collapse as its phase-space
density increases [18].

Magnetic Stern-Gerlach measurements and observations
of fluorescence versus polarization are consistent with a rf
ARP sequence that achieves a high degree of spin purity
for each isotope. Remnant population in metastable

Zeeman substates quickly decays to the absolute ground
state via dipolar relaxation regardless of collision partner at
a rate of " / #1n #v ¼ 1–10 s%1, where n is the atomic
density and #v is the relative velocity during the plain evapo-
ration stage. [Since gFF ¼ gJJ, collisions between Bose-
Bose, Bose-Fermi, and Fermi-Fermi pairs result in "’s of
similar magnitude as long as ki ( kf since hðx ! 1Þ ! 0.
This condition is fulfilled during plain evaporation due to a
low ratio of Zeeman–to–kinetic energy. For example, in-
elastic dipolar 161Dy-161Dy collisions (! ¼ %1) proceed at
rate " ¼ 1–5 s%1 even in the absence of 162Dy.] Thus, a
(two-body) collisionally stable mixture of identical bosons
and identical fermions is prepared within the 1 s between
spin rotation and forced evaporation.
Subsequently, crossing the elliptical ODT1 with the

elliptical optical dipole trap ODT2 [see Fig. 1(f)] forms a
crossed-beam optical dipole trap with oblate symmetry and
frequencies ½fx; fy; fz* ¼ ½500; 580; 1800* Hz. The inde-
pendent 1064-nm lasers forming ODT1 and ODT2 have
initial powers of 18 and 12 W, respectively. An oblate trap
formed from elliptical beams is chosen to ensure stability
of the 162Dy gas as it nears BEC [18]. Ramping down the
optical powers lowers the trap depth and evaporates spin-
polarized 161Dy to quantum degeneracy; with a 19 s evapo-
ration, the final trap has frequencies [180, 200, 720] Hz and
#!=2$ is defined as their geometric mean. Figure 2 shows
the density profile of ultracold 161Dy, which is more con-
sistent with a Thomas-Fermi (TF) distribution arising from

FIG. 2 (color online). (a) Single shot time-of-flight absorption
image at t ¼ 6 ms. (b) Average of six images. Density integra-
tions versus %̂ (c) and ẑ (d). The green curve (larger amplitude) is
a Gaussian fit to the data’s wings (radius # ¼ 20 "m), while the
red curve (smaller amplitude) is a fit to a Thomas-Fermi distri-
bution. Data are consistent with a Thomas-Fermi distribution of
T=TF ¼ 0:21ð5Þ. The Fermi velocity and temperature are
5:6ð2Þ mm=s and 306(20) nK, respectively, and the gas tempera-
ture is 64(16) nK. The degenerate Fermi gas contains 6:0ð6Þ &
103 atoms at peak density 4ð1Þ & 1013 cm%3.
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The interplay between crystallinity and superfluidity is
of great fundamental and technological interest in con-
densed matter settings. In particular, electronic quantum
liquid crystallinity arises in the non-Fermi liquid, pseudo-
gap regime neighboring a cuprate’s unconventional super-
conducting phase as well as strontium ruthenates, 2D
electron gases, and iron-based superconductors [1,2].
Such phases tend to arise under competition between short-
and long-range interactions and are characterized as spon-
taneously breaking rotational and translational (or point
group) symmetries of the Fermi surface in a manner akin to
phases in classical liquid crystals, e.g., the nematic and
smectic [1]. While the techniques of ultracold atomic
physics and quantum optics have enabled explorations of
the strongly correlated, many-body physics inherent in,
e.g., the Hubbard model [3], lacking has been the ability
to create a quantum degenerate Fermi gas with interparticle
interactions—such as the strong dipole-dipole interaction
(DDI) [4]—capable of inducing analogs to electronic
quantum liquid crystals.

Degenerate gases of highly magnetic fermionic atoms,
such as 161Dy, may shed light on quantum liquid crystal
(QLC) physics without unwanted solid state material
complexity, disorder, and dynamical lattice distortions.
Uniaxial (meta-nematic) [5] and biaxial nematic [6] dis-
tortions of the Fermi surface of a harmonically trapped
gas in the presence of a polarizing field may be observ-
able as well as meta-nematic and smectic phases in 2D
anisotropic optical lattices [7–9]. An exciting prospect
lies in the possibility of achieving spontaneous magneti-
zation in dipolar systems coupled with nematic order
[10,11]. Additionally, the DDI-induced pairing of fermi-
ons may lead to ‘‘supersolidity’’ [12] and bond order
solids [13].

However, obtaining a quantum degenerate dipolar Fermi
gas has been a difficult, unrealized experimental challenge.
The highly magnetic fermionic atoms 53Cr (6 Bohr mag-
netons !B) and

167Er (7!B) have yet to be cooled below
10 !K [14,15]. The fermionic polar molecule 40K87Rb
(0.57 D) has been cooled to near degeneracy (T=TF ¼
1:4) [16] and loaded into a long-lived lattice while partially
polarized (0.2 D) [17], but complexities arising from ultra-
cold chemistry have hampered additional evaporative cool-
ing [16]. In contrast, magnetic fermionic atoms do not
undergo chemical reactions and are immune to inelastic
dipolar collisions when spin polarized in high magnetic
fields [18,19].
The strong, r"3 character of the DDI arises in ground

state polar molecules through a polarizing electric field that
mixes opposite parity states. This electric field breaks
rotational symmetry; consequently, observing the full
range of true (nonmeta) quantum nematic and fluctuating
smectic phases, and their often unusual topological defects,
is not possible in systems of fermionic polar molecules,
especially in three dimensions. By contrast, highly mag-
netic atoms exhibit the DDI interaction even in the absence
of a polarizing field. Moreover, the magnetic DDI can be
tuned from positive to negative [20], which may be im-
portant for simulating dense nuclear matter.
Dysprosium’s isotopes 161Dy and 163Dy are the most

magnetic fermionic atoms. With a dipole moment of ! ¼
10!B,

161Dy provides a DDI length lDDI ¼ !0!
2m=4"@2

that is factors of f400; 8; 2g larger than that of
f40K; 53Cr; 167Erg. With respect to fully saturated 40K87Rb
(0.57 D), 161Dy is 30 times less dipolar for equal densities,
but within a factor of 2 if confined in a lattice of less than
half the periodicity. Lattices of wavelength 400–500 nm
may be possible with Dy, whereas for molecules, photon
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ing [16]. In contrast, magnetic fermionic atoms do not
undergo chemical reactions and are immune to inelastic
dipolar collisions when spin polarized in high magnetic
fields [18,19].
The strong, r"3 character of the DDI arises in ground
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mixes opposite parity states. This electric field breaks
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range of true (nonmeta) quantum nematic and fluctuating
smectic phases, and their often unusual topological defects,
is not possible in systems of fermionic polar molecules,
especially in three dimensions. By contrast, highly mag-
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Dipolar fermions on square lattice: model Hamiltonian
3

FIG. 2. (a) Schematic representation of quadrupolar fermions
on a square lattice. Alignment of the quadrupoles is given by
the quantization axis of the external field F, pointing along
F̂ = (θF ,φF ). The nearest-neighbor interaction is repre-
sented by green and red solid lines, while the next-nearest
neighbor interaction is shown in blue. (b) 3D plot showing
the interactions Vx̂ (red), Vŷ (green), and Vx̂+ŷ (blue) as a
function of the angles (θF ,φF ); “∗” marks the point in the
vicinity of which both Vx̂,ŷ and Vx̂+ŷ change the sign.

unit of length and t as a unit of energy. As schemat-
ically shown in Fig. 2 (a), the interaction strength Vij

depends on the orientation of the vector connecting the
quadrupoles, r = ri − rj , relative to the field direction,

F̂ , via Vr ≡ Vij = 〈ij|V qq |ij〉 = V [3− 30(r̂ · F̂ )2 + 35(r̂ ·
F̂ )4]/r5. Thus, one can immediately observe that the in-
teraction between two quadrupoles can be tuned either
attractive or repulsive, by changing the orientation of the
external field F with respect to the interparticle radius-
vector r. Fig. 2 (b) shows the (θF ,φF )-dependence of
the interaction matrix element between the nearest- and
next-nearest neighbors. The richness of the quadrupolar
interaction becomes apparent in this figure. There are
several regions in which the signs and the relative mag-
nitudes of {Vx̂, Vŷ, Vx̂+ŷ} show distinctive characteristics.
For example, in the region (θF ! 25◦, 0◦ ≤ φF ≤ 45◦),
both nearest- and next-nearest neighbor interactions are
repulsive, while they all become attractive in the region
(30◦ ! θF ! 60◦,φF ∼ 45◦). Furthermore, one can iden-

tify finite regions where either one or two of {Vx̂, Vŷ,
Vx̂+ŷ} is attractive while the rest is repulsive.
Interactions of opposite sign can result in competition

between quantum phases of different symmetry, resulting
in frustration. Thus, fermions with dominant quadrupo-
lar interactions provide an interesting setup for studying
many-body physics with competing phases. For example,
in the vicinity of (90◦, 45◦) both Vx̂ and Vŷ are attractive,
while Vx̂+ŷ is repulsive (see Fig. 2). On general grounds,
one would expect a BCS type ground state resulting from
condensation of Cooper pairs due to the attractive Vx̂

and Vŷ couplings. However, the repulsive Vx̂+ŷ interac-
tion, if significant, may lead to the insurgence of some
other phase, and therefore needs to be quantitatively
accounted for. As another intriguing example, in the
vicinity of (40◦, 5◦), Vx̂ is strongly attractive while Vŷ is
strongly repulsive. As we show below, the ground state
in this region is neither a BCS state nor the conventional
CDW (such as checkerboard or CDWs). These two ex-
amples show that, due to anisotropy, the actual ground
state may be of an unexpected nature. Exposing the
true ground state thus demands a theory that is (i) unbi-
ased with respect to the initial ansatz – condensation of
particle-particle or particle-hole pairs; and (ii) includes
fluctuations.
Issue (ii) can be adequately addressed within the renor-

malization group (RG) analysis at weak couplings, where
the low energy physics near the Fermi surface is ex-
tracted by successively integrating out the high energy
degrees of freedom [16]. In order to satisfy criterion (i)
as well, we employ the exact (or “functional”) renor-
malization group (FRG) which keeps track of all the
interaction vertices, including both the particle-particle
and particle-hole channels, and treats all instabilities (in-
cipient orders) on equal footing [17]. Specifically, all
Feynman diagrams up to one-loop order are included
for calculating the flow of the most general 4-point ver-
tex function U!(k1,k2,k3). Here k1,2,3 are momenta
on the Fermi surface, with k4 = k1 + k2 − k3, and #
the FRG flow parameter starting with the initial value
# = 0 for the bare quadrupolar interaction. The BCS and
CDW instabilities are indicated by the diverging flow of
the corresponding vertex functions U!(k1,−k1,k2) and
U!(k1,−k2,k1 + Q) respectively. Here Q = (±π,±π)
are the nesting vectors. The most divergent flow indi-
cates a broken symmetry phase, the order parameter of
which has an orbital symmetry given by the correspond-
ing eigenvector of the diverging vertex function. For the
example considered above, in the vicinity of (90◦, 45◦),
the system favors a BCS state with py orbital symmetry,
shown in Fig. 3 (b).
The FRG phase diagram, Fig. 3 (a), features sev-

eral different kinds of BCS and CDW phases. CDWs

is the familiar charge density wave phase with a checker-
board modulation of on-site densities, occurring in re-
gions where the repulsive interaction between nearest

predicted in the phase diagram [31]. The superfluid to normal transition temperature was computed
as a function of the dipole tilt angle [31].

Theoretical work on dipolar fermions in optical lattices is by comparison less systematic. PI and
collaborators investigated the possibility of nematic order on the square lattice [32, 33]. Mikelsons
and Freericks carried detailed numerical analysis of the CDW ordering pattern on square lattice
at half-filling [34]. PI and collaborators also discussed strongly interacting dipolar particles on
a generalized kagome lattice, and showed that it has the potential to realize the quantum dimer
model and topological phases [35]. One-dimensional and weakly coupled one-dimensional dipolar
Fermi gases are known to exhibit a multitude of phases [36], including liquid crystal states [37]. In
a broader context, new phenomena in more complicated systems, such as inter-layer pairing and
superfluidity in multi-layer dipolar gases [38, 39, 40], and triplet pairing in two-component dipolar
gases [41], have been discussed. Finally, by exploiting the rotational degrees of freedom of polar
molecules in optical lattices, the dipolar gas can serve as an emulator for the t-J model [42].

Open questions and theoretical challenges. We will focus on single species (spinless) polar
molecules in two-dimensional optical lattices. The simplest system we start with is fermions at half-
filling on the square lattice, as illustrated in Fig. 1a. The electric dipole moment d is controlled
by an external electric field. Its direction is given by polar angle θF and azimuthal angle φF . The
Hamiltonian in the tight-binding limit has the form

H = −t

�

�ij�

a
†
iaj +

1
2

�

i�=j

Vdd(rij)ninj ,

where t is the nearest neighbor hopping, i is the short-hand notation for lattice site ri = ixaLx̂ +
iyaLŷ, aL is the lattice spacing and our length unit, and ix, iy are integers. In terms of the relative
position rij ≡ ri − rj , the dipole-dipole interaction Vdd(rij) = d

2[1− 3 sin2 θF(r̂ij · d̂)2]/r
3
ij , and we

define the interaction strength Vd ≡ d
2
/a

3
L. While our discussion focuses on molecules with electric

dipoles, the theory can be equally applied to fermions with magnetic dipoles. Note the short-range
contact interaction is irrelevant for spinless fermions.

What is phase diagram of this system, as function of θF , φF and interaction parameter Vd/t? On
a crude examination, one expects to find a checkerboard charge density wave for θF close to 0,
when the dipole moments all point perpendicular to the 2D plane, so the dipole-dipole interaction
is purely repulsive. When the dipole tilt angle θF is close to 90◦, i.e., when the dipoles are aligned
in the xy plane, the attractive interaction binds fermions into Cooper pairs. And the system
becomes a predominately p-wave superfluid. The main open question is then what happens in the
intermediate θF regime? Is it the coexistence of pairing and density wave, i.e., a supersolid [43], or
a first order phase transition between the charge density wave and superfluid, or some completely
different phase?

The main theoretical challenge is therefore to describe this regime of intermediate θF , where differ-
ent orders compete or cooperate. This problem of competing order is at the heart of the many-body
physics of dipolar fermions, and intrinsically related to the long-range, anisotropic nature of the
dipole-dipole interaction. Simple mean field theory with single order parameter is usually insuffi-
cient (or unreliable) to answer these open questions. Traditional perturbation theories, including
single-channel renormalization group or random phase approximation, are also ill-prepared to de-
scribe the competing orders in the intermediate regime. Thus, there is urgent need for a theoretical
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! Half filling: on average, one fermion every two sites.

! Zero temperature; Neglect collapse instability.



! Perfect Nesting: Q couple k points on the opposite sides of the FS. 

! Later on, we will discretize the Fermi surface into N patches.

! The Fermi surface may become unstable when         is turned on.

The Fermi surface is just a square (half filling)

In the absence of dipole-dipole interaction:

The extrapolation to a mean-field Hamiltonian is a drastic
oversimplification, in which the spin fluctuations are lost, but
they are retained in the V! obtained by the RG flow. As the
leading instability is clearly exposed by this analysis, one can
also resort to a bosonized description that treats the collective
infrared physics (Baier, Bick, and Wetterich, 2004).

b. d-wave Cooper pairing

For t0 ¼ "0:3t and ! ¼ "1:2t, the Fermi surface still
contains the saddle points ð"; 0Þ and ð0;"Þ but is curved
away from these points [Fig. 10(c)]. Now Cooper pair scat-
tering dominates, well visible in Fig. 10(d) on the diagonal
lines k1 þ k2 ¼ 0 (j#1 " #2j ¼ N=2 in terms of patch in-
dices). It is attractive when the incoming pair k1;"k1 is near
the same saddle point ð&"; 0Þ as the outgoing pair k3, "k3,
and repulsive when incoming and outgoing pairs are at differ-
ent saddle points. This is the symmetry of the form factor
dðkÞ ¼ d0ðcoskx " coskyÞ for dx2"y2 Cooper pairing. In an

extrapolation as above, V!ðk1;k2;k3Þ gives rise to the mean-
field Hamiltonian

H!
dSC ¼ VdSC

X

k;k0
dðkÞdðk0Þcyk0;"c

y
"k0 ;#c"k;#ck;";

which has a d-wave singlet-paired ground state. This d-wave
pairing instability was found in a number of studies using
different functional RG schemes (Zanchi and Schulz, 1998,
2000; Halboth and Metzner, 2000a, 2000b; Honerkamp,
2001; Honerkamp et al., 2001; Honerkamp and Salmhofer,
2001a, 2001b; Tsai and Marston, 2001), in a rather large
parameter region. This constitutes convincing evidence that

the weakly coupled Hubbard model possesses a d-wave
superconducting ground state.

c. Interplay of AF and SC

In Fig. 10(d), the sign structure of the d-wave term goes
together, and fits perfectly with, enhanced repulsive interac-
tions near #1 ¼ 8 and #2 ¼ 24, which are the remnants of the
SDW feature in Fig. 10(b). Their larger width is due to the
Fermi surface curvature. As ! is decreased, these SDW
features appear first, due to approximate nesting at high
scales, and then create an attractive component in the
dx2"y2-pairing channel, which then grows as ! is lowered

further, while the SDW is cut off by Fermi surface curvature,
as discussed also in Appendix B.3. When the SDW-enhancing
terms are removed by hand from the right-hand side of the
RG equation, the d-wave terms are suppressed as well. Thus
the d-wave pairing interaction is induced by AF-spin fluctua-
tions that appear on higher scales.

