Rotons, Stripe Phases, Dimerization: Condensed Matter Physics with Dipolar Molecules
 KITP, Feb. 14, 2013

Robert E. Zillich

Institut für Theoretische Physik, Johannes Kepler Universität, Linz, Austria
Institute for Quantum Optics and Quantum Information, Innsbruck, Austria

Rotons in ${ }^{4} \mathrm{He}$

- roton $=$ local minimum $\left(E_{r}\right)$ in the dispersion relation $\epsilon(k)$ at $k=k_{r}$
- roton $=$ signature of short-range "order" of a dense Bose (or Fermi ${ }^{1}$) liquid
- $k_{r} \approx \frac{2 \pi}{a}$, with a the average nearest neighbor distance
- compare with crystal: phonon dispersion $\epsilon\left(\frac{2 \pi}{a}\right)=\epsilon(0)=0$
- note: E_{r} does not continuously approach 0 at crystallisation of ${ }^{4} \mathrm{He}$!

Rotons in a dilute system

- layer of dipolar Bose gas created by a 1D trap: infinite in $x y$, finite in z
- polarization in z
- excitation modes n with parallel momentum k, energy $\epsilon_{n}(k)$
e.g. Santos et al., PRL 90, 250403 (2003):
- calculation of $\epsilon_{1}(k)$ in Gross-Pitaevskii approximation (no pair correlations)
- "rotonization" for $g_{d} / g>1 / 2\left(g_{d}=8 \pi d^{2} / 3\right)$
- different kind of roton (II) than the ${ }^{4} \mathrm{He}$ roton (I)

[^0]layer in 1D trap with $\omega_{z} \rightarrow \infty \Longrightarrow$ 2D Bose gas with $1 / r^{3}$ repulsion express Hamiltonian in dipole units $r_{0}=\frac{m d^{2}}{4 \pi \epsilon_{0} \hbar^{2}}$ and $E_{0}=\frac{\hbar^{2}}{m r_{0}^{2}}$:
$$
H=-\frac{1}{2} \sum_{i} \nabla_{i}^{2}+\sum_{i<j} \frac{1}{r_{i j}^{3}}
$$
\Rightarrow only 1 parameter: density n

```
solidification of 2D dipolar Bose gas? ("self-assembled lattice")
```

Q Can solidification at some $n=n_{\text {cr }}$ be achieved?
A r_{0} can be very large ($\mathrm{NaCs}: r_{0}=5 \times 10^{5} \AA \AA$; SrO: $r_{0}=0.1 \mathrm{~mm}$)

QMC simulation at high $n\left\{\begin{array}{l}\text { H. P. Büchler et al., 98, 060404 (2007) } \\ \text { G. Astrakharchik et al., 98, } 060405(2007)\end{array}\right.$ for $n_{\text {cr }} r_{0}^{2} \approx 290$, solificication into triangular 2D crystal ($\mathrm{NaCs}: n_{\text {cr }} \approx 10^{7} \mathrm{~cm}^{-2} ; \mathrm{SrO}$: $n_{\text {cr }} \approx 2 \times 10^{6} \mathrm{~cm}^{-2}$)

experimental realizations:

- magnetic dipole moments of atoms:
${ }^{52} \mathrm{Cr}$ Lahaye et al, Nature 448, 672 (2007) $\left[\mu=6 \mu_{B}\right]$
${ }^{164}$ Dy Lev, PRL (2011) [$\mu=10 \mu_{B}$]
${ }^{168}$ Er Aikawa et al., PRL 108, 210401 (2012) $\left[\mu=7 \mu_{B}\right]$
- molecular quantum gases:
permanent electric dipole moments of heteronuclear dimers
transfer atom pairs to weakly bound state by Feshbach resonance \longrightarrow transfer to rovibrational g.s. by STIRAP laser pulses

KRb Ni et al., Science 322, 231 (2008)
RbCs T. Takekoshi et al., PRA 85, 032506 (2012)
OH B. K. Stuhl et al., Nature 492, 396 (2012) (evap. cooling)
SrF Steven Hoekstra