At fixed U, t, and t0, there is a sizable interval of ! for
which the Fermi surface remains close to the saddle points.
Since both AF-SDW and d-wave SC are driven by repulsive
scattering between ð"; 0Þ and ð0;"Þ, both grow and reinforce
one another. In the saddle point regime, it becomes impossible
to single out one over the other in the truncation used here. By
analogy with the quasi-one-dimensional ladder systems, it has
been argued that in this regime the Fermi surface gets trun-
cated (Furukawa, Rice, and Salmhofer, 1998; Honerkamp
et al., 2001; Läuchli, Honerkamp, and Rice, 2004).

2. Ferromagnetism versus superconductivity

At the van Hove filling, ferromagnetic (FM) tendencies are
enhanced by the logarithmic divergence of the density of
states, and the Stoner criterion for the bare interaction sug-
gests an FM ordered state at arbitrarily smallU. However, the
van Hove singularities also make the OðU2Þ Cooper pair
scattering log2 divergent, hence putting the two terms into
direct competition.

As discussed in Sec. II.D.1, the momentum-shell cutoff
artificially suppresses FM. For this reason, the T flow (see
Sec. II.D.2) was invented (Honerkamp and Salmhofer, 2001a,
2001b), and we discuss results obtained by T flow here. The
main difference to the AF and SC scenario discussed above is
that at zero transfer momentum, scattering processes driving
FM must have the opposite sign from those driving singlet
SC, hence mutually suppressing one another. This simple
picture is confirmed by the RG with momentum-dependent
vertices, in a study where t0 and ! are varied at fixed U and t,
such that the Fermi surface always contains the saddle points:
near to t0 ¼ "t=3, T' gets strongly suppressed, hinting at a
quantum critical point between the d-wave SC and FM
phases (lower left plot in Fig. 11). These results were later
confirmed by a two-particle self-consistent approach
(Hankyevych, Kyung, and Termblay, 2003) and in the so-
called " scheme, which employs a soft infrared regulator on
the Matsubara frequencies (Husemann and Salmhofer, 2009);
see the lower right plot in Fig. 11. In the latter study, the
N-patch scheme was replaced by a parametrization of the
vertex functions in terms of exchange bosons. The much
higher value of !' in the transitional regime near t0¼"t=3
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FIG. 10 (color online). N-patch functional RG data obtained with
the momentum-shell functional RG for the repulsive Hubbard
model on the 2D square lattice. Upper plots: ! ¼ 0, t0 ¼ 0, and
initial U ¼ 2t; lower plots: ! ¼ 1:2t, t0 ¼ "0:3t, and U ¼ 3t. Left:
Fermi surfaces for the two cases and the N ¼ 32 discretization
points for the two incoming k1, k2 and the first outgoing wave
vector k3. Right: The coupling function V!' ð#1;#2;#3Þ with
#3 ¼ 1 and #1 and #2 moving around the Fermi surface. The color
bars on the right indicate the values of the interactions.
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Interactions for dipoles tilting in the x direction
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1. Small tilting angle (                   ):  all interactions are repulsive.

    Density wave (CDW): 
    Periodic modulation of on-site density.
    
    
    In k space, this is an instability of FS 
    in the particle-hole channel with Q. 

2. Large tilting angle (                    ): Vx and Vx+y attractive, but Vy repulsive.

    Anisotropic p-wave pairing (BCS): 
    The pairing order parameter
    
    
   In k space, this is an instability of FS 
   in the particle-particle channel. 

Two limits easy to understand
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FIG. 3: (Color online) SCMF phase diagram. Shown on the
left are representatives of the on-site density ρii, the nearest
neighbor hopping ρij (with j = i + x̂ or j = i + ŷ), or the
pairing gap ∆ij corresponding to the four phases at Vd = 0.5t.
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For example, SCMF predicts an additional striped den-
sity wave phase, the st-CDW, which is not expected to
survive at Vd ! t. This illustrates that SCMF is insuf-
ficient to describe competing orders as opposed to FRG.
The possibility of st-CDW and collapse instability be-
yond the weak coupling regime is further discussed in
the supplementary material.
We now provide some intuitive understanding of the

bond order phases by considering a simplified mean field
version of Eq. (1), keeping only the nearest neighbor in-
teractions Vx and Vy . The mean field decoupling of the

interaction term gives −ninj ∼ a†iaja
†
jai → ρija

†
jai +

h.c.− |ρij |2. The modulation of the bond variable, ρij =

〈a†iaj〉, in the BOSp phase at φF = 0 has the form show
in Fig. 1(c), ρi,i±x̂ = χx, ρi,i±ŷ = χy ± δ. The mean field

Hamiltonian can be written as HR = −2
∑

k
χkb

†
k
ak +

h.c., up to a constant term. Here ak and bk are fermion
annihilation operators defined separately on two sub-
lattices related by the lattice translation vector aLx̂, and
χk = (t + Vxχx) cos kx + (t + Vyχy) cos ky − iVyδ sin ky.
The ground state energy per unit cell is then given by
EGS = −2(χx+χy)(t+Vx+Vy)− 2Vyδ2, clearly indicat-
ing that finite bond modulation δ is energetically favored
for positive Vy. The φF = 90◦ situation is identical, only
with x and y axis interchanged, and hence a 90◦ rotated
bond pattern. Thus, the BOSd phase, with checkerboard
pattern of next-to-nearest bonds near φF = 45◦, natu-
rally connects the two BOSp phases on either side.
The bond modulation δ, the energy gap, and the tran-

sition temperature Tc of the BOSp phase increase with Vd

for weak coupling. Exact diagonalization of Eq. (1) on a
2×8 and 4×4 cluster with periodic boundary conditions
shows that the optimal place to observe the BOSp is at

intermediate interaction and tilt angle, e.g. Vd ∼ 2.5t
and (θF,φF) = (45◦, 0◦), where the energy gap, and thus
Tc, is maximal. Mean field theory estimates an optimal
Tc ∼ 0.23t, or about 0.05EF for half filling, which is not
too far from the temperature achieved in Dy experiment,
T ∼ 0.25EF [5]. The BOSd on the other hand is most sta-
ble in the vicinity of φF = 45◦ for θF ∼ 60◦. The charac-
teristic density modulation of the cb-CDW and st-CDW
phase uniquely distinguishes them from the other phases
and may be detected via in-situ density imaging. The
BCS phase can be detected via pair correlation measure-
ments using noise spectroscopy [31]. Finally the BOSd
phase may be distinguished from BOSp by probing the
d-wave symmetry via the pump-probe scheme discussed
in Ref. [32]. Finally, in the presence of a trap potential,
the insulating plateau at half filling will be surrounded
by metallic regions. The approaches outlined here can
be employed to study dipolar Fermi gas away from half-
filling.
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FIG. 1: (Color online) Dipolar fermions on square lattice. (a) Schematic of the dipolar fermions confined to a square opti-
cal lattice potential. The induced dipole moment d points along the direction d̂ = cos θFẑ + sin θF cosφFx̂ + sin θF sinφFŷ.
(b)Phase diagram obtained via FRG indicating four phases: p-wave bond order solid (BOSp), d-wave bond order solid (BOSd),
checkerboard charge density wave (cb-CDW), and p-wave BCS superfluid (BCS); left panel– phase diagram in the θF-Vd plane
at φF = 0; right panel– phase diagram in the θF-φF plane at Vd = 0.5t. The phase boundary (solid line) is determined by the
abrupt change in the symmetry of the eigenvector of the dominant instability (see Fig. 2). The smooth crossover from cb-CDW
and BOSd is indicated by a gradual change of the color shading. (c)-(e) Schematic of the bond or density modulation pattern
for the BOSp, BOSd, and cb-CDW phase respectively.

these two critical points, ϑc1 and ϑc2, roughly set the
phase boundary between the checkerboard charge den-
sity wave (cb-CDW), BOSp, and the Bardeen-Cooper-
Schrieffer (BCS) superfluid phase, for the φF = 0 case.
We now discuss the T = 0 phase diagram at half

filling. First, we analyze the weakly interacting limit,
Vd < t, using FRG. In this approach, no assumptions
about possible dominant orders are necessary. Rather,
the method includes all processes near the Fermi surface
of the non-interacting system via the generalized 4-point
vertex function: U!(k1,k2,k3), where k1,2 (k3,4) are in-
coming (outgoing) momenta and k4 = k1+k2−k3. Here,
# is the renormalization group flow parameter that relates
the energy cutoff Λ to the initial cutoff Λ0 (chosen to be
4t) via Λ! = Λ0e−!. Starting with the bare vertex U0,
progressively tracing out the high energy degrees of free-
dom, a set of coupled integro-differential equations give
the FRG flow for all the vertices.
The renormalized vertex for specific channels of inter-

est, e.g.,

UNEST
! (k1,k2) = U!(k1,k2,k1 +Q),

UBCS
! (k1,k2) = U!(k1,−k1,k2),

}

(2)

are extracted by appropriately constraining the in-
coming and out-going momenta. Here Q = (π,±π) is
the nesting vector at half filling for the square lattice,
and UNEST

! is the same as UCDW
! of Ref. [24]. The chan-

nel matrix with the largest divergent eigenvalue λ cor-
responds to the most dominant instability of the Fermi
liquid. The corresponding eigenvector ψ defined on the
Fermi surface, indicates the symmetry of the incipient
order parameter associated with the instability.

We perform the FRG analysis for a range of values of
Vd, θF, and φF producing a 3D phase diagram, visualized
in Fig. 1(b) as slice cuts along two different planes. To
capture and emphasize the key elements of the phase dia-
gram, first we fix φF = 0, generating a 2D phase diagram
in the θF–Vd plane shown in the left panel of Fig. 1(b).
Next we fix Vd = 0.5t instead, yielding the θF–φF plane
shown in the right panel of Fig. 1(b).

The θF–Vd phase diagram shows the existence of three
phases separated by two critical angles θF = θ1 and θ2,
with no appreciable dependence on Vd. For 0 ≤ θF < θ1,
the nesting channel has the largest (most divergent)
eigenvalue λ. The corresponding eigenvector ψNEST, as
illustrated in top panel of Fig. 2(a), is almost constant
with only small modulation along the Fermi surface. This
implies the onset of CDW order with s-wave symmetry,
identified as a checkerboard modulation of on-site den-
sity, the cb-CDW shown in Fig. 1(e). The physical origin
of this phase can be traced by observing that θ1 ≈ ϑ1c,
thus Vx, Vy , V3 > 0 in this regime, allowing for a low
energy configuration with density concentrated on the
next-to-nearest neighbor sites, consistent with the per-
fect nesting of the Fermi surface. For θ2 ≤ θF ≤ 90◦, the
BCS channel exhibiting a p-wave symmetry is the most
diverging under FRG flow [see Fig. 2(a)]. In real space,
this corresponds to the onset of nearest neighbor pairing,
〈aiai+x̂〉 = −〈aiai−x̂〉 generated by couplings Vx and V3,
both becoming attractive for θF > θ2 ∼ ϑ2c. The super-
fluid phase here is the lattice analog of the p-wave BCS
phase discussed previously for continuum dipolar Fermi
gases [8, 14, 16].
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FIG. 3: (Color online) SCMF phase diagram. Shown on the
left are representatives of the on-site density ρii, the nearest
neighbor hopping ρij (with j = i + x̂ or j = i + ŷ), or the
pairing gap ∆ij corresponding to the four phases at Vd = 0.5t.
Lattice size is 32× 32.

For example, SCMF predicts an additional striped den-
sity wave phase, the st-CDW, which is not expected to
survive at Vd ! t. This illustrates that SCMF is insuf-
ficient to describe competing orders as opposed to FRG.
The possibility of st-CDW and collapse instability be-
yond the weak coupling regime is further discussed in
the supplementary material.
We now provide some intuitive understanding of the

bond order phases by considering a simplified mean field
version of Eq. (1), keeping only the nearest neighbor in-
teractions Vx and Vy . The mean field decoupling of the

interaction term gives −ninj ∼ a†iaja
†
jai → ρija

†
jai +

h.c.− |ρij |2. The modulation of the bond variable, ρij =

〈a†iaj〉, in the BOSp phase at φF = 0 has the form show
in Fig. 1(c), ρi,i±x̂ = χx, ρi,i±ŷ = χy ± δ. The mean field

Hamiltonian can be written as HR = −2
∑

k
χkb

†
k
ak +

h.c., up to a constant term. Here ak and bk are fermion
annihilation operators defined separately on two sub-
lattices related by the lattice translation vector aLx̂, and
χk = (t + Vxχx) cos kx + (t + Vyχy) cos ky − iVyδ sin ky.
The ground state energy per unit cell is then given by
EGS = −2(χx+χy)(t+Vx+Vy)− 2Vyδ2, clearly indicat-
ing that finite bond modulation δ is energetically favored
for positive Vy. The φF = 90◦ situation is identical, only
with x and y axis interchanged, and hence a 90◦ rotated
bond pattern. Thus, the BOSd phase, with checkerboard
pattern of next-to-nearest bonds near φF = 45◦, natu-
rally connects the two BOSp phases on either side.
The bond modulation δ, the energy gap, and the tran-

sition temperature Tc of the BOSp phase increase with Vd

for weak coupling. Exact diagonalization of Eq. (1) on a
2×8 and 4×4 cluster with periodic boundary conditions
shows that the optimal place to observe the BOSp is at

intermediate interaction and tilt angle, e.g. Vd ∼ 2.5t
and (θF,φF) = (45◦, 0◦), where the energy gap, and thus
Tc, is maximal. Mean field theory estimates an optimal
Tc ∼ 0.23t, or about 0.05EF for half filling, which is not
too far from the temperature achieved in Dy experiment,
T ∼ 0.25EF [5]. The BOSd on the other hand is most sta-
ble in the vicinity of φF = 45◦ for θF ∼ 60◦. The charac-
teristic density modulation of the cb-CDW and st-CDW
phase uniquely distinguishes them from the other phases
and may be detected via in-situ density imaging. The
BCS phase can be detected via pair correlation measure-
ments using noise spectroscopy [31]. Finally the BOSd
phase may be distinguished from BOSp by probing the
d-wave symmetry via the pump-probe scheme discussed
in Ref. [32]. Finally, in the presence of a trap potential,
the insulating plateau at half filling will be surrounded
by metallic regions. The approaches outlined here can
be employed to study dipolar Fermi gas away from half-
filling.
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How about the intermediate tilting angle
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Vx and Vy opposite in sign and comparable
in magnitude. What do the fermions do?

Settle to BCS or CDW? Neither? Both?



Three possible scenarios:

! Direct (1st order) transition from CDW to p-wave BCS superfluid. 

! Coexistence: density modulation + pairing = supersolid.

! Or, some other completely different animal.

Competing orders in interacting dipolar fermions 

The problem of competing order is at the heart of the many-body 
physics of dipolar fermions. 

Simple mean field theories or perturbation theories, such as single-channel  
Renormalization Group or Random Phase Approximation, are insufficient/unreliable to 
treat competing orders in the regime of intermediate tilting angle.

We need a theory that can treat all ordering instabilities on equal 
footing, without any a prior assumptions about dominant orders.



Functional Renormalization Group (FRG)

V ½!; !!" ¼ G½"; !"" þ lnZ0 % ð !"; G0"Þ; (18)

where ! ¼ G0" and !! ¼ Gt
0 !". Here Gt

0 is the transposed
bare propagator, that is, Gt

0ðx; x0Þ ¼ G0ðx0; xÞ. Hence, func-
tional derivatives of V ½!; !!" with respect to ! and !! gen-
erate connected Green functions with bare propagators
amputated from external legs in the corresponding
Feynman diagrams. The term lnZ0 % ð !"; G0"Þ cancels the
noninteracting part of G½ !";"" such that V ½!; !!" ¼ 0 for
V½c ; !c " ¼ 0. The effective interaction V can also be ex-
pressed via functional derivatives, instead of a functional
integral:

e%V ½!; !!" ¼ 1

Z0

Z
DcD !c eð !c ;G%1

0 c Þe%V½cþ!; !cþ !!"

¼ 1

Z0
e%V½@ !";@""

Z
DcD !c eð !c ;G%1

0 c Þ

( eð !";cþ!Þþð"; !cþ !!Þ
!!!!!!!!"; !"¼0

¼ e%V½@ !" ;@""eð !";G0"Þeð !";!Þþð"; !!Þ
!!!!!!!!"; !"¼0

¼ e%V½@ !" ;@""eð@!;G0@ !!Þeð !";!Þþð"; !!Þ
!!!!!!!!"; !"¼0

¼ e"G0 e%V½!; !!"; (19)

with the functional Laplacian

"G0
¼ ð@!; G0@ !!Þ ¼

X

x;x0

@

@!ðxÞG0ðx; x0Þ
@

@ !!ðx0Þ : (20)

It is sometimes convenient (see Sec. II.G) to combine the
fields c and !c in a Nambu-type field

#ðxÞ ¼
c ðxÞ
!c ðxÞ

 !
; (21)

and similarly for the source fields " and !",

HðxÞ ¼
"ðxÞ
% !"ðxÞ

 !
: (22)

The minus sign in the definition of H makes sure that the
source term ð !"; c Þ þ ð !c ;"Þ appearing in the definition of G,
and also in the Legendre transform relating G and $, can be
written concisely as ð !H;#Þ. In Nambu notation, the matrices
of second derivatives of G and $ have the compact form

Gð2Þ½H" ¼ % @2G
@ !HðxÞ@Hðx0Þ (23)

and

!ð2Þ½#" ¼ @2$

@ !#ðx0Þ@#ðxÞ
; (24)

respectively.

B. Exact fermionic flow equations

In this section we derive exact flow equations describing
the evolution of the generating functionals defined above,
as a function of a flow parameter % which parametrizes a

modification of the bare propagator G0. Usually % is an
infrared cutoff or another scale dependence. For example,
in a translation-invariant system one may impose a momen-
tum cutoff, modifying G0 to

G%
0 ðk0;kÞ ¼

#%ðkÞ
ik0 % $k

; (25)

where #%ðkÞ is a function that vanishes for j$kj ) % and
tends to one for j$kj * %. In this way the infrared singularity
of the propagator at k0 ¼ 0 and $k ¼ 0 (corresponding to
the noninteracting Fermi surface in k space) is cut off at the
scale %. A simple choice for #%ðkÞ, which was often used in
numerical solutions of truncated flow equations, is

#%ðkÞ ¼ &ðj$kj%%Þ; (26)

where & is the step function. With this choice momenta
close to the Fermi surface are strictly excluded, as illustrated
in Fig. 2 for a two-dimensional lattice fermion system.

Alternatively, one may also use a smooth cutoff function.
In the absence of translation invariance it is more convenient
to use a frequency cutoff instead of a momentum cutoff. The
cutoff excludes ’’soft modes’’ below the scale % from the
functional integral. Instead of a cutoff one can also choose
other flow parameters such as temperature. The various pos-
sibilities will be discussed more extensively in Sec. II.D. For
the derivation of the flow equations it does not matter howG%

0

depends on %.
The bare action constructed with G%

0 (instead of G0) is
denoted by S%½c ; !c ", and the generating functionals intro-
duced in Sec. II.A by G%½"; !"", V%½!; !!", and $%½c ; !c ",
respectively. The original functionals G,V , and $ are recov-
ered in the limit % ! 0.

In the presence of a cutoff, Eq. (19) becomes

e%V% ¼ e
"

G%
0 e%V: (27)

At the highest energy scale %0 one has G%0
0 ¼ 0, and thus

V%0 ¼ V. Hence, V% interpolates smoothly between the
bare interaction V and the generating functional V .
Introducing the soft mode propagator

!G%
0 ¼ G0 % G%

0 ; (28)

which has support on scales below %, we write

−π
−π 0 π

0

k y

k x

π

FIG. 2 (color online). Momentum space region around the Fermi
surface excluded by a sharp momentum cutoff for fermions with a
tight-binding dispersion on a two-dimensional square lattice
(lattice constant ¼ 1).
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FIG. 1: (Color online) Dipolar fermions on square lattice. (a) Schematic of the dipolar fermions confined to a square opti-
cal lattice potential. The induced dipole moment d points along the direction d̂ = cos θFẑ + sin θF cosφFx̂ + sin θF sinφFŷ.
(b)Phase diagram obtained via FRG indicating four phases: p-wave bond order solid (BOSp), d-wave bond order solid (BOSd),
checkerboard charge density wave (cb-CDW), and p-wave BCS superfluid (BCS); left panel– phase diagram in the θF-Vd plane
at φF = 0; right panel– phase diagram in the θF-φF plane at Vd = 0.5t. The phase boundary (solid line) is determined by the
abrupt change in the symmetry of the eigenvector of the dominant instability (see Fig. 2). The smooth crossover from cb-CDW
and BOSd is indicated by a gradual change of the color shading. (c)-(e) Schematic of the bond or density modulation pattern
for the BOSp, BOSd, and cb-CDW phase respectively.

these two critical points, ϑc1 and ϑc2, roughly set the
phase boundary between the checkerboard charge den-
sity wave (cb-CDW), BOSp, and the Bardeen-Cooper-
Schrieffer (BCS) superfluid phase, for the φF = 0 case.
We now discuss the T = 0 phase diagram at half

filling. First, we analyze the weakly interacting limit,
Vd < t, using FRG. In this approach, no assumptions
about possible dominant orders are necessary. Rather,
the method includes all processes near the Fermi surface
of the non-interacting system via the generalized 4-point
vertex function: U!(k1,k2,k3), where k1,2 (k3,4) are in-
coming (outgoing) momenta and k4 = k1+k2−k3. Here,
# is the renormalization group flow parameter that relates
the energy cutoff Λ to the initial cutoff Λ0 (chosen to be
4t) via Λ! = Λ0e−!. Starting with the bare vertex U0,
progressively tracing out the high energy degrees of free-
dom, a set of coupled integro-differential equations give
the FRG flow for all the vertices.
The renormalized vertex for specific channels of inter-

est, e.g.,

UNEST
! (k1,k2) = U!(k1,k2,k1 +Q),

UBCS
! (k1,k2) = U!(k1,−k1,k2),

}

(2)

are extracted by appropriately constraining the in-
coming and out-going momenta. Here Q = (π,±π) is
the nesting vector at half filling for the square lattice,
and UNEST

! is the same as UCDW
! of Ref. [24]. The chan-

nel matrix with the largest divergent eigenvalue λ cor-
responds to the most dominant instability of the Fermi
liquid. The corresponding eigenvector ψ defined on the
Fermi surface, indicates the symmetry of the incipient
order parameter associated with the instability.

We perform the FRG analysis for a range of values of
Vd, θF, and φF producing a 3D phase diagram, visualized
in Fig. 1(b) as slice cuts along two different planes. To
capture and emphasize the key elements of the phase dia-
gram, first we fix φF = 0, generating a 2D phase diagram
in the θF–Vd plane shown in the left panel of Fig. 1(b).
Next we fix Vd = 0.5t instead, yielding the θF–φF plane
shown in the right panel of Fig. 1(b).

The θF–Vd phase diagram shows the existence of three
phases separated by two critical angles θF = θ1 and θ2,
with no appreciable dependence on Vd. For 0 ≤ θF < θ1,
the nesting channel has the largest (most divergent)
eigenvalue λ. The corresponding eigenvector ψNEST, as
illustrated in top panel of Fig. 2(a), is almost constant
with only small modulation along the Fermi surface. This
implies the onset of CDW order with s-wave symmetry,
identified as a checkerboard modulation of on-site den-
sity, the cb-CDW shown in Fig. 1(e). The physical origin
of this phase can be traced by observing that θ1 ≈ ϑ1c,
thus Vx, Vy , V3 > 0 in this regime, allowing for a low
energy configuration with density concentrated on the
next-to-nearest neighbor sites, consistent with the per-
fect nesting of the Fermi surface. For θ2 ≤ θF ≤ 90◦, the
BCS channel exhibiting a p-wave symmetry is the most
diverging under FRG flow [see Fig. 2(a)]. In real space,
this corresponds to the onset of nearest neighbor pairing,
〈aiai+x̂〉 = −〈aiai−x̂〉 generated by couplings Vx and V3,
both becoming attractive for θF > θ2 ∼ ϑ2c. The super-
fluid phase here is the lattice analog of the p-wave BCS
phase discussed previously for continuum dipolar Fermi
gases [8, 14, 16].
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the nesting vector at half filling for the square lattice,
and UNEST

! is the same as UCDW
! of Ref. [24]. The chan-

nel matrix with the largest divergent eigenvalue λ cor-
responds to the most dominant instability of the Fermi
liquid. The corresponding eigenvector ψ defined on the
Fermi surface, indicates the symmetry of the incipient
order parameter associated with the instability.

We perform the FRG analysis for a range of values of
Vd, θF, and φF producing a 3D phase diagram, visualized
in Fig. 1(b) as slice cuts along two different planes. To
capture and emphasize the key elements of the phase dia-
gram, first we fix φF = 0, generating a 2D phase diagram
in the θF–Vd plane shown in the left panel of Fig. 1(b).
Next we fix Vd = 0.5t instead, yielding the θF–φF plane
shown in the right panel of Fig. 1(b).

The θF–Vd phase diagram shows the existence of three
phases separated by two critical angles θF = θ1 and θ2,
with no appreciable dependence on Vd. For 0 ≤ θF < θ1,
the nesting channel has the largest (most divergent)
eigenvalue λ. The corresponding eigenvector ψNEST, as
illustrated in top panel of Fig. 2(a), is almost constant
with only small modulation along the Fermi surface. This
implies the onset of CDW order with s-wave symmetry,
identified as a checkerboard modulation of on-site den-
sity, the cb-CDW shown in Fig. 1(e). The physical origin
of this phase can be traced by observing that θ1 ≈ ϑ1c,
thus Vx, Vy , V3 > 0 in this regime, allowing for a low
energy configuration with density concentrated on the
next-to-nearest neighbor sites, consistent with the per-
fect nesting of the Fermi surface. For θ2 ≤ θF ≤ 90◦, the
BCS channel exhibiting a p-wave symmetry is the most
diverging under FRG flow [see Fig. 2(a)]. In real space,
this corresponds to the onset of nearest neighbor pairing,
〈aiai+x̂〉 = −〈aiai−x̂〉 generated by couplings Vx and V3,
both becoming attractive for θF > θ2 ∼ ϑ2c. The super-
fluid phase here is the lattice analog of the p-wave BCS
phase discussed previously for continuum dipolar Fermi
gases [8, 14, 16].

Λ�



FRG applied to interacting dipolar fermions

! ! "

!"#$%&'#()*+,*-!+,.*/0%1'2!

+,*3)'4

5&6$70%&802
!079&*:"73($0

k1

k2

k1

k2

2

FIG. 1: (Color online) Dipolar fermions on square lattice. (a) Schematic of the dipolar fermions confined to a square opti-
cal lattice potential. The induced dipole moment d points along the direction d̂ = cos θFẑ + sin θF cosφFx̂ + sin θF sinφFŷ.
(b)Phase diagram obtained via FRG indicating four phases: p-wave bond order solid (BOSp), d-wave bond order solid (BOSd),
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abrupt change in the symmetry of the eigenvector of the dominant instability (see Fig. 2). The smooth crossover from cb-CDW
and BOSd is indicated by a gradual change of the color shading. (c)-(e) Schematic of the bond or density modulation pattern
for the BOSp, BOSd, and cb-CDW phase respectively.

these two critical points, ϑc1 and ϑc2, roughly set the
phase boundary between the checkerboard charge den-
sity wave (cb-CDW), BOSp, and the Bardeen-Cooper-
Schrieffer (BCS) superfluid phase, for the φF = 0 case.
We now discuss the T = 0 phase diagram at half

filling. First, we analyze the weakly interacting limit,
Vd < t, using FRG. In this approach, no assumptions
about possible dominant orders are necessary. Rather,
the method includes all processes near the Fermi surface
of the non-interacting system via the generalized 4-point
vertex function: U!(k1,k2,k3), where k1,2 (k3,4) are in-
coming (outgoing) momenta and k4 = k1+k2−k3. Here,
# is the renormalization group flow parameter that relates
the energy cutoff Λ to the initial cutoff Λ0 (chosen to be
4t) via Λ! = Λ0e−!. Starting with the bare vertex U0,
progressively tracing out the high energy degrees of free-
dom, a set of coupled integro-differential equations give
the FRG flow for all the vertices.
The renormalized vertex for specific channels of inter-

est, e.g.,

UNEST
! (k1,k2) = U!(k1,k2,k1 +Q),

UBCS
! (k1,k2) = U!(k1,−k1,k2),

}

(2)

are extracted by appropriately constraining the in-
coming and out-going momenta. Here Q = (π,±π) is
the nesting vector at half filling for the square lattice,
and UNEST

! is the same as UCDW
! of Ref. [24]. The chan-

nel matrix with the largest divergent eigenvalue λ cor-
responds to the most dominant instability of the Fermi
liquid. The corresponding eigenvector ψ defined on the
Fermi surface, indicates the symmetry of the incipient
order parameter associated with the instability.

We perform the FRG analysis for a range of values of
Vd, θF, and φF producing a 3D phase diagram, visualized
in Fig. 1(b) as slice cuts along two different planes. To
capture and emphasize the key elements of the phase dia-
gram, first we fix φF = 0, generating a 2D phase diagram
in the θF–Vd plane shown in the left panel of Fig. 1(b).
Next we fix Vd = 0.5t instead, yielding the θF–φF plane
shown in the right panel of Fig. 1(b).

The θF–Vd phase diagram shows the existence of three
phases separated by two critical angles θF = θ1 and θ2,
with no appreciable dependence on Vd. For 0 ≤ θF < θ1,
the nesting channel has the largest (most divergent)
eigenvalue λ. The corresponding eigenvector ψNEST, as
illustrated in top panel of Fig. 2(a), is almost constant
with only small modulation along the Fermi surface. This
implies the onset of CDW order with s-wave symmetry,
identified as a checkerboard modulation of on-site den-
sity, the cb-CDW shown in Fig. 1(e). The physical origin
of this phase can be traced by observing that θ1 ≈ ϑ1c,
thus Vx, Vy , V3 > 0 in this regime, allowing for a low
energy configuration with density concentrated on the
next-to-nearest neighbor sites, consistent with the per-
fect nesting of the Fermi surface. For θ2 ≤ θF ≤ 90◦, the
BCS channel exhibiting a p-wave symmetry is the most
diverging under FRG flow [see Fig. 2(a)]. In real space,
this corresponds to the onset of nearest neighbor pairing,
〈aiai+x̂〉 = −〈aiai−x̂〉 generated by couplings Vx and V3,
both becoming attractive for θF > θ2 ∼ ϑ2c. The super-
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dom, a set of coupled integro-differential equations give
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are extracted by appropriately constraining the in-
coming and out-going momenta. Here Q = (π,±π) is
the nesting vector at half filling for the square lattice,
and UNEST

! is the same as UCDW
! of Ref. [24]. The chan-

nel matrix with the largest divergent eigenvalue λ cor-
responds to the most dominant instability of the Fermi
liquid. The corresponding eigenvector ψ defined on the
Fermi surface, indicates the symmetry of the incipient
order parameter associated with the instability.

We perform the FRG analysis for a range of values of
Vd, θF, and φF producing a 3D phase diagram, visualized
in Fig. 1(b) as slice cuts along two different planes. To
capture and emphasize the key elements of the phase dia-
gram, first we fix φF = 0, generating a 2D phase diagram
in the θF–Vd plane shown in the left panel of Fig. 1(b).
Next we fix Vd = 0.5t instead, yielding the θF–φF plane
shown in the right panel of Fig. 1(b).

The θF–Vd phase diagram shows the existence of three
phases separated by two critical angles θF = θ1 and θ2,
with no appreciable dependence on Vd. For 0 ≤ θF < θ1,
the nesting channel has the largest (most divergent)
eigenvalue λ. The corresponding eigenvector ψNEST, as
illustrated in top panel of Fig. 2(a), is almost constant
with only small modulation along the Fermi surface. This
implies the onset of CDW order with s-wave symmetry,
identified as a checkerboard modulation of on-site den-
sity, the cb-CDW shown in Fig. 1(e). The physical origin
of this phase can be traced by observing that θ1 ≈ ϑ1c,
thus Vx, Vy , V3 > 0 in this regime, allowing for a low
energy configuration with density concentrated on the
next-to-nearest neighbor sites, consistent with the per-
fect nesting of the Fermi surface. For θ2 ≤ θF ≤ 90◦, the
BCS channel exhibiting a p-wave symmetry is the most
diverging under FRG flow [see Fig. 2(a)]. In real space,
this corresponds to the onset of nearest neighbor pairing,
〈aiai+x̂〉 = −〈aiai−x̂〉 generated by couplings Vx and V3,
both becoming attractive for θF > θ2 ∼ ϑ2c. The super-
fluid phase here is the lattice analog of the p-wave BCS
phase discussed previously for continuum dipolar Fermi
gases [8, 14, 16].

BCS Channel CDW Channel

FRG keeps track of all effective interactions as the high energy modes are 
traced out, including the p-p and p-h channel, as well as their subtle interplay. 
Especially, we are interested in the BCS and the CDW channel.

The most dominant instability can be inferred from the most diverging 
eigenvalue of U, which is a matrix of k1 and k2. The corresponding eigenvector 
indicates the symmetry of the incipient order.
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FIG. 2: (Color online) FRG results for Vd = 0.5t. The FRG is implemented numerically by discretizing the Fermi surface
into 32 patches distributed at equally spaced angular points. (a) Top, middle and bottom panels represent FRG results for
(θF,φF) = (30◦, 0), (42◦, 0) and (70◦, 0) respectively. Left column: the largest eigenvalue λ of the NEST (dashed line) and BCS
(solid line) channel. Right column: the corresponding eigenvector ψ of the most diverging channel as function of ξ, the angle of
the discrete k points on the Fermi surface defined by tan ξ = ky/kx, plotted with square markers. (b) Top, middle and bottom
panel represent FRG results for (θF, φF) = (62◦, 40◦), (46◦, 40◦) and (38◦, 40◦) plotted using square markers. The fit is shown
in solid line. As θF is increased, ψ smoothly changes from nodeless for θF ! 46◦ to one with nodes for θF " 46◦.

Finally the intermediate regime, θ1 ≤ θF < θ2, is the
most intriguing. The FRG predicts a leading instabil-
ity in the nesting channel, similar to the cb-CDW, but
instead with a p-wave symmetry, ψNEST(k) ∼ χ(k) =
χ0 sin ky, as shown in middle panel of Fig. 2(a). This
result suggests a broken symmetry phase, shown in
Fig. 1(c), with periodic modulation of 〈a†iai+ŷ − χy〉 =

−〈a†iai−ŷ − χy〉 = δ(−1)ix+iy , where χy is average of

〈a†iai+ŷ〉 over all bonds. We observe that the nesting vec-
torQ is consistent with the checkerboard pattern of bond
variable representing nearest-neighbor hopping. We re-
fer to this broken symmetry phase as the p-wave bond
order solid (BOSp). Phases with similar, but manifestly
different bond order patterns were conjectured by Nayak
and referred to as p-density waves [30].
The right panel of Fig. 1(b), θF–φF phase diagram at

fixed interaction strength, Vd = 0.5t, shows the three
phases above for small values of φF. However, as φF

is increased towards 45◦, the BOSp region shrinks and
eventually disappears beyond φF ∼ 35◦. Such change
is due to the new features in the dipolar interactions
for φF close to 45◦, where Vx ∼ Vy , but the next-to-
nearest neighbor interaction along x̂ + ŷ and x̂ − ŷ de-
velop opposite sign. We find that for such large values
of φF ∼ 45◦, the eigenvector can be fit very well by
ψNEST(k) = α + β[cos kx cos ky + sinkx sin ky], as seen
in the right panel of Fig. 2(b). As θF is increased, the
constant term α, which describes the density modula-
tion of cb-CDW order, is gradually reduced, while the
magnitude of β increases. In the green shaded region
in Fig. 1(b), α/β drops gradually from 1 to 0 as θF is
increased toward the phase boundary to BCS. We re-

fer to this region where the cos kx cos ky and sinkx sin ky
components of ψNEST dominant as the d-wave bond or-
der solid (BOSd). In this phase, the density and the
nearest hopping 〈a†iai+x̂/ŷ〉 are homogeneous. But the
dipolar interaction induces an effective diagonal hopping,
〈a†iai−x̂+ŷ〉, a bond variable with amplitude proportional
to β and spatial pattern shown schematically in Fig. 1(d).
BOSd found here differs from the dxy-density wave con-
jectured in Ref. [30].