Overview of Talk

given two dipoles with dipole moment d and orientations $\hat{\mathbf{e}}_{i}, i=1,2$, the interaction is
\perp polarized, 2D: $\quad v_{d d}^{\|}\left(\mathbf{r}_{12}\right)=\frac{d^{2}}{4 \pi \epsilon_{0}} \frac{1}{r_{12}^{3}}$
tilted by $\alpha, 2 \mathrm{D}: \quad v_{d d}^{/ /}\left(\mathbf{r}_{12}\right)=\frac{d^{2}}{4 \pi \epsilon_{0}} \frac{1-3\left(x_{12} / r_{12}\right)^{2} \sin ^{2} \alpha}{r_{12}^{3}}$
polarized, 3D: $\quad v_{d d}^{\|}\left(\mathbf{r}_{12}\right)=\frac{d^{2}}{4 \pi \epsilon_{0}} \frac{1-3 \cos ^{2} \theta_{12}}{r_{12}^{3}}$
unpolarized, $\times \mathrm{D}: \quad v_{d d}\left(\mathbf{r}_{12}\right)=\frac{d^{2}}{4 \pi \epsilon_{0}} \frac{\hat{\mathbf{e}}_{1} \cdot \hat{\mathbf{e}}_{2}-3\left(\hat{\mathbf{e}}_{1} \cdot \hat{\mathbf{r}}\right)\left(\hat{\mathbf{e}}_{2} \cdot \hat{\mathbf{r}}\right)}{r_{12}^{3}}$
(units: length $r_{0}=\frac{m d^{2}}{4 \pi \epsilon_{0} \hbar^{2}} ;$ energy $E_{0}=\frac{\hbar^{2}}{m r_{0}^{2}} ;$ density $n r_{0}^{2}$)

```
effects of strong short-range interactions - pair correlations:
```

e.g. dipole length $r_{0}=5 \times 10^{5} \AA$ for $\mathrm{NaCs}(d=4.6 D)$

- rotons I
- stripe phase

```
effects of long range of interactions - pair correlations:
```

- correlations between different DBG layers: inter-layer binding

```
effects of anisotropy of V Vd
"instability well" for head-to-tail orientation
(e.g. homogeneous 3D Bose gas of polarized dipoles is unstable)
    - collapse of DBG
    - rotons II
```

effects of molecule rotation in dipolar BEC:

Roman Krems et al.: rotational excitons in optical lattices Alexey Gorshkov, Kaden Hazzard, Misha Lemeshko: spin Hamiltonians coupling between rotation and translation,...

methodology:

- quantum many-body method: hypernetted chain Euler-Lagrange for ground state (HNC-EL) and excited states (TDHNC-EL, "dynamic many-body theory")
- QMC: path integral ground state MC (PIGSMC) and diffusion MC (DMC)
- combining QMC for ground state and TDHNC-EL for excitations: previously applied and tested for molecule rotation dynamics in superfluid ${ }^{4} \mathrm{He}$ nanodroplets.
- mean field approach (GP)

$$
\text { polarized, 2D: } \quad v_{d d}^{\|}\left(\mathbf{r}_{12}\right)=\frac{d^{2}}{4 \pi \epsilon_{0}} \frac{1}{r_{12}^{3}}
$$

ground state solidification (self-assembled lattice) at density $n r_{0}^{2}=290$
Astrakharchik et al., PRL 98, 060405 (2007)
Büchler et al., PRL 98, 060404 (2007)
excitations combining DMC for ground state with CBF-BW for excitations (only gas phase)

Calculation of dynamic structure function $S(k, \omega)$
$S(k, \omega) \ldots$ response to perturbation imparting momentum $\hbar k$ and energy $\hbar \omega$ (cond. mat.: neutron scattering; cold gases: Bragg spectroscopy) excitations \Leftrightarrow peaks of $S(k, \omega)$ at $\omega=$ excitation energy

Dynamic many-body approach (Bose)

time-dependent hyper-netted chain Euler-Lagrange method, assuming the many-body ground state Φ_{0} is known (e.g. from time-independent HNC-EL or from QMC):