To firmly pin down the nature of the phases, we com-
plement the FRG analysis with SCMF theory (see Ref.
[26]) on a square lattice of finite size L × L with period
boundary condition by defining the normal and pair den-
sity matrices ρij = 〈a†jai〉 and mij = 〈aiaj〉 respectively.
The corresponding mean fields are then given by χji =
−
∑

kl〈jk|Vdd|li〉ρlk and ∆ij = − 1
2

∑

kl〈ij|Vdd|kl〉mlk.
The dipole interaction is retained up to a distance of
10aL. We search for the ground state iteratively by start-
ing with an initial guess for ρ and m, until desired con-
vergence is reached. The phase boundaries are obtained
by comparing the thermodynamic potential for various
converged solutions (see Supplementary Material). The
chemical potential is tuned to maintain half filling. And
the lattice size L > 20aL is varied to check the results do
not depend on the choice of L.

The SCMF phase diagram for φF = 0, shown in Fig. 3,
confirms the existence and interpretation of the three
phases found in the FRG analysis. The phase boundaries
are in qualitative agreement with those from FRG. SCMF
for non-zero φF also identifies the BOSd as a phase with
the bond modulation pattern illustrated in Fig. 1(d). We
caution that the SCMF phase diagram is only suggestive.
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Figure 3: Self-consistent mean field theory and exact diagonalization complement the FRG to
identify each phase, go beyond weak coupling, and study effects of finite temperature and trap potential.
a) Mean field phase diagram obtained for a 32 × 32 lattice with periodic boundary condition with φF = 0,
Vd = 0.5t. It is in good agreement with FRG. Shown on the left are representatives of the on-site density
ρii = �a†iai�, the nearest neighbor hopping ρij = �a†jai� (with j = i + x̂ or j = i + ŷ), or the pairing gap
∆ij = − 1

2

�
kl Vjikl�alak�. b) Schematic of the BOSp phase confirmed in mean field theory. c) Comparison

of the BOSp order parameter obtained from mean field theory and from exact diagonalization (ED).

is reached. The phase boundary is determined by comparing the free energy of different converged
solutions, F = Tr [(−t− µ1 + χ)ρ−∆m∗]− 1

4

�
ijkl Vijkl(2ρkiρlj−m∗

jimlk). µ is tuned to maintain
half-filling, and the lattice size L is varied to ensure that the results are not sensitive to L.

Exact diagonalization is carried out for the 2×8 and 4×4 lattice with periodic boundary condition
(the dimension of the Hilbert space is 12, 870). The ground state is obtained by the Lanczos algo-
rithm, and the kinetic correlation function C(i, j) = �Ki,i+yKj,j+y�−�Ki,i+y��Kj,j+y� is computed,
where Ki,j ≡ (a†

iaj + h.c.), see Fig. 3b. Long-range bond order is signaled by C(i, j) approaching
constant 4δ2, where δ is the bond modulation along y, for large |i− j|. Fig. 3c compares the results
from exact diagonalization and mean field theory. Mean field theory overestimates the magnitude
of δ for intermediate and large values of Vd/t. Exact diagonalization indicates that the bond order
is suppressed for Vd � t. Thus, the best place to observe the bond order is around Vd/t ∼ 2.5 in
the case of φF = 0. We plan to investigate systems of larger size and carry out systematic finite
size scaling analysis.

2.5 Qualification of PI

PI has a broad grasp of cold atoms and condensed matter theory. He worked on nonequilib-
rium superconductivity (as a PhD student) and strongly correlated systems (in his first postdoc).
His research in the past 5 years has focused on the many-body physics of cold atoms, e.g., one-
dimensional and quasi-one-dimensional Fermi gases with spin imbalance [56, 57, 58], strongly in-
teracting fermions on higher orbital bands [59, 60, 61], and dipolar Fermi gases [32, 33, 35]. His
consistent publication record testifies his ability to lead independent research, to forge and manage
collaborations, and to formulate and solve technically challenging problems.

In concluding the first part of the proposal, we have argued that dipolar Fermi gas is a new
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Such p-wave instability in the CDW channel corresponds to a spatial 
modulation of “bonds”, more precisely, the average of hopping

�a†iai+y�
How can such bond order save energy?

A mean field perspective:
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FIG. 3: (Color online) SCMF phase diagram. Shown on the
left are representatives of the on-site density ρii, the nearest
neighbor hopping ρij (with j = i + x̂ or j = i + ŷ), or the
pairing gap ∆ij corresponding to the four phases at Vd = 0.5t.
Lattice size is 32× 32.

For example, SCMF predicts an additional striped den-
sity wave phase, the st-CDW, which is not expected to
survive at Vd ! t. This illustrates that SCMF is insuf-
ficient to describe competing orders as opposed to FRG.
The possibility of st-CDW and collapse instability be-
yond the weak coupling regime is further discussed in
the supplementary material.
We now provide some intuitive understanding of the

bond order phases by considering a simplified mean field
version of Eq. (1), keeping only the nearest neighbor in-
teractions Vx and Vy . The mean field decoupling of the

interaction term gives −ninj ∼ a†iaja
†
jai → ρija

†
jai +

h.c.− |ρij |2. The modulation of the bond variable, ρij =

〈a†iaj〉, in the BOSp phase at φF = 0 has the form show
in Fig. 1(c), ρi,i±x̂ = χx, ρi,i±ŷ = χy ± δ. The mean field

Hamiltonian can be written as HR = −2
∑

k
χkb

†
k
ak +

h.c., up to a constant term. Here ak and bk are fermion
annihilation operators defined separately on two sub-
lattices related by the lattice translation vector aLx̂, and
χk = (t + Vxχx) cos kx + (t + Vyχy) cos ky − iVyδ sin ky.
The ground state energy per unit cell is then given by
EGS = −2(χx+χy)(t+Vx+Vy)− 2Vyδ2, clearly indicat-
ing that finite bond modulation δ is energetically favored
for positive Vy. The φF = 90◦ situation is identical, only
with x and y axis interchanged, and hence a 90◦ rotated
bond pattern. Thus, the BOSd phase, with checkerboard
pattern of next-to-nearest bonds near φF = 45◦, natu-
rally connects the two BOSp phases on either side.
The bond modulation δ, the energy gap, and the tran-

sition temperature Tc of the BOSp phase increase with Vd

for weak coupling. Exact diagonalization of Eq. (1) on a
2×8 and 4×4 cluster with periodic boundary conditions
shows that the optimal place to observe the BOSp is at

intermediate interaction and tilt angle, e.g. Vd ∼ 2.5t
and (θF,φF) = (45◦, 0◦), where the energy gap, and thus
Tc, is maximal. Mean field theory estimates an optimal
Tc ∼ 0.23t, or about 0.05EF for half filling, which is not
too far from the temperature achieved in Dy experiment,
T ∼ 0.25EF [5]. The BOSd on the other hand is most sta-
ble in the vicinity of φF = 45◦ for θF ∼ 60◦. The charac-
teristic density modulation of the cb-CDW and st-CDW
phase uniquely distinguishes them from the other phases
and may be detected via in-situ density imaging. The
BCS phase can be detected via pair correlation measure-
ments using noise spectroscopy [31]. Finally the BOSd
phase may be distinguished from BOSp by probing the
d-wave symmetry via the pump-probe scheme discussed
in Ref. [32]. Finally, in the presence of a trap potential,
the insulating plateau at half filling will be surrounded
by metallic regions. The approaches outlined here can
be employed to study dipolar Fermi gas away from half-
filling.
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pairing gap ∆ij corresponding to the four phases at Vd = 0.5t.
Lattice size is 32× 32.

For example, SCMF predicts an additional striped den-
sity wave phase, the st-CDW, which is not expected to
survive at Vd ! t. This illustrates that SCMF is insuf-
ficient to describe competing orders as opposed to FRG.
The possibility of st-CDW and collapse instability be-
yond the weak coupling regime is further discussed in
the supplementary material.
We now provide some intuitive understanding of the

bond order phases by considering a simplified mean field
version of Eq. (1), keeping only the nearest neighbor in-
teractions Vx and Vy . The mean field decoupling of the

interaction term gives −ninj ∼ a†iaja
†
jai → ρija

†
jai +

h.c.− |ρij |2. The modulation of the bond variable, ρij =

〈a†iaj〉, in the BOSp phase at φF = 0 has the form show
in Fig. 1(c), ρi,i±x̂ = χx, ρi,i±ŷ = χy ± δ. The mean field

Hamiltonian can be written as HR = −2
∑

k
χkb

†
k
ak +

h.c., up to a constant term. Here ak and bk are fermion
annihilation operators defined separately on two sub-
lattices related by the lattice translation vector aLx̂, and
χk = (t + Vxχx) cos kx + (t + Vyχy) cos ky − iVyδ sin ky.
The ground state energy per unit cell is then given by
EGS = −2(χx+χy)(t+Vx+Vy)− 2Vyδ2, clearly indicat-
ing that finite bond modulation δ is energetically favored
for positive Vy. The φF = 90◦ situation is identical, only
with x and y axis interchanged, and hence a 90◦ rotated
bond pattern. Thus, the BOSd phase, with checkerboard
pattern of next-to-nearest bonds near φF = 45◦, natu-
rally connects the two BOSp phases on either side.
The bond modulation δ, the energy gap, and the tran-

sition temperature Tc of the BOSp phase increase with Vd

for weak coupling. Exact diagonalization of Eq. (1) on a
2×8 and 4×4 cluster with periodic boundary conditions
shows that the optimal place to observe the BOSp is at

intermediate interaction and tilt angle, e.g. Vd ∼ 2.5t
and (θF,φF) = (45◦, 0◦), where the energy gap, and thus
Tc, is maximal. Mean field theory estimates an optimal
Tc ∼ 0.23t, or about 0.05EF for half filling, which is not
too far from the temperature achieved in Dy experiment,
T ∼ 0.25EF [5]. The BOSd on the other hand is most sta-
ble in the vicinity of φF = 45◦ for θF ∼ 60◦. The charac-
teristic density modulation of the cb-CDW and st-CDW
phase uniquely distinguishes them from the other phases
and may be detected via in-situ density imaging. The
BCS phase can be detected via pair correlation measure-
ments using noise spectroscopy [31]. Finally the BOSd
phase may be distinguished from BOSp by probing the
d-wave symmetry via the pump-probe scheme discussed
in Ref. [32]. Finally, in the presence of a trap potential,
the insulating plateau at half filling will be surrounded
by metallic regions. The approaches outlined here can
be employed to study dipolar Fermi gas away from half-
filling.
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For example, SCMF predicts an additional striped den-
sity wave phase, the st-CDW, which is not expected to
survive at Vd ! t. This illustrates that SCMF is insuf-
ficient to describe competing orders as opposed to FRG.
The possibility of st-CDW and collapse instability be-
yond the weak coupling regime is further discussed in
the supplementary material.
We now provide some intuitive understanding of the

bond order phases by considering a simplified mean field
version of Eq. (1), keeping only the nearest neighbor in-
teractions Vx and Vy . The mean field decoupling of the

interaction term gives −ninj ∼ a†iaja
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jai → ρija

†
jai +

h.c.− |ρij |2. The modulation of the bond variable, ρij =

〈a†iaj〉, in the BOSp phase at φF = 0 has the form show
in Fig. 1(c), ρi,i±x̂ = χx, ρi,i±ŷ = χy ± δ. The mean field

Hamiltonian can be written as HR = −2
∑
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h.c., up to a constant term. Here ak and bk are fermion
annihilation operators defined separately on two sub-
lattices related by the lattice translation vector aLx̂, and
χk = (t + Vxχx) cos kx + (t + Vyχy) cos ky − iVyδ sin ky.
The ground state energy per unit cell is then given by
EGS = −2(χx+χy)(t+Vx+Vy)− 2Vyδ2, clearly indicat-
ing that finite bond modulation δ is energetically favored
for positive Vy. The φF = 90◦ situation is identical, only
with x and y axis interchanged, and hence a 90◦ rotated
bond pattern. Thus, the BOSd phase, with checkerboard
pattern of next-to-nearest bonds near φF = 45◦, natu-
rally connects the two BOSp phases on either side.
The bond modulation δ, the energy gap, and the tran-

sition temperature Tc of the BOSp phase increase with Vd

for weak coupling. Exact diagonalization of Eq. (1) on a
2×8 and 4×4 cluster with periodic boundary conditions
shows that the optimal place to observe the BOSp is at

intermediate interaction and tilt angle, e.g. Vd ∼ 2.5t
and (θF,φF) = (45◦, 0◦), where the energy gap, and thus
Tc, is maximal. Mean field theory estimates an optimal
Tc ∼ 0.23t, or about 0.05EF for half filling, which is not
too far from the temperature achieved in Dy experiment,
T ∼ 0.25EF [5]. The BOSd on the other hand is most sta-
ble in the vicinity of φF = 45◦ for θF ∼ 60◦. The charac-
teristic density modulation of the cb-CDW and st-CDW
phase uniquely distinguishes them from the other phases
and may be detected via in-situ density imaging. The
BCS phase can be detected via pair correlation measure-
ments using noise spectroscopy [31]. Finally the BOSd
phase may be distinguished from BOSp by probing the
d-wave symmetry via the pump-probe scheme discussed
in Ref. [32]. Finally, in the presence of a trap potential,
the insulating plateau at half filling will be surrounded
by metallic regions. The approaches outlined here can
be employed to study dipolar Fermi gas away from half-
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Phase diagram (T=0, half-filling, ϕF=0) 2

FIG. 1: (Color online) Dipolar fermions on square lattice. (a) Schematic of the dipolar fermions confined to a square opti-
cal lattice potential. The induced dipole moment d points along the direction d̂ = cos θFẑ + sin θF cosφFx̂ + sin θF sinφFŷ.
(b)Phase diagram obtained via FRG indicating four phases: p-wave bond order solid (BOSp), d-wave bond order solid (BOSd),
checkerboard charge density wave (cb-CDW), and p-wave BCS superfluid (BCS); left panel– phase diagram in the θF-Vd plane
at φF = 0; right panel– phase diagram in the θF-φF plane at Vd = 0.5t. The phase boundary (solid line) is determined by the
abrupt change in the symmetry of the eigenvector of the dominant instability (see Fig. 2). The smooth crossover from cb-CDW
and BOSd is indicated by a gradual change of the color shading. (c)-(e) Schematic of the bond or density modulation pattern
for the BOSp, BOSd, and cb-CDW phase respectively.

these two critical points, ϑc1 and ϑc2, roughly set the
phase boundary between the checkerboard charge den-
sity wave (cb-CDW), BOSp, and the Bardeen-Cooper-
Schrieffer (BCS) superfluid phase, for the φF = 0 case.
We now discuss the T = 0 phase diagram at half

filling. First, we analyze the weakly interacting limit,
Vd < t, using FRG. In this approach, no assumptions
about possible dominant orders are necessary. Rather,
the method includes all processes near the Fermi surface
of the non-interacting system via the generalized 4-point
vertex function: U!(k1,k2,k3), where k1,2 (k3,4) are in-
coming (outgoing) momenta and k4 = k1+k2−k3. Here,
# is the renormalization group flow parameter that relates
the energy cutoff Λ to the initial cutoff Λ0 (chosen to be
4t) via Λ! = Λ0e−!. Starting with the bare vertex U0,
progressively tracing out the high energy degrees of free-
dom, a set of coupled integro-differential equations give
the FRG flow for all the vertices.
The renormalized vertex for specific channels of inter-

est, e.g.,

UNEST
! (k1,k2) = U!(k1,k2,k1 +Q),

UBCS
! (k1,k2) = U!(k1,−k1,k2),

}

(2)

are extracted by appropriately constraining the in-
coming and out-going momenta. Here Q = (π,±π) is
the nesting vector at half filling for the square lattice,
and UNEST

! is the same as UCDW
! of Ref. [24]. The chan-

nel matrix with the largest divergent eigenvalue λ cor-
responds to the most dominant instability of the Fermi
liquid. The corresponding eigenvector ψ defined on the
Fermi surface, indicates the symmetry of the incipient
order parameter associated with the instability.

We perform the FRG analysis for a range of values of
Vd, θF, and φF producing a 3D phase diagram, visualized
in Fig. 1(b) as slice cuts along two different planes. To
capture and emphasize the key elements of the phase dia-
gram, first we fix φF = 0, generating a 2D phase diagram
in the θF–Vd plane shown in the left panel of Fig. 1(b).
Next we fix Vd = 0.5t instead, yielding the θF–φF plane
shown in the right panel of Fig. 1(b).

The θF–Vd phase diagram shows the existence of three
phases separated by two critical angles θF = θ1 and θ2,
with no appreciable dependence on Vd. For 0 ≤ θF < θ1,
the nesting channel has the largest (most divergent)
eigenvalue λ. The corresponding eigenvector ψNEST, as
illustrated in top panel of Fig. 2(a), is almost constant
with only small modulation along the Fermi surface. This
implies the onset of CDW order with s-wave symmetry,
identified as a checkerboard modulation of on-site den-
sity, the cb-CDW shown in Fig. 1(e). The physical origin
of this phase can be traced by observing that θ1 ≈ ϑ1c,
thus Vx, Vy , V3 > 0 in this regime, allowing for a low
energy configuration with density concentrated on the
next-to-nearest neighbor sites, consistent with the per-
fect nesting of the Fermi surface. For θ2 ≤ θF ≤ 90◦, the
BCS channel exhibiting a p-wave symmetry is the most
diverging under FRG flow [see Fig. 2(a)]. In real space,
this corresponds to the onset of nearest neighbor pairing,
〈aiai+x̂〉 = −〈aiai−x̂〉 generated by couplings Vx and V3,
both becoming attractive for θF > θ2 ∼ ϑ2c. The super-
fluid phase here is the lattice analog of the p-wave BCS
phase discussed previously for continuum dipolar Fermi
gases [8, 14, 16].
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FIG. 3: (Color online) SCMF phase diagram. Shown on the
left are representatives of the on-site density ρii, the nearest
neighbor hopping ρij (with j = i + x̂ or j = i + ŷ), or the
pairing gap ∆ij corresponding to the four phases at Vd = 0.5t.
Lattice size is 32× 32.

For example, SCMF predicts an additional striped den-
sity wave phase, the st-CDW, which is not expected to
survive at Vd ! t. This illustrates that SCMF is insuf-
ficient to describe competing orders as opposed to FRG.
The possibility of st-CDW and collapse instability be-
yond the weak coupling regime is further discussed in
the supplementary material.
We now provide some intuitive understanding of the

bond order phases by considering a simplified mean field
version of Eq. (1), keeping only the nearest neighbor in-
teractions Vx and Vy . The mean field decoupling of the

interaction term gives −ninj ∼ a†iaja
†
jai → ρija

†
jai +

h.c.− |ρij |2. The modulation of the bond variable, ρij =

〈a†iaj〉, in the BOSp phase at φF = 0 has the form show
in Fig. 1(c), ρi,i±x̂ = χx, ρi,i±ŷ = χy ± δ. The mean field

Hamiltonian can be written as HR = −2
∑

k
χkb

†
k
ak +

h.c., up to a constant term. Here ak and bk are fermion
annihilation operators defined separately on two sub-
lattices related by the lattice translation vector aLx̂, and
χk = (t + Vxχx) cos kx + (t + Vyχy) cos ky − iVyδ sin ky.
The ground state energy per unit cell is then given by
EGS = −2(χx+χy)(t+Vx+Vy)− 2Vyδ2, clearly indicat-
ing that finite bond modulation δ is energetically favored
for positive Vy. The φF = 90◦ situation is identical, only
with x and y axis interchanged, and hence a 90◦ rotated
bond pattern. Thus, the BOSd phase, with checkerboard
pattern of next-to-nearest bonds near φF = 45◦, natu-
rally connects the two BOSp phases on either side.
The bond modulation δ, the energy gap, and the tran-

sition temperature Tc of the BOSp phase increase with Vd

for weak coupling. Exact diagonalization of Eq. (1) on a
2×8 and 4×4 cluster with periodic boundary conditions
shows that the optimal place to observe the BOSp is at

intermediate interaction and tilt angle, e.g. Vd ∼ 2.5t
and (θF,φF) = (45◦, 0◦), where the energy gap, and thus
Tc, is maximal. Mean field theory estimates an optimal
Tc ∼ 0.23t, or about 0.05EF for half filling, which is not
too far from the temperature achieved in Dy experiment,
T ∼ 0.25EF [5]. The BOSd on the other hand is most sta-
ble in the vicinity of φF = 45◦ for θF ∼ 60◦. The charac-
teristic density modulation of the cb-CDW and st-CDW
phase uniquely distinguishes them from the other phases
and may be detected via in-situ density imaging. The
BCS phase can be detected via pair correlation measure-
ments using noise spectroscopy [31]. Finally the BOSd
phase may be distinguished from BOSp by probing the
d-wave symmetry via the pump-probe scheme discussed
in Ref. [32]. Finally, in the presence of a trap potential,
the insulating plateau at half filling will be surrounded
by metallic regions. The approaches outlined here can
be employed to study dipolar Fermi gas away from half-
filling.
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For example, SCMF predicts an additional striped den-
sity wave phase, the st-CDW, which is not expected to
survive at Vd ! t. This illustrates that SCMF is insuf-
ficient to describe competing orders as opposed to FRG.
The possibility of st-CDW and collapse instability be-
yond the weak coupling regime is further discussed in
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χk = (t + Vxχx) cos kx + (t + Vyχy) cos ky − iVyδ sin ky.
The ground state energy per unit cell is then given by
EGS = −2(χx+χy)(t+Vx+Vy)− 2Vyδ2, clearly indicat-
ing that finite bond modulation δ is energetically favored
for positive Vy. The φF = 90◦ situation is identical, only
with x and y axis interchanged, and hence a 90◦ rotated
bond pattern. Thus, the BOSd phase, with checkerboard
pattern of next-to-nearest bonds near φF = 45◦, natu-
rally connects the two BOSp phases on either side.
The bond modulation δ, the energy gap, and the tran-

sition temperature Tc of the BOSp phase increase with Vd

for weak coupling. Exact diagonalization of Eq. (1) on a
2×8 and 4×4 cluster with periodic boundary conditions
shows that the optimal place to observe the BOSp is at
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and (θF,φF) = (45◦, 0◦), where the energy gap, and thus
Tc, is maximal. Mean field theory estimates an optimal
Tc ∼ 0.23t, or about 0.05EF for half filling, which is not
too far from the temperature achieved in Dy experiment,
T ∼ 0.25EF [5]. The BOSd on the other hand is most sta-
ble in the vicinity of φF = 45◦ for θF ∼ 60◦. The charac-
teristic density modulation of the cb-CDW and st-CDW
phase uniquely distinguishes them from the other phases
and may be detected via in-situ density imaging. The
BCS phase can be detected via pair correlation measure-
ments using noise spectroscopy [31]. Finally the BOSd
phase may be distinguished from BOSp by probing the
d-wave symmetry via the pump-probe scheme discussed
in Ref. [32]. Finally, in the presence of a trap potential,
the insulating plateau at half filling will be surrounded
by metallic regions. The approaches outlined here can
be employed to study dipolar Fermi gas away from half-
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Phase diagram for general dipole tilting 2

FIG. 1: (Color online) Dipolar fermions on square lattice. (a) Schematic of the dipolar fermions confined to a square opti-
cal lattice potential. The induced dipole moment d points along the direction d̂ = cos θFẑ + sin θF cosφFx̂ + sin θF sinφFŷ.
(b)Phase diagram obtained via FRG indicating four phases: p-wave bond order solid (BOSp), d-wave bond order solid (BOSd),
checkerboard charge density wave (cb-CDW), and p-wave BCS superfluid (BCS); left panel– phase diagram in the θF-Vd plane
at φF = 0; right panel– phase diagram in the θF-φF plane at Vd = 0.5t. The phase boundary (solid line) is determined by the
abrupt change in the symmetry of the eigenvector of the dominant instability (see Fig. 2). The smooth crossover from cb-CDW
and BOSd is indicated by a gradual change of the color shading. (c)-(e) Schematic of the bond or density modulation pattern
for the BOSp, BOSd, and cb-CDW phase respectively.

these two critical points, ϑc1 and ϑc2, roughly set the
phase boundary between the checkerboard charge den-
sity wave (cb-CDW), BOSp, and the Bardeen-Cooper-
Schrieffer (BCS) superfluid phase, for the φF = 0 case.
We now discuss the T = 0 phase diagram at half

filling. First, we analyze the weakly interacting limit,
Vd < t, using FRG. In this approach, no assumptions
about possible dominant orders are necessary. Rather,
the method includes all processes near the Fermi surface
of the non-interacting system via the generalized 4-point
vertex function: U!(k1,k2,k3), where k1,2 (k3,4) are in-
coming (outgoing) momenta and k4 = k1+k2−k3. Here,
# is the renormalization group flow parameter that relates
the energy cutoff Λ to the initial cutoff Λ0 (chosen to be
4t) via Λ! = Λ0e−!. Starting with the bare vertex U0,
progressively tracing out the high energy degrees of free-
dom, a set of coupled integro-differential equations give
the FRG flow for all the vertices.
The renormalized vertex for specific channels of inter-

est, e.g.,

UNEST
! (k1,k2) = U!(k1,k2,k1 +Q),

UBCS
! (k1,k2) = U!(k1,−k1,k2),

}

(2)

are extracted by appropriately constraining the in-
coming and out-going momenta. Here Q = (π,±π) is
the nesting vector at half filling for the square lattice,
and UNEST

! is the same as UCDW
! of Ref. [24]. The chan-

nel matrix with the largest divergent eigenvalue λ cor-
responds to the most dominant instability of the Fermi
liquid. The corresponding eigenvector ψ defined on the
Fermi surface, indicates the symmetry of the incipient
order parameter associated with the instability.

We perform the FRG analysis for a range of values of
Vd, θF, and φF producing a 3D phase diagram, visualized
in Fig. 1(b) as slice cuts along two different planes. To
capture and emphasize the key elements of the phase dia-
gram, first we fix φF = 0, generating a 2D phase diagram
in the θF–Vd plane shown in the left panel of Fig. 1(b).
Next we fix Vd = 0.5t instead, yielding the θF–φF plane
shown in the right panel of Fig. 1(b).

The θF–Vd phase diagram shows the existence of three
phases separated by two critical angles θF = θ1 and θ2,
with no appreciable dependence on Vd. For 0 ≤ θF < θ1,
the nesting channel has the largest (most divergent)
eigenvalue λ. The corresponding eigenvector ψNEST, as
illustrated in top panel of Fig. 2(a), is almost constant
with only small modulation along the Fermi surface. This
implies the onset of CDW order with s-wave symmetry,
identified as a checkerboard modulation of on-site den-
sity, the cb-CDW shown in Fig. 1(e). The physical origin
of this phase can be traced by observing that θ1 ≈ ϑ1c,
thus Vx, Vy , V3 > 0 in this regime, allowing for a low
energy configuration with density concentrated on the
next-to-nearest neighbor sites, consistent with the per-
fect nesting of the Fermi surface. For θ2 ≤ θF ≤ 90◦, the
BCS channel exhibiting a p-wave symmetry is the most
diverging under FRG flow [see Fig. 2(a)]. In real space,
this corresponds to the onset of nearest neighbor pairing,
〈aiai+x̂〉 = −〈aiai−x̂〉 generated by couplings Vx and V3,
both becoming attractive for θF > θ2 ∼ ϑ2c. The super-
fluid phase here is the lattice analog of the p-wave BCS
phase discussed previously for continuum dipolar Fermi
gases [8, 14, 16].
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(b)Phase diagram obtained via FRG indicating four phases: p-wave bond order solid (BOSp), d-wave bond order solid (BOSd),
checkerboard charge density wave (cb-CDW), and p-wave BCS superfluid (BCS); left panel– phase diagram in the θF-Vd plane
at φF = 0; right panel– phase diagram in the θF-φF plane at Vd = 0.5t. The phase boundary (solid line) is determined by the
abrupt change in the symmetry of the eigenvector of the dominant instability (see Fig. 2). The smooth crossover from cb-CDW
and BOSd is indicated by a gradual change of the color shading. (c)-(e) Schematic of the bond or density modulation pattern
for the BOSp, BOSd, and cb-CDW phase respectively.

these two critical points, ϑc1 and ϑc2, roughly set the
phase boundary between the checkerboard charge den-
sity wave (cb-CDW), BOSp, and the Bardeen-Cooper-
Schrieffer (BCS) superfluid phase, for the φF = 0 case.
We now discuss the T = 0 phase diagram at half

filling. First, we analyze the weakly interacting limit,
Vd < t, using FRG. In this approach, no assumptions
about possible dominant orders are necessary. Rather,
the method includes all processes near the Fermi surface
of the non-interacting system via the generalized 4-point
vertex function: U!(k1,k2,k3), where k1,2 (k3,4) are in-
coming (outgoing) momenta and k4 = k1+k2−k3. Here,
# is the renormalization group flow parameter that relates
the energy cutoff Λ to the initial cutoff Λ0 (chosen to be
4t) via Λ! = Λ0e−!. Starting with the bare vertex U0,
progressively tracing out the high energy degrees of free-
dom, a set of coupled integro-differential equations give
the FRG flow for all the vertices.
The renormalized vertex for specific channels of inter-

est, e.g.,

UNEST
! (k1,k2) = U!(k1,k2,k1 +Q),

UBCS
! (k1,k2) = U!(k1,−k1,k2),

}

(2)

are extracted by appropriately constraining the in-
coming and out-going momenta. Here Q = (π,±π) is
the nesting vector at half filling for the square lattice,
and UNEST

! is the same as UCDW
! of Ref. [24]. The chan-

nel matrix with the largest divergent eigenvalue λ cor-
responds to the most dominant instability of the Fermi
liquid. The corresponding eigenvector ψ defined on the
Fermi surface, indicates the symmetry of the incipient
order parameter associated with the instability.

We perform the FRG analysis for a range of values of
Vd, θF, and φF producing a 3D phase diagram, visualized
in Fig. 1(b) as slice cuts along two different planes. To
capture and emphasize the key elements of the phase dia-
gram, first we fix φF = 0, generating a 2D phase diagram
in the θF–Vd plane shown in the left panel of Fig. 1(b).
Next we fix Vd = 0.5t instead, yielding the θF–φF plane
shown in the right panel of Fig. 1(b).

The θF–Vd phase diagram shows the existence of three
phases separated by two critical angles θF = θ1 and θ2,
with no appreciable dependence on Vd. For 0 ≤ θF < θ1,
the nesting channel has the largest (most divergent)
eigenvalue λ. The corresponding eigenvector ψNEST, as
illustrated in top panel of Fig. 2(a), is almost constant
with only small modulation along the Fermi surface. This
implies the onset of CDW order with s-wave symmetry,
identified as a checkerboard modulation of on-site den-
sity, the cb-CDW shown in Fig. 1(e). The physical origin
of this phase can be traced by observing that θ1 ≈ ϑ1c,
thus Vx, Vy , V3 > 0 in this regime, allowing for a low
energy configuration with density concentrated on the
next-to-nearest neighbor sites, consistent with the per-
fect nesting of the Fermi surface. For θ2 ≤ θF ≤ 90◦, the
BCS channel exhibiting a p-wave symmetry is the most
diverging under FRG flow [see Fig. 2(a)]. In real space,
this corresponds to the onset of nearest neighbor pairing,
〈aiai+x̂〉 = −〈aiai−x̂〉 generated by couplings Vx and V3,
both becoming attractive for θF > θ2 ∼ ϑ2c. The super-
fluid phase here is the lattice analog of the p-wave BCS
phase discussed previously for continuum dipolar Fermi
gases [8, 14, 16].

BOSp

2

FIG. 1: (Color online) Dipolar fermions on square lattice. (a) Schematic of the dipolar fermions confined to a square opti-
cal lattice potential. The induced dipole moment d points along the direction d̂ = cos θFẑ + sin θF cosφFx̂ + sin θF sinφFŷ.
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Schrieffer (BCS) superfluid phase, for the φF = 0 case.
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responds to the most dominant instability of the Fermi
liquid. The corresponding eigenvector ψ defined on the
Fermi surface, indicates the symmetry of the incipient
order parameter associated with the instability.
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in Fig. 1(b) as slice cuts along two different planes. To
capture and emphasize the key elements of the phase dia-
gram, first we fix φF = 0, generating a 2D phase diagram
in the θF–Vd plane shown in the left panel of Fig. 1(b).
Next we fix Vd = 0.5t instead, yielding the θF–φF plane
shown in the right panel of Fig. 1(b).

The θF–Vd phase diagram shows the existence of three
phases separated by two critical angles θF = θ1 and θ2,
with no appreciable dependence on Vd. For 0 ≤ θF < θ1,
the nesting channel has the largest (most divergent)
eigenvalue λ. The corresponding eigenvector ψNEST, as
illustrated in top panel of Fig. 2(a), is almost constant
with only small modulation along the Fermi surface. This
implies the onset of CDW order with s-wave symmetry,
identified as a checkerboard modulation of on-site den-
sity, the cb-CDW shown in Fig. 1(e). The physical origin
of this phase can be traced by observing that θ1 ≈ ϑ1c,
thus Vx, Vy , V3 > 0 in this regime, allowing for a low
energy configuration with density concentrated on the
next-to-nearest neighbor sites, consistent with the per-
fect nesting of the Fermi surface. For θ2 ≤ θF ≤ 90◦, the
BCS channel exhibiting a p-wave symmetry is the most
diverging under FRG flow [see Fig. 2(a)]. In real space,
this corresponds to the onset of nearest neighbor pairing,
〈aiai+x̂〉 = −〈aiai−x̂〉 generated by couplings Vx and V3,
both becoming attractive for θF > θ2 ∼ ϑ2c. The super-
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phase discussed previously for continuum dipolar Fermi
gases [8, 14, 16].

S. G. Bhongale, L. Mathey, S.-W. Tsai, C. W. Clark, EZ, PRL 108, 145301 (2012)



Beyond weak coupling

Exact diagonalization (ED) yields the hopping correlation function

It approaches 4!2 in the limit of large |i-j|.
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a) Mean field phase diagram obtained for a 32 × 32 lattice with periodic boundary condition with φF = 0,
Vd = 0.5t. It is in good agreement with FRG. Shown on the left are representatives of the on-site density
ρii = �a†iai�, the nearest neighbor hopping ρij = �a†jai� (with j = i + x̂ or j = i + ŷ), or the pairing gap
∆ij = − 1

2

�
kl Vjikl�alak�. b) Schematic of the BOSp phase confirmed in mean field theory. c) Comparison
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is reached. The phase boundary is determined by comparing the free energy of different converged
solutions, F = Tr [(−t− µ1 + χ)ρ−∆m∗]− 1
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jimlk). µ is tuned to maintain
half-filling, and the lattice size L is varied to ensure that the results are not sensitive to L.