1 t-dependent ansatz:

$$
\Psi(R ; t)=e^{-i E_{0} t} \frac{e^{\delta U(R ; t) / 2}}{\langle\Psi \mid \Psi\rangle^{1 / 2}} \Phi_{0}(R) \quad \text { with } \quad \delta U(R ; t)=\sum_{i} \delta u_{1}\left(\mathbf{r}_{i} ; t\right)+\sum_{i<j} \delta u_{2}\left(\mathbf{r}_{i}, \mathbf{r}_{j} ; t\right)+\ldots
$$

2 t-dependent generalization of Ritz' principle

$$
\delta \int d t\langle\Psi(t)| H+V_{\text {pert }}(t)-i \hbar \frac{\partial}{\partial t}|\Psi(t)\rangle=0
$$

3 linear response theory:

$$
V_{\text {pert }}(t) \rightarrow V_{\text {pert }}(\omega) \rightarrow \delta \rho(\omega)=\hat{\chi}(\omega) * V_{\text {pert }}(\omega)
$$

$\hat{\chi}=$ density-density response operator

- $\delta u_{1}\left(\mathbf{r}_{i} ; t\right)$ only: Bjil-Feynman approximation
- $\delta u_{2}\left(\mathbf{r}_{i}, \mathbf{r}_{j} ; t\right)$ \& some approximations (CBF-BW, ...) :
accounts for phonon-phonon coupling of Bjil-Feynman modes
Campbell, Krotscheck PRB 80, 174501 (2009)
- $\delta u_{3}\left(\mathbf{r}_{i}, \mathbf{r}_{j}, \mathbf{r}_{k} ; t\right)$ triplets (homogeneous system)

Calculation of dynamic structure function $S(k, \omega)$ (homogeneous system):

$$
S(k, \omega)=-\frac{1}{\pi} \operatorname{Im} \chi(k, \omega)=-\frac{1}{\pi} \operatorname{Im} \frac{S(k)}{\hbar \omega-\epsilon_{F}(k)-\Sigma(k, \omega)+i \eta}
$$

$S(k) \ldots$ static structure function (\leftarrow from ground state calculation)
$\epsilon_{F}(k)=\frac{\hbar^{2} k^{2}}{2 m S(k)} \ldots$ Bjil-Feynman spectrum
$\Sigma(k, \omega) \ldots$ energy-dependent self energy: coupling between modes, relaxation

$$
\begin{gathered}
\Sigma(k, \omega)=\frac{1}{2} \int \frac{d \mathbf{p} d \mathbf{q}}{(2 \pi)^{3} \rho} \delta(-\mathbf{k}+\mathbf{p}+\mathbf{q}) \frac{\left|V_{3}(\mathbf{k}, \mathbf{p}, \mathbf{q})\right|^{2}}{\hbar \omega-\epsilon_{F}(p)-\epsilon_{F}(q)+i \zeta} \\
V_{3}(\mathbf{k}, \mathbf{p}, \mathbf{q})=\frac{\hbar^{2}}{2 m} \sqrt{\frac{S(p) S(q)}{S(k)}}\left[\mathbf{k} \cdot \mathbf{p}\left(1-\frac{1}{S(p)}\right)+\mathbf{k} \cdot \mathbf{q}\left(1-\frac{1}{S(q)}\right)-k^{2} u_{3}(\mathbf{k}, \mathbf{p}, \mathbf{q})\right]
\end{gathered}
$$

$$
S(k, \omega)=-\frac{1}{\pi} \operatorname{Im} \frac{S(k)}{\hbar \omega-\epsilon_{F}(k)-\Sigma(k, \omega)+i \eta}
$$

Collective excitations:

11 if

$$
\hbar \omega-\epsilon_{F}(k)-\Sigma(k, \omega)=0
$$

has a real solution, $\hbar \omega \in \mathbf{R}$, then $\epsilon(k)=\hbar \omega$ is spectrum of collective excitations with ∞ lifetime $(\operatorname{Im} \Sigma(k, \omega)=0)$
$\Rightarrow \delta$ peak in $S(k, \omega)$
2. if

$$
\hbar \omega-\epsilon_{F}(k)-\operatorname{Re} \Sigma(k, \omega)=0
$$

has solutions, with a small $\operatorname{Im} \Sigma(k, \omega)$, excitation of energy $\epsilon(k)$ is damped, has finite lifetime
\Rightarrow peak with linewidth $\operatorname{Im} \Sigma(k, \omega)$ in $S(k, \omega)$
3 whereever $\operatorname{Im} \Sigma(k, \omega)$ is large, there are no well-defined excitation modes ("multi-excitation continuum")

ground state solidification (self-assembled lattice) at density $n r_{0}^{2}=290$
Astrakharchik et al., PRL 98, 060405 (2007)
Büchler et al., PRL 98, 060404 (2007)
excitations combining DMC for ground state with CBF-BW for excitations (only gas phase)