Exact diagonalization is carried out for the 2×8 and 4×4 lattice with periodic boundary condition
(the dimension of the Hilbert space is 12, 870). The ground state is obtained by the Lanczos algo-
rithm, and the kinetic correlation function C(i, j) = �Ki,i+yKj,j+y�−�Ki,i+y��Kj,j+y� is computed,
where Ki,j ≡ (a†

iaj + h.c.), see Fig. 3b. Long-range bond order is signaled by C(i, j) approaching
constant 4δ2, where δ is the bond modulation along y, for large |i− j|. Fig. 3c compares the results
from exact diagonalization and mean field theory. Mean field theory overestimates the magnitude
of δ for intermediate and large values of Vd/t. Exact diagonalization indicates that the bond order
is suppressed for Vd � t. Thus, the best place to observe the bond order is around Vd/t ∼ 2.5 in
the case of φF = 0. We plan to investigate systems of larger size and carry out systematic finite
size scaling analysis.

2.5 Qualification of PI

PI has a broad grasp of cold atoms and condensed matter theory. He worked on nonequilib-
rium superconductivity (as a PhD student) and strongly correlated systems (in his first postdoc).
His research in the past 5 years has focused on the many-body physics of cold atoms, e.g., one-
dimensional and quasi-one-dimensional Fermi gases with spin imbalance [56, 57, 58], strongly in-
teracting fermions on higher orbital bands [59, 60, 61], and dipolar Fermi gases [32, 33, 35]. His
consistent publication record testifies his ability to lead independent research, to forge and manage
collaborations, and to formulate and solve technically challenging problems.

In concluding the first part of the proposal, we have argued that dipolar Fermi gas is a new
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range BOW order, Cij should asymptote to 4δ2 for large
separation between i and j (belonging to the same sub-
lattice).
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FIG. 3: Solid line: order parameter 4δ2 of the BOW phase
predicted by simple mean field theory. Circle: kinetic corre-
lation function C(i, i + 4y) from ED of a 2 × 8 lattice. ED
indicates that BOW order is most robust for intermediate in-
teraction, Vd ∼ 2.5t. θE = 45◦.

We caution that in order to make definite statements
on the phase diagram, larger lattice sizes and finite size
scaling are required. Our ED results here are only in-
tended to provide some guidance to what happens at
large interaction strength, and the effect of quantum fluc-
tuation on the magnitude of δ. Fig. 3 shows the com-
parison of simple mean field theory and ED. First, mean
field theory overestimate the magnitude of δ for interme-
diate and large values of Vd/t. Secondly, ED indicates
that the BOW order is suppressed for Vd ! t. In the
limit of Vd ! t and half filling, the system is reduced
to a spin model with exchange coupling J1, J2, J3... We
have not explored this limit in detail.
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FIG. 1: Schematic spin and charge order for pseudo-spin 1/2 dipolar fermions in two dimensions. The central
image illustrates the onsite interaction U between opposite spins (red arrows) and the dipolar interaction Vr, here assumed
to be spin-independent. The characteristic scale for Vr is Vd = d2/a3, with a the lattice spacing. Vr depends also sensitively
on the orientation of the dipoles labelled by angles (θ,φ). (a) The conventional antiferromagnetic spin density wave (SDWs).
(b) Checkerboard charge density wave (CDWs), where “charge” is defined as the total density. (c) An example of p-wave spin
density waves (SDWp) with modulation of y bond variables. (d) An example of mixed (extended) s- and d-wave spin density
waves (SDWs+d). Red arrows in (c) and (d) indicate the direction of the spin vector SSS defined on the bonds (yellow ellipsoids).

dipolar Fermi gas [24–26] in an optical square lattice at
half filling. The two pseudo-spin states can be two hy-
perfine states of Dy atoms, or two rovibrational states
of KRb molecules. This provides a tunable platform for
quantum simulation of interacting fermions with long-
range interactions [21, 22], beyond the Fermi-Hubbard
model. The system is described by the Hamiltonian

Ĥ = −
∑

〈i,j〉,σ

tâ†j,σâi,σ+
U

2

∑

i,σ

n̂i,σn̂i,−σ+
∑

i$=j

Vij n̂in̂j . (1)

The lattice is aligned along the x- and y-directions, with
nearest neighbor hopping t and on-site interaction U . U
contains contributions from the bare short range inter-
action, and the on-site dipolar interaction V ⊥

ii , defined
below. We assume that all dipoles are aligned in the
same direction d = dd̂ = (d, θ,φ) by an external mag-
netic (or electric) field. In general, the off-site dipole-
dipole interaction can be decomposed into equal- and
unequal-spin components, labeled by ‖ and ⊥, respec-

tively, V ‖
ij n̂iσn̂j,σ + V ⊥

ij n̂iσn̂j,−σ, and depends on d̂ and

r = ri− rj via V ‖(⊥)
r (d̂) ≡ V ‖(⊥)

ij (d̂) = 〈ij|V ‖(⊥)
dd (d̂)|ij〉 =

V ‖(⊥)
d [1− 3(r̂ · d̂)2]/r3. We will mostly assume V ⊥

d (d̂) =

V ‖
d (d̂) ≡ Vd(d̂), as in Eq. 1, which arises naturally when

the two states are associated with the same hyperfine

manifold. The V ⊥
d (d̂) '= V ‖

d (d̂) case will be discussed
briefly further down.

To give a heuristic argument about possible orders of
the system, we consider a simplified version of model
(1) retaining only the nearest and next-nearest neigh-
bor dipolar interactions, denoted Vx̂(ŷ) and Vx̂+ŷ respec-

tively, see Fig. 1. First, for d̂ = ẑ, dipolar interactions are
purely repulsive. For U ( Vd, the Hamiltonian reduces
to the Fermi-Hubbard model, implying a ground state
with SDWs order at half-filling, Fig. 1(a). For U ) Vd,
the dipolar energy is reduced by placing same-spins on
diagonally opposite sites, while opposite spins share the
same site with only a small energy cost U . This implies a
checkerboard modulation of the total density ni = 〈n̂i〉,
i.e. CDWs, shown in Fig. 1(b).

As d̂ is tilted away from ẑ towards the x̂-direction,
there exists a region of tilting direction for which the
nearest neighbor interaction Vx̂ becomes attractive while
Vŷ and Vx̂+ŷ remain repulsive. For instance, for φ = 0,
this region is bounded by two critical values of θ: ϑc1 =
cos−1(

√

2/3) ≈ 35◦ and ϑc2 = sin−1(
√

2/3) ≈ 54◦. In
the simpler case of spinless dipolar fermions, a checker-
board bond order solid is formed [8] in this region. Then
it is plausible that for the spin 1/2 case, unconventional
SDWs of non-s wave symmetry may be stabilized by
interaction-induced correlated hopping either along the
x̂, ŷ, or the diagonal x̂ + ŷ direction. The spatial sym-
metry of these SDWs depends on the value of φ. This
scenario is illustrated in Figs. 1(c) and 1(d).
Finally, for large dipole tilting angles, e.g., θ > ϑc2
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FIG. 1: Schematic spin and charge order for pseudo-spin 1/2 dipolar fermions in two dimensions. The central
image illustrates the onsite interaction U between opposite spins (red arrows) and the dipolar interaction Vr, here assumed
to be spin-independent. The characteristic scale for Vr is Vd = d2/a3, with a the lattice spacing. Vr depends also sensitively
on the orientation of the dipoles labelled by angles (θ,φ). (a) The conventional antiferromagnetic spin density wave (SDWs).
(b) Checkerboard charge density wave (CDWs), where “charge” is defined as the total density. (c) An example of p-wave spin
density waves (SDWp) with modulation of y bond variables. (d) An example of mixed (extended) s- and d-wave spin density
waves (SDWs+d). Red arrows in (c) and (d) indicate the direction of the spin vector SSS defined on the bonds (yellow ellipsoids).

dipolar Fermi gas [24–26] in an optical square lattice at
half filling. The two pseudo-spin states can be two hy-
perfine states of Dy atoms, or two rovibrational states
of KRb molecules. This provides a tunable platform for
quantum simulation of interacting fermions with long-
range interactions [21, 22], beyond the Fermi-Hubbard
model. The system is described by the Hamiltonian

Ĥ = −
∑

〈i,j〉,σ

tâ†j,σâi,σ+
U

2

∑

i,σ

n̂i,σn̂i,−σ+
∑

i$=j

Vij n̂in̂j . (1)

The lattice is aligned along the x- and y-directions, with
nearest neighbor hopping t and on-site interaction U . U
contains contributions from the bare short range inter-
action, and the on-site dipolar interaction V ⊥

ii , defined
below. We assume that all dipoles are aligned in the
same direction d = dd̂ = (d, θ,φ) by an external mag-
netic (or electric) field. In general, the off-site dipole-
dipole interaction can be decomposed into equal- and
unequal-spin components, labeled by ‖ and ⊥, respec-

tively, V ‖
ij n̂iσn̂j,σ + V ⊥

ij n̂iσn̂j,−σ, and depends on d̂ and

r = ri− rj via V ‖(⊥)
r (d̂) ≡ V ‖(⊥)

ij (d̂) = 〈ij|V ‖(⊥)
dd (d̂)|ij〉 =
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d [1− 3(r̂ · d̂)2]/r3. We will mostly assume V ⊥

d (d̂) =

V ‖
d (d̂) ≡ Vd(d̂), as in Eq. 1, which arises naturally when

the two states are associated with the same hyperfine

manifold. The V ⊥
d (d̂) '= V ‖

d (d̂) case will be discussed
briefly further down.

To give a heuristic argument about possible orders of
the system, we consider a simplified version of model
(1) retaining only the nearest and next-nearest neigh-
bor dipolar interactions, denoted Vx̂(ŷ) and Vx̂+ŷ respec-

tively, see Fig. 1. First, for d̂ = ẑ, dipolar interactions are
purely repulsive. For U ( Vd, the Hamiltonian reduces
to the Fermi-Hubbard model, implying a ground state
with SDWs order at half-filling, Fig. 1(a). For U ) Vd,
the dipolar energy is reduced by placing same-spins on
diagonally opposite sites, while opposite spins share the
same site with only a small energy cost U . This implies a
checkerboard modulation of the total density ni = 〈n̂i〉,
i.e. CDWs, shown in Fig. 1(b).

As d̂ is tilted away from ẑ towards the x̂-direction,
there exists a region of tilting direction for which the
nearest neighbor interaction Vx̂ becomes attractive while
Vŷ and Vx̂+ŷ remain repulsive. For instance, for φ = 0,
this region is bounded by two critical values of θ: ϑc1 =
cos−1(

√

2/3) ≈ 35◦ and ϑc2 = sin−1(
√

2/3) ≈ 54◦. In
the simpler case of spinless dipolar fermions, a checker-
board bond order solid is formed [8] in this region. Then
it is plausible that for the spin 1/2 case, unconventional
SDWs of non-s wave symmetry may be stabilized by
interaction-induced correlated hopping either along the
x̂, ŷ, or the diagonal x̂ + ŷ direction. The spatial sym-
metry of these SDWs depends on the value of φ. This
scenario is illustrated in Figs. 1(c) and 1(d).
Finally, for large dipole tilting angles, e.g., θ > ϑc2
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FIG. 1: Schematic spin and charge order for pseudo-spin 1/2 dipolar fermions in two dimensions. The central
image illustrates the onsite interaction U between opposite spins (red arrows) and the dipolar interaction Vr, here assumed
to be spin-independent. The characteristic scale for Vr is Vd = d2/a3, with a the lattice spacing. Vr depends also sensitively
on the orientation of the dipoles labelled by angles (θ,φ). (a) The conventional antiferromagnetic spin density wave (SDWs).
(b) Checkerboard charge density wave (CDWs), where “charge” is defined as the total density. (c) An example of p-wave spin
density waves (SDWp) with modulation of y bond variables. (d) An example of mixed (extended) s- and d-wave spin density
waves (SDWs+d). Red arrows in (c) and (d) indicate the direction of the spin vector SSS defined on the bonds (yellow ellipsoids).

dipolar Fermi gas [24–26] in an optical square lattice at
half filling. The two pseudo-spin states can be two hy-
perfine states of Dy atoms, or two rovibrational states
of KRb molecules. This provides a tunable platform for
quantum simulation of interacting fermions with long-
range interactions [21, 22], beyond the Fermi-Hubbard
model. The system is described by the Hamiltonian

Ĥ = −
∑

〈i,j〉,σ

tâ†j,σâi,σ+
U

2

∑

i,σ

n̂i,σn̂i,−σ+
∑

i$=j

Vij n̂in̂j . (1)

The lattice is aligned along the x- and y-directions, with
nearest neighbor hopping t and on-site interaction U . U
contains contributions from the bare short range inter-
action, and the on-site dipolar interaction V ⊥

ii , defined
below. We assume that all dipoles are aligned in the
same direction d = dd̂ = (d, θ,φ) by an external mag-
netic (or electric) field. In general, the off-site dipole-
dipole interaction can be decomposed into equal- and
unequal-spin components, labeled by ‖ and ⊥, respec-

tively, V ‖
ij n̂iσn̂j,σ + V ⊥

ij n̂iσn̂j,−σ, and depends on d̂ and

r = ri− rj via V ‖(⊥)
r (d̂) ≡ V ‖(⊥)

ij (d̂) = 〈ij|V ‖(⊥)
dd (d̂)|ij〉 =

V ‖(⊥)
d [1− 3(r̂ · d̂)2]/r3. We will mostly assume V ⊥

d (d̂) =

V ‖
d (d̂) ≡ Vd(d̂), as in Eq. 1, which arises naturally when

the two states are associated with the same hyperfine

manifold. The V ⊥
d (d̂) '= V ‖

d (d̂) case will be discussed
briefly further down.

To give a heuristic argument about possible orders of
the system, we consider a simplified version of model
(1) retaining only the nearest and next-nearest neigh-
bor dipolar interactions, denoted Vx̂(ŷ) and Vx̂+ŷ respec-

tively, see Fig. 1. First, for d̂ = ẑ, dipolar interactions are
purely repulsive. For U ( Vd, the Hamiltonian reduces
to the Fermi-Hubbard model, implying a ground state
with SDWs order at half-filling, Fig. 1(a). For U ) Vd,
the dipolar energy is reduced by placing same-spins on
diagonally opposite sites, while opposite spins share the
same site with only a small energy cost U . This implies a
checkerboard modulation of the total density ni = 〈n̂i〉,
i.e. CDWs, shown in Fig. 1(b).

As d̂ is tilted away from ẑ towards the x̂-direction,
there exists a region of tilting direction for which the
nearest neighbor interaction Vx̂ becomes attractive while
Vŷ and Vx̂+ŷ remain repulsive. For instance, for φ = 0,
this region is bounded by two critical values of θ: ϑc1 =
cos−1(

√

2/3) ≈ 35◦ and ϑc2 = sin−1(
√

2/3) ≈ 54◦. In
the simpler case of spinless dipolar fermions, a checker-
board bond order solid is formed [8] in this region. Then
it is plausible that for the spin 1/2 case, unconventional
SDWs of non-s wave symmetry may be stabilized by
interaction-induced correlated hopping either along the
x̂, ŷ, or the diagonal x̂ + ŷ direction. The spatial sym-
metry of these SDWs depends on the value of φ. This
scenario is illustrated in Figs. 1(c) and 1(d).
Finally, for large dipole tilting angles, e.g., θ > ϑc2

Charge density wave

    Plausible phases at half-filling (one fermion per site on average):
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The conventional spin density wave (SDW) phase [1], as found in antiferromagnetic metal for
example [2], can be described as a condensate of particle-hole pairs with zero angular momentum,
! = 0, analogous to a condensate of particle-particle pairs in conventional superconductors. While
many unconventional superconductors with Cooper pairs of finite ! have been discovered, their
counterparts, density waves with non-zero angular momenta, have only been hypothesized in two-
dimensional electron systems [3]. Using an unbiased functional renormalization group analysis, we
here show that spin-triplet particle-hole condensates with ! = 1 emerge generically in dipolar Fermi
gases of atoms [4] or molecules [5, 6] on optical lattice. The order parameter of these exotic SDWs
is a vector quantity in spin space, and, moreover, is defined on lattice bonds rather than on lattice
sites. We determine the rich quantum phase diagram of dipolar fermions at half-filling as a function
of the dipolar orientation, and discuss how these SDWs arise amidst competition with superfluid
and charge density wave phases.

PACS numbers:

The advent of ultra-cold atomic and molecular gases
has opened new avenues to study many-body physics.
One of the central subjects of condensed matter physics
is quantum magnetism, a phenomenon that has in-
trigued scientists for decades. A quintessential example
is the square-lattice Fermi-Hubbard model at half-filling,
which, even at weak coupling, exhibits SDW, with the
well-known checkerboard pattern depicted in Fig. 1(a).
Interestingly, the theory of such antiferromagnetic or-
der can be cast completely analogous to that of s-wave
superconductivity – with condensation of particle-hole
pairs corresponding to condensation of Cooper pairs in
the BCS theory [3]. This analogy is quite robust and
extends to particle-hole pairing with higher angular mo-
mentum, predicting the existence of a whole array of
SDW states, SDWν , where the label ν = s, p, d, .. indi-
cates " = 0, 1, 2, .. respectively [3]. The familiar antifer-
romagnetic order of Fig. 1(a) constitutes SDWs, whereas
SDWp is the particle-hole analogue of the spin-triplet
p-wave superconductors and superfluid 3He [7]. In the
charge sector, a similar analogy predicts the existence of
generalized ν-wave charge density wave (CDWν).

While several candidate systems have been discussed
for spin-singlet charge density waves (CDWν !=s) [3, 8],
up to now the realization of spin-triplet SDWν !=s has
remained elusive. These exotic states display a modula-
tion of spin vector SSS defined on the bonds of the lattice,
such as the checkerboard pattern of red arrows depicted
in Figs. 1(c) and 1(d), as opposed to modulation of on-
site variables in conventional SDWs and CDWs shown in
Figs. 1(a) and 1(b). Specifically, the order parameter of
SDWp, featuring particle-hole pairs with py-orbital sym-

metry, is related to Sη = 〈â†i,ασ̂
η
αβ âj,β〉 for relative co-

ordinate ri − rj = ŷ (all distances are in units of the

lattice constant throughout this paper, and repeated in-
dices are summed over). Here σ̂η with η ∈ {x, y, z} are

the Pauli matrices, and â(†)i,α is the fermionic annihila-
tion (creation) operators for pseudo-spin α ∈ {↑, ↓} at
site i. The SDWs+d shown in Fig. 1(d) contains an ex-
tended s-wave and a dxy wave component, and its or-
der parameter is defined similarly with (i, j) correspond-
ing to diagonally opposite sites, e.g., ri − rj = x̂ + ŷ.
In contrast, the conventional SDWs and CDWs are de-
scribed by on-site order parameters 〈â†i,ασ̂

η
αβ âi,β〉 and

〈n̂i〉 =
∑

α〈n̂i,α〉 =
∑

α〈â
†
i,αâi,α〉 respectively.

The key insight of this paper is that fermions in a 2D
lattice with dominant dipole-dipole interaction have the
right ingredients to stabilize p- and d-wave SDWs. They
emerge between the CDW and the BCS regime in the
phase diagram, as a result of the competition between
the short-ranged inter-atomic and the anisotropic long-
ranged dipolar interaction.
In a new generation of experiments, ultra-cold gases

of dipolar fermions have become accessible in the quan-
tum degenerate limit. Fermionic atoms of dysprosium
161, with a large magnetic moment of 10 Bohr magne-
ton, have been successfully trapped and cooled well below
quantum degeneracy [4]. The fermionic polar molecule
40K87Rb has been cooled near quantum degeneracy [5]
and loaded into optical lattices. Recently, the formation
of ultra-cold fermionic Feshbach molecules of 23Na40K
has been achieved [6]. On the theory side, many body
physics of single-species (spinless) dipolar Fermi gases
have been explored by many groups. Numerous quantum
phases are predicted: charge density wave [9–12], p-wave
superfluid [13–17], liquid crystalline [18–20], supersolid
[23], and bond-order solid [8].
Here we consider a two-component (pseudo-spin 1/2)

Ŝi =
�

αβ

â†i,ασαβ âi,βn̂i =
�

σ=↑,↓
n̂iσ =

�

σ

â†i,σâi,σ

�Ŝi�
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FIG. 1: Schematic spin and charge order for pseudo-spin 1/2 dipolar fermions in two dimensions. The central
image illustrates the onsite interaction U between opposite spins (red arrows) and the dipolar interaction Vr, here assumed
to be spin-independent. The characteristic scale for Vr is Vd = d2/a3, with a the lattice spacing. Vr depends also sensitively
on the orientation of the dipoles labelled by angles (θ,φ). (a) The conventional antiferromagnetic spin density wave (SDWs).
(b) Checkerboard charge density wave (CDWs), where “charge” is defined as the total density. (c) An example of p-wave spin
density waves (SDWp) with modulation of y bond variables. (d) An example of mixed (extended) s- and d-wave spin density
waves (SDWs+d). Red arrows in (c) and (d) indicate the direction of the spin vector SSS defined on the bonds (yellow ellipsoids).

dipolar Fermi gas [24–26] in an optical square lattice at
half filling. The two pseudo-spin states can be two hy-
perfine states of Dy atoms, or two rovibrational states
of KRb molecules. This provides a tunable platform for
quantum simulation of interacting fermions with long-
range interactions [21, 22], beyond the Fermi-Hubbard
model. The system is described by the Hamiltonian

Ĥ = −
∑

〈i,j〉,σ

tâ†j,σâi,σ+
U

2

∑

i,σ

n̂i,σn̂i,−σ+
∑

i$=j

Vij n̂in̂j . (1)

The lattice is aligned along the x- and y-directions, with
nearest neighbor hopping t and on-site interaction U . U
contains contributions from the bare short range inter-
action, and the on-site dipolar interaction V ⊥

ii , defined
below. We assume that all dipoles are aligned in the
same direction d = dd̂ = (d, θ,φ) by an external mag-
netic (or electric) field. In general, the off-site dipole-
dipole interaction can be decomposed into equal- and
unequal-spin components, labeled by ‖ and ⊥, respec-

tively, V ‖
ij n̂iσn̂j,σ + V ⊥

ij n̂iσn̂j,−σ, and depends on d̂ and

r = ri− rj via V ‖(⊥)
r (d̂) ≡ V ‖(⊥)

ij (d̂) = 〈ij|V ‖(⊥)
dd (d̂)|ij〉 =

V ‖(⊥)
d [1− 3(r̂ · d̂)2]/r3. We will mostly assume V ⊥

d (d̂) =

V ‖
d (d̂) ≡ Vd(d̂), as in Eq. 1, which arises naturally when

the two states are associated with the same hyperfine

manifold. The V ⊥
d (d̂) '= V ‖

d (d̂) case will be discussed
briefly further down.

To give a heuristic argument about possible orders of
the system, we consider a simplified version of model
(1) retaining only the nearest and next-nearest neigh-
bor dipolar interactions, denoted Vx̂(ŷ) and Vx̂+ŷ respec-

tively, see Fig. 1. First, for d̂ = ẑ, dipolar interactions are
purely repulsive. For U ( Vd, the Hamiltonian reduces
to the Fermi-Hubbard model, implying a ground state
with SDWs order at half-filling, Fig. 1(a). For U ) Vd,
the dipolar energy is reduced by placing same-spins on
diagonally opposite sites, while opposite spins share the
same site with only a small energy cost U . This implies a
checkerboard modulation of the total density ni = 〈n̂i〉,
i.e. CDWs, shown in Fig. 1(b).

As d̂ is tilted away from ẑ towards the x̂-direction,
there exists a region of tilting direction for which the
nearest neighbor interaction Vx̂ becomes attractive while
Vŷ and Vx̂+ŷ remain repulsive. For instance, for φ = 0,
this region is bounded by two critical values of θ: ϑc1 =
cos−1(

√

2/3) ≈ 35◦ and ϑc2 = sin−1(
√

2/3) ≈ 54◦. In
the simpler case of spinless dipolar fermions, a checker-
board bond order solid is formed [8] in this region. Then
it is plausible that for the spin 1/2 case, unconventional
SDWs of non-s wave symmetry may be stabilized by
interaction-induced correlated hopping either along the
x̂, ŷ, or the diagonal x̂ + ŷ direction. The spatial sym-
metry of these SDWs depends on the value of φ. This
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Periodic modulation of bond variable

FRG: leading instability is in the SDW channel, and of p-wave symmetry.

The order parameter of this exotic 
SDW phase is a vector in spin space. 
It is s defined on lattice bonds rather
than on lattice sites. 
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FIG. 2: Phase diagram of dipolar fermions on a square lattice at half filling obtained from FRG. It is shown on
the surface of a sphere as a function of the dipole orientation angle θ and φ for fixed interactions (a) Vd = 0.5, U = 0.1; and
(b) Vd = 0.5, U = 0.5 in units of t. Unconventional SDWs (SDWp and SDWs+d) are sandwiched between the CDW and BCS
superfluid phase. The FRG eigenwavefunction corresponding to a representative point (marked by “∗”) in each phase is shown
in the kx − ky polar plots with matching colors. Note that FRG predicts a mixed s+ d-wave (rather than pure d-wave) SDW.
As the on-site interaction is increased from U = 0.1 in (a) to U = 0.5 in (b), the SDWs+d phase expands and squeezes out the
neighboring phases. The s-wave component of SDWs+d increases with U , while the d-wave component diminishes.

for φ = 0, the dominant dipolar interaction is attractive.
The leading instability is towards formation of Cooper
pairs. Again, the precise orbital symmetry of the BCS
phase is determined by the value of φ.
We now determine the phase diagram of these intricate

competing orders in the weak coupling limit, {U, Vd} < t.
In particular, we prove the existence of unconventional
SDW phases for intermediate tilting angles. We use
the functional renormalization group (FRG) technique,
which takes an unbiased approach (without any a priori

guess) to isolate the most dominant instability among all
possible orders [8, 27–30]. The FRG used here is an SU(2)
symmetric version of that previously applied to treat
spinless dipolar fermions [8]. The key ingredients of the
FRG calculation are: (1) Derive and solve the renormal-
ization group flows for the generalized four-point vertex
between unequal spins, U⊥

l (k1,k2,k3), where k1,2(k3,4)
are incoming (outgoing) momenta in the vicinity of the
non-interacting Fermi surface, satisfying momentum con-
servation k1+k2 = k3+k4, and l is the renormalization

group flow parameter. The flow of equal spin vertex, U‖
l ,

is related to that of U⊥
l via the spin-rotation symmetry of

Ĥ . (2) We project out the interaction channels of interest
at each RG step,

UCDW
l (k1,k2) = (2 − X̂)U⊥

l (k1,k2,k1 +Q),

USDW
l (k1,k2) = −X̂U⊥

l (k1,k2,k1 +Q),

UBCS
l (k1,k2) = U⊥

l (k1,−k1,k2,−k2),

where the exchange operator X̂ interchanges the incom-

ing momenta. (3) Finally we identify the most dominant
instability of the Fermi surface from the most divergent
eigenvalue of the interaction matrix. The correspond-
ing eigenvector provides information about the orbital
symmetry of the incipient order parameter. The phase
diagram is shown in Fig. 2.

The phase diagram displays three types of phases:
CDW, SDW, and BCS superfluid. We first focus on the
case U < Vd in the vicinity of φ = 0 as shown in Fig. 2(a).
Consistent with our heuristic argument above, FRG con-
firms a checkerboard CDW (CDWs) for small θ, and a
spin-triplet, p-wave BCS (BCSp) superfluid at large θ.
For the intermediate regime, roughly between ϑc1 and
ϑc2, the flow for the SDW channel diverges rapidly, domi-
nating over the CDW and BCS instabilities on either side.
The SDW phase shows p-wave orbital symmetry, i.e. the
eigenvector of the SDWp phase (shown in Fig. 2) is essen-
tially of the form sin ky. This admits an interpretation of
SDWp as a particle-hole analog of triplet superconduc-
tivity/superfluidity within Nayak’s classification [3] for
generalized SDWν . The SDWp phase found here corre-
sponds to the class with 〈â†α(k+Q)âβ(k)〉 = S(k) ·σαβ ,
by identifying S(k) ∝ ŝ sin ky where Q = (±π,±π). The
position space representation implies the checkerboard
pattern of hopping amplitudes, 〈â†i,αâj,β〉; rj − ri = ŷ,
depicted in the schematic of Fig. 1(c).

Additional unconventional orders with % %= 0 occur in
the vicinity of φ = 45◦, where the nearest-neighbor inter-
action along the lattice vectors x̂ and ŷ is nearly equal.
FRG predicts three more phases, CDWs+d, SDWs+d,
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Ĥ . (2) We project out the interaction channels of interest
at each RG step,

UCDW
l (k1,k2) = (2 − X̂)U⊥

l (k1,k2,k1 +Q),

USDW
l (k1,k2) = −X̂U⊥

l (k1,k2,k1 +Q),

UBCS
l (k1,k2) = U⊥

l (k1,−k1,k2,−k2),

where the exchange operator X̂ interchanges the incom-

ing momenta. (3) Finally we identify the most dominant
instability of the Fermi surface from the most divergent
eigenvalue of the interaction matrix. The correspond-
ing eigenvector provides information about the orbital
symmetry of the incipient order parameter. The phase
diagram is shown in Fig. 2.

The phase diagram displays three types of phases:
CDW, SDW, and BCS superfluid. We first focus on the
case U < Vd in the vicinity of φ = 0 as shown in Fig. 2(a).
Consistent with our heuristic argument above, FRG con-
firms a checkerboard CDW (CDWs) for small θ, and a
spin-triplet, p-wave BCS (BCSp) superfluid at large θ.
For the intermediate regime, roughly between ϑc1 and
ϑc2, the flow for the SDW channel diverges rapidly, domi-
nating over the CDW and BCS instabilities on either side.
The SDW phase shows p-wave orbital symmetry, i.e. the
eigenvector of the SDWp phase (shown in Fig. 2) is essen-
tially of the form sin ky. This admits an interpretation of
SDWp as a particle-hole analog of triplet superconduc-
tivity/superfluidity within Nayak’s classification [3] for
generalized SDWν . The SDWp phase found here corre-
sponds to the class with 〈â†α(k+Q)âβ(k)〉 = S(k) ·σαβ ,
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S. G. Bhongale, L. Mathey, S.-W. Tsai, C. W. Clark, EZ, arXiv:1209.2671 (2012)

The p-wave spin density wave phase is sandwiched between the CDW 
and BCS superfluid phases. Its phase boundary depends on U.



Classification of density waves

Density-wave states of nonzero angular momentum,
Chetan Nayak, Phys. Rev. B 62, 4880 (2000)

Superconductors (condensate of Cooper pairs):

{�fα(k)fβ(−k)� =
∆(k) · (σiσy)αβ

∆(k) · (iσy)αβ

s-wave superconductor, l=0
p-wave superconductors, l=1
d-wave superconductors, l=2
......

Density waves (condensate of particle-hole pairs):

spin singlet, l=0,2,..

spin triplet, l=1,3,..

�f†
α(k + Q)fβ(−k)� = Φ(k)δαβ {

s-wave CDW (checkerboard)
p-wave CDW
d-wave CDW (DDW) ...

�f†
α(k + Q)fβ(−k)� = Φ(k) · σαβ { s-wave SDW (~Neel order) 

p-wave SDW...

They show up in dipolar 
Fermi gas!

|

|



Atoms or molecules with quadrupole moments

S. G. Bhongale, L. Mathey, EZ, S. F. Yelin, M. Lemeshko, arXiv:1211.3317 (2012)

Alkaline-earth atoms, such as Sr or Yb, 
prepared in long-living 3PJ=2 states.

Homonuclear molecules, such as Cs2 or 
Sr2, prepared in rotational state with J > 0,
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Quantum phases of quadrupolar Fermi gases in optical lattices
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We introduce a new platform for quantum simulation of many-body systems based on nonspherical
atoms or molecules with zero dipole moment but possessing a significant value of electric quadrupole
moment. We consider a quadrupolar Fermi gas trapped in a 2D square optical lattice, and show
that the peculiar symmetry and broad tunability of the quadrupole-quadrupole interaction results
in a rich phase diagram encompassing unconventional BCS and charge density wave phases, and
opens up a perspective to create topological superfluid. Quadrupolar species, such as metastable
alkaline-earth atoms and homonuclear molecules, are stable against chemical reactions and collapse
and are readily available in experiment at high densities.

PACS numbers: 67.85.-d, 75.30.Fv, 71.10.Fd

Quantum gases of ultracold atoms have provided
a fresh perspective on strongly-correlated many-body
states, by establishing a highly tunable environment in
which both open questions of solid state physics and
novel, previously unobserved, many-body states can be
studied [1]. An important landmark was reached by cool-
ing and trapping dipolar atoms and molecules, bosonic
and fermionic [2], near or into quantum degeneracy,
which extended the range of features available to quan-
tum simulation in ultracold atom systems beyond con-
tact interactions. Numerous exotic states such as su-
persolids, quantum liquid crystals and bond-order solids
have been predicted, extended Hubbard models with 3-
body interactions, and highly tunable lattice spin models
for quantum magnetism have been proposed [3, 4]. The
crucial feature of the interactions in dipolar gases is their
anisotropic and long-range character, which is key to the
intriguing many-body effects that have been predicted.
In addition, the use of microwave and optical fields to
shape the symmetry of the interactions between polar
molecules has been proposed [4, 5].

In this Letter we propose to study quadrupolar quan-
tum gases. This constitutes a new class of systems
in ultracold atom physics, which can be used as a
platform for quantum simulation of many-body states.
Quadrupole interactions are most visible for particles
with zero dipole moment, but which possess a signif-
icant electric quadrupole moment due to their non-
spherical shape. The angular dependence of the resulting
quadrupole-quadrupole interaction is substantially differ-
ent compared to the dipole-dipole one, due to the higher-
order symmetry. For atoms or molecules in an optical
lattice, this allows for a broad tunability of the relative
strengths and signs of the nearest and next-nearest neigh-
bor couplings. As a concrete example, below we dis-
cuss metastable alkaline-earth atoms and homonuclear

molecules which have comparatively large quadrupolar
moments. To demonstrate rich many-body effects that
arise in ensembles of such particles, we derive the quan-
tum phase diagram of a quadrupolar fermionic gas in an
optical lattice at half-filling. We find that several uncon-
ventional phases emerge, such as bond order solids and
p-wave pairing, and discover the intriguing possibility of
creating topological ground states of px + ipy symme-
try. While dipolar quantum gases were also shown to
host novel many-body phases, quadrupolar particles are
available in experiment at higher densities and are stable
against chemical reactions [6] and collapse [7].

In order to determine the quadrupole-quadrupole in-
teraction energy of two atomic or molecular states, we
consider the potential of a classical quadrupole with mo-
ment q =

∫

(3k̂ · r̂ − 1)dq located at !r0 = 0 aligned in

FIG. 1. Recipe for realization of quadrupolar particles:
(a) with alkaline-earth atoms in long-living 3P2 levels; and
(b) with homonuclear molecules in rotational states with
J > 0. (c) Angular “shape” of quadrupolar particles exem-
plified by |2,M〉 states.

External B (or E) field lifts the M-degeneracy, e.g., |J=2,M=0>,
which has zero dipole moment but a quadrupole moment
on the order of 10-40 a.u.

(Proposal by Misha Lemeshko and Susanne Yelin.)
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moment. We consider a quadrupolar Fermi gas trapped in a 2D square optical lattice, and show
that the peculiar symmetry and broad tunability of the quadrupole-quadrupole interaction results
in a rich phase diagram encompassing unconventional BCS and charge density wave phases, and
opens up a perspective to create topological superfluid. Quadrupolar species, such as metastable
alkaline-earth atoms and homonuclear molecules, are stable against chemical reactions and collapse
and are readily available in experiment at high densities.

PACS numbers: 67.85.-d, 75.30.Fv, 71.10.Fd

Quantum gases of ultracold atoms have provided
a fresh perspective on strongly-correlated many-body
states, by establishing a highly tunable environment in
which both open questions of solid state physics and
novel, previously unobserved, many-body states can be
studied [1]. An important landmark was reached by cool-
ing and trapping dipolar atoms and molecules, bosonic
and fermionic [2], near or into quantum degeneracy,
which extended the range of features available to quan-
tum simulation in ultracold atom systems beyond con-
tact interactions. Numerous exotic states such as su-
persolids, quantum liquid crystals and bond-order solids
have been predicted, extended Hubbard models with 3-
body interactions, and highly tunable lattice spin models
for quantum magnetism have been proposed [3, 4]. The
crucial feature of the interactions in dipolar gases is their
anisotropic and long-range character, which is key to the
intriguing many-body effects that have been predicted.
In addition, the use of microwave and optical fields to
shape the symmetry of the interactions between polar
molecules has been proposed [4, 5].

In this Letter we propose to study quadrupolar quan-
tum gases. This constitutes a new class of systems
in ultracold atom physics, which can be used as a
platform for quantum simulation of many-body states.
Quadrupole interactions are most visible for particles
with zero dipole moment, but which possess a signif-
icant electric quadrupole moment due to their non-
spherical shape. The angular dependence of the resulting
quadrupole-quadrupole interaction is substantially differ-
ent compared to the dipole-dipole one, due to the higher-
order symmetry. For atoms or molecules in an optical
lattice, this allows for a broad tunability of the relative
strengths and signs of the nearest and next-nearest neigh-
bor couplings. As a concrete example, below we dis-
cuss metastable alkaline-earth atoms and homonuclear

molecules which have comparatively large quadrupolar
moments. To demonstrate rich many-body effects that
arise in ensembles of such particles, we derive the quan-
tum phase diagram of a quadrupolar fermionic gas in an
optical lattice at half-filling. We find that several uncon-
ventional phases emerge, such as bond order solids and
p-wave pairing, and discover the intriguing possibility of
creating topological ground states of px + ipy symme-
try. While dipolar quantum gases were also shown to
host novel many-body phases, quadrupolar particles are
available in experiment at higher densities and are stable
against chemical reactions [6] and collapse [7].

In order to determine the quadrupole-quadrupole in-
teraction energy of two atomic or molecular states, we
consider the potential of a classical quadrupole with mo-
ment q =

∫

(3k̂ · r̂ − 1)dq located at !r0 = 0 aligned in

FIG. 1. Recipe for realization of quadrupolar particles:
(a) with alkaline-earth atoms in long-living 3P2 levels; and
(b) with homonuclear molecules in rotational states with
J > 0. (c) Angular “shape” of quadrupolar particles exem-
plified by |2,M〉 states.
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k̂-direction, with k̂ being a unit vector 1, and r̂ ≡ !r/r.
The resulting potential is φ(!r) = q

4r3 (3 cos
2 θ− 1), where

cos θ ≡ k̂ · r̂. If a second quadrupole with the same
alignment k̂ is placed at location !r, the resulting interac-

tion energy is V qq
cl = q

4 (k̂ ·∇)(k̂ ·∇φ) = 3q2

16r5 (35 cos
4 θ −

30 cos2 θ+3). The functional form of this potential carries
over to the quantum description, however, the prefactor
of this interaction for two |J,M〉 states has to be obtained
via a quantum definition of the quadrupole moment q2.
The latter is a spherical tensor of rank two with com-
ponents defined as q2,M = −

∑

k r
2
kC2,M (θk,φk), where

(rk, θk,φk) give the coordinates of the k-th electron of the
particle, and C2,M (θk,φk) =

√

4π/5Y2,M (θk,φk) are the
reduced spherical harmonics [8] (here written in atomic
units). In the angular momentum basis, |J,M〉, with
M being the projection of the angular momentum, J,
onto the quantization axis, the quadrupole operator cou-
ples the states with ∆J = 0,±2, so to first order any
state with J > 0 possesses a nonzero quadrupole mo-
ment 2. Thus the value of the quadrupole moment can
be controlled by preparing the particles in a particular
|J,M〉-state, or a combination thereof, using optical or
microwave fields. In quantum mechanical language, the
quadrupole interaction is

V qq =

√
70

r5

2
∑

α=−2

(−1)αC2,−α(θ,φ)[q
(1)
2 ⊗ q

(2)
2 ]4,α, (1)

where (r, θ,φ) gives the radius-vector between the par-

ticles, and [q(1)
2 ⊗ q

(2)
2 ]4,α is a spherical tensor of rank

four formed from two quadrupole moment tensors of rank
two. For both particles prepared in the same |J,M〉 state,
Eq. (1) reduces to V qq = V (3− 30 cos2 θ + 35 cos4 θ)/r5,
with V = q23(J2+J−3M2)2/[4(4J2+4J−3)2], where q
is defined as q = 2〈2, 2|q2,0|2, 2〉, which coincides with the
classical definition [9]. We note that in the classical limit
of J → ∞, and for M = J , the prefactor V = 3q2/16
of the classical expression is recovered. The quadrupole-
quadrupole interaction can be attractive or repulsive de-
pending on the angle θ.
Among the particles for which the quadrupolar mo-

ment is known, the most promising candidates for the ex-
perimental realization of quadrupolar quantum gases are
metastable alkaline-earth atoms [9, 10] and homonuclear
diatomic molecules [11]. Alkaline-earth atoms, such as Sr
or Yb, can be prepared in metastable 3P o

2 states, whose
lifetime exceeds thousands of seconds [9, 10], by optical

1 In contrast to a dipole which is analogous to a single-headed
arrow (↑) pointing in a particular direction, a quadrupole corre-
sponds to a double-headed arrow (") not favoring one direction
over another, and therefore it can be aligned, but not oriented.

2 Note the difference with dipole moments which can be nonzero
only for states of indefinite parity (superposition of odd and even
J ’s)

excitation, cf. Fig. 1 (a). Both bosonic and fermionic iso-
topes of Sr and Yb have been brought to quantum degen-
eracy [12]. Furthermore, atoms in such metastable states
can be magnetically trapped [13]. Ultracold homonu-
clear molecules, such as Cs2 or Sr2, can be prepared in
the absolute ground state, 1Σ+

g (v = 0, J = 0), and then
transferred to a rotational state with J > 0, using a two-
photon Raman transition far-detuned from an electron-
ically excited state [11], cf. Fig. 1 (b). While homonu-
clear molecules are always bosons, fermionic quadrupo-
lar molecules can be prepared by photo- or magneto-
association of distinct isotopes of the same species [14].
For both atoms and molecules the degeneracy of a par-
ticular J level can be lifted by an external electric or
magnetic field, F, defining the laboratory z axis, and the
particles can be prepared in a particular M -component
possessing a permanent quadrupole moment. The typ-
ical “shapes” of quadrupolar states are exemplified in
Fig. 1 (c). Both atoms and molecules can be prepared in
the |2, 0〉 (|2, 2〉) states using two linearly (circularly) po-
larized photons; the quadrupole-quadrupole interaction
is equal in this cases and larger than for the |2, 1〉 states.
The quadrupole moments for metastable alkaline-earth

atoms and homonuclear molecules are similarly of the
order of 10–40 a.u. [9–11], which gives an interaction
strength, V qq of Eq. (1), on the order of a few Hz at 266
nm lattice spacing. Furthermore, interactions of the or-
der of 1 kHz can be achieved for 100 nm lattice spacings
realizable with atoms trapped in nanoplasmonic struc-
tures [15]. We note that the dispersion (van der Waals)
interaction, V dis ∼ r−6, is 102−103 times smaller at typi-
cal optical lattice spacings [10], therefore the quadrupole-
quadrupole interaction dominates the physics of these
systems. Quantum gases can be trapped for tens of sec-
onds, so the observation of many-body phases generated
by these interactions is feasible via the standard tech-
niques, ranging from time-of-flight detection to noise cor-
relation and Bragg spectroscopy.
To illustrate the intriguing many-body effects that can

arise in these systems, we investigate the quantum phase
diagram of a system of interacting quadrupolar fermions
on a square lattice, at half-filling. We assume all parti-
cles to be prepared in the same state, |J,M〉, where J
is the electronic (for atoms) or rotational (for molecules)
angular momentum, and M is the projection of J on the
direction F̂ = (θF ,φF ) in the laboratory frame given by
the external field F used to lift the M -degeneracy. The
particles are confined to a lattice with a lattice constant
aL, corresponding to the Hamiltonian:

H = −t
∑

〈i,j〉

c†i cj +
1

2

∑

i$=j

Vijc
†
i cic

†
jcj , (2)

where t represents the nearest-neighbor hopping and ci is
the fermion annihilation operator at the i-th lattice site.
Throughout the remainder of the paper, we use aL as a

V depends on J,M; in the classical limit,V =
3Q2

zz

16
Vqq is on the order of Hz for optical lattice spacing 
of 266 nm (Lemeshko).

20 40 60 80

�2

2

4

6

8

θ
+

+

_

May alleviate/avoid 
collapse instability



Quantum phases of quadrupolar Fermi gas

S. G. Bhongale, L. Mathey, EZ, S. F. Yelin, M. Lemeshko, arXiv:1211.3317 (2012)

4

FIG. 3. Quantum phase diagram for quadrupolar fermions on a square lattice. (a) FRG phase diagram in the weak coupling
limit, V/t = 0.2, and at half filling shown as a function of the magnetic field direction F̂ = (θF ,φF ). The point marked with
“∗”, where 5 different phases seem to meet, corresponds to Vx̂, Vŷ, Vx̂+ŷ ≈ 0 as shown in Fig. 2 (b). (b) The orbital symmetry
of the CDW and BCS phases shown in (a), obtained from FRG. The px (py) wave CDW has the same orbital structure as the
px (py) wave BCS.

neighbors dominates, see Fig. 2. This happens for all
values of φF when θF ! 25◦, and also for φF ! 22◦

at large θF " 60◦, cf. Fig. 2. In addition, two novel
types of CDW, CDWpx

and CDWpy
, are present. They

correspond to a checkerboard modulation of the effective
hopping between nearest neighbors along the x and y di-
rection respectively, i.e., 〈c†i cj〉 with ri−rj = x̂ or ŷ, with
the average taken over the many-body ground state. We
refer to these phases as to bond order solids (BOS). In
comparison, the s-wave CDW order corresponds to mod-
ulations of 〈c+i ci〉. We refer to these phases as to bond
order solids (BOS). Furthermore, we find a small region
of CDWs+d that involves a mixture of extended s- and
d-waves. The individual contributions of the extended
s-wave and d-waves vary smoothly within the CDWs+d

region. Together they give rise to a checkerboardmodula-
tion of effective hopping between the next-nearest neigh-
bor sites. The CDWpx

, CDWpy
, and CDWs+d can be

thought of as a 2D generalization of the bond-order-wave
phase occurring in the extended Hubbard model in one
dimension [18]. BOS was recently shown to arise in 2D
for dipolar fermions [3]. Compared to dipolar systems,
BOS occupies a significantly larger region of the param-
eter space for quadrupolar interactions (e.g., it is sta-
bilized as soon as θF approaches 25◦). Moreover, the
angular dependence of quadrupolar interactions is sub-
stantially more complex, resulting in two BOS phases of
py and px symmetries, appearing at small and large θF ,
respectively. Interestingly, these two phases occur in the
regions where Vx̂ and Vŷ are comparable in magnitude
but opposite in sign, i.e., CDWpx(py) is stabilized when
Vx̂(ŷ) is repulsive while Vŷ(x̂) is attractive, cf. Fig. 2 (b).

Thus, quadrupolar Fermi gases are well suited for ex-
ploring the properties of nonzero angular momentum (i.e.
unconventional) density wave phases.
The remainder of the phase diagram is occupied by

two BCS phases. They roughly occur in regions where
both Vx̂ and Vŷ are attractive. Our FRG analysis shows
that the BCS phase can be stable even through the next-
nearest neighbor interaction is weakly repulsive. We find
that the symmetry of the BCS order parameter is px or
py, depending on whether Vx̂ or Vŷ is more attractive.
Along the line of θF ∼ 65◦ these two BCS phases are
degenerate. This raises the possibility of realizing px+ipy
topological superfluid order using quadrupolar gases. By
analogy with the proposal of Ref. [19], using an ac field
to periodically modulate the direction of (θF ,φF ), one
can lift the degeneracy and engineer the chiral px + ipy
state.
In conclusion, we have shown that ultracold Fermi

gases with quadrupole-quadrupole interactions can be
used to study unconventional BCS, CDW, and topologi-
cal phases, and gain insight into the physics of compet-
ing ground states. While we have focused on the specific
case of a square lattice at half-filling, the functional RG
methods of this work can be applied to study other fill-
ings and lattice geometries. Temperatures achieved for
degenerate Fermi gases of alkaline-earth atoms in experi-
ment are T = 0.26 TF and T = 0.37 TF respectively [12].
The optimal Tc for the CDW and BCS phases predicted
here is estimated to be on the order of 0.03 TF , for inter-
mediate couplings, V ∼ t. Thus these many-body phases
seem to be within experimental reach in the near future.
We note that quadrupole-quadrupole interactions are

3

FIG. 2. (a) Schematic representation of quadrupolar fermions
on a square lattice. Alignment of the quadrupoles is given by
the quantization axis of the external field F, pointing along
F̂ = (θF ,φF ). The nearest-neighbor interaction is repre-
sented by green and red solid lines, while the next-nearest
neighbor interaction is shown in blue. (b) 3D plot showing
the interactions Vx̂ (red), Vŷ (green), and Vx̂+ŷ (blue) as a
function of the angles (θF ,φF ); “∗” marks the point in the
vicinity of which both Vx̂,ŷ and Vx̂+ŷ change the sign.

unit of length and t as a unit of energy. As schemat-
ically shown in Fig. 2 (a), the interaction strength Vij

depends on the orientation of the vector connecting the
quadrupoles, r = ri − rj , relative to the field direction,

F̂ , via Vr ≡ Vij = 〈ij|V qq |ij〉 = V [3− 30(r̂ · F̂ )2 + 35(r̂ ·
F̂ )4]/r5. Thus, one can immediately observe that the in-
teraction between two quadrupoles can be tuned either
attractive or repulsive, by changing the orientation of the
external field F with respect to the interparticle radius-
vector r. Fig. 2 (b) shows the (θF ,φF )-dependence of
the interaction matrix element between the nearest- and
next-nearest neighbors. The richness of the quadrupolar
interaction becomes apparent in this figure. There are
several regions in which the signs and the relative mag-
nitudes of {Vx̂, Vŷ, Vx̂+ŷ} show distinctive characteristics.
For example, in the region (θF ! 25◦, 0◦ ≤ φF ≤ 45◦),
both nearest- and next-nearest neighbor interactions are
repulsive, while they all become attractive in the region
(30◦ ! θF ! 60◦,φF ∼ 45◦). Furthermore, one can iden-

tify finite regions where either one or two of {Vx̂, Vŷ,
Vx̂+ŷ} is attractive while the rest is repulsive.
Interactions of opposite sign can result in competition

between quantum phases of different symmetry, resulting
in frustration. Thus, fermions with dominant quadrupo-
lar interactions provide an interesting setup for studying
many-body physics with competing phases. For example,
in the vicinity of (90◦, 45◦) both Vx̂ and Vŷ are attractive,
while Vx̂+ŷ is repulsive (see Fig. 2). On general grounds,
one would expect a BCS type ground state resulting from
condensation of Cooper pairs due to the attractive Vx̂

and Vŷ couplings. However, the repulsive Vx̂+ŷ interac-
tion, if significant, may lead to the insurgence of some
other phase, and therefore needs to be quantitatively
accounted for. As another intriguing example, in the
vicinity of (40◦, 5◦), Vx̂ is strongly attractive while Vŷ is
strongly repulsive. As we show below, the ground state
in this region is neither a BCS state nor the conventional
CDW (such as checkerboard or CDWs). These two ex-
amples show that, due to anisotropy, the actual ground
state may be of an unexpected nature. Exposing the
true ground state thus demands a theory that is (i) unbi-
ased with respect to the initial ansatz – condensation of
particle-particle or particle-hole pairs; and (ii) includes
fluctuations.
Issue (ii) can be adequately addressed within the renor-

malization group (RG) analysis at weak couplings, where
the low energy physics near the Fermi surface is ex-
tracted by successively integrating out the high energy
degrees of freedom [16]. In order to satisfy criterion (i)
as well, we employ the exact (or “functional”) renor-
malization group (FRG) which keeps track of all the
interaction vertices, including both the particle-particle
and particle-hole channels, and treats all instabilities (in-
cipient orders) on equal footing [17]. Specifically, all
Feynman diagrams up to one-loop order are included
for calculating the flow of the most general 4-point ver-
tex function U!(k1,k2,k3). Here k1,2,3 are momenta
on the Fermi surface, with k4 = k1 + k2 − k3, and #
the FRG flow parameter starting with the initial value
# = 0 for the bare quadrupolar interaction. The BCS and
CDW instabilities are indicated by the diverging flow of
the corresponding vertex functions U!(k1,−k1,k2) and
U!(k1,−k2,k1 + Q) respectively. Here Q = (±π,±π)
are the nesting vectors. The most divergent flow indi-
cates a broken symmetry phase, the order parameter of
which has an orbital symmetry given by the correspond-
ing eigenvector of the diverging vertex function. For the
example considered above, in the vicinity of (90◦, 45◦),
the system favors a BCS state with py orbital symmetry,
shown in Fig. 3 (b).
The FRG phase diagram, Fig. 3 (a), features sev-

eral different kinds of BCS and CDW phases. CDWs

is the familiar charge density wave phase with a checker-
board modulation of on-site densities, occurring in re-
gions where the repulsive interaction between nearest

Bond order
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