Calculation of dynamic structure function $S(k, \omega)$

$S(k, \omega) \ldots$ response to perturbation imparting momentum $\hbar k$ and energy $\hbar \omega$ (cond. mat.: neutron scattering; cold gases: Bragg spectroscopy) excitations \Leftrightarrow peaks of $S(k, \omega)$ at $\omega=$ excitation energy
$S(k, \omega)$ for low density $n r_{0}^{2}=2^{-7}\left(\frac{k}{\sqrt{n}}=6.4\right)$:

- broad peak: short life-time
- sharp peak: $\infty /$ long life-time

dynamic structure function $S(k, \omega)$:
(artificial broadening by $\eta=0.15$)

Mazzanti, REZ, Astrakharchik, Boronat, PRL 102, 110405 (2009)
increasing density:

- sharp phonon dispersion splits off from broader peak
- roton I appears at about $n r_{0}^{2}=4$ due to strong pair correlations

\longrightarrow appearance of a maxon-roton dispersion similar to ${ }^{4} \mathrm{He}$
\longrightarrow evolution towards maxon \& roton can be studied as density is increased
\longrightarrow now do it for Fermi dipoles
tilted by α, 2D: $\quad v_{d d}^{/ /}\left(\mathbf{r}_{12}\right)=\frac{d^{2}}{4 \pi \epsilon_{0}} \frac{1-3\left(x_{12} / r_{12}\right)^{2} \sin ^{2} \alpha}{r_{12}^{3}}$
anisotropy is not probed in 2D with perpendicular polarization axis
\longrightarrow tilt polarization axis along x-axis (i.e. rotate about y-axis) to form homogeneous anisotropic 2D quantum gas (similar to "nematic")

$v_{d d}^{/ /}\left(\mathbf{r}_{12}\right)=\frac{d^{2}}{4 \pi \epsilon_{0}} \frac{1-3\left(x_{12} / r_{12}\right)^{2} \sin ^{2} \alpha}{r_{12}^{3}}$

$$
\left(\alpha<\alpha_{\max }=0.61548=35.26^{\circ}\right)
$$

strong repulsion in y and weak repulsion in x

HNC-EL for Bose ground state

$$
\begin{aligned}
& \qquad \Phi_{0}(R)=\prod_{i} \varphi\left(\mathbf{r}_{i}\right) \prod_{i<j} f\left(\mathbf{r}_{i}, \mathbf{r}_{j}\right) \cdots=e^{\frac{1}{2} \sum_{i} u_{1}\left(\mathbf{r}_{i}\right)} e^{\frac{1}{2} \sum_{i<j} u_{2}\left(\mathbf{r}_{i}, \mathbf{r}_{j}\right)} \ldots \\
& \text { (Fermi: } \Phi_{0}^{F}(R)=e^{\frac{1}{2} \sum_{i} u_{1}\left(\mathbf{r}_{i}\right)} e^{\frac{1}{2} \sum_{i<j} u_{2}\left(\mathbf{r}_{i}, \mathbf{r}_{j}\right)} \cdots \times \Phi_{s l}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right)
\end{aligned}
$$

- $u_{1}\left(\mathbf{r}_{i}\right):$ needed for inhomogeneous systems (u_{1} only \rightarrow Hartree)
- $u_{2}\left(\mathbf{r}_{i}, \mathbf{r}_{j}\right)$: correlations (Jastrow-Feenberg; used also for QMC)
- $u_{3}\left(\mathbf{r}_{i}, \mathbf{r}_{j}, \mathbf{r}_{k}\right)$: even better
express $E=\langle H\rangle$ as functional of density ρ, pair distribution function g and triplet correlations u_{3}. Use Ritz' variational principle:

$$
\frac{\delta\langle\boldsymbol{H}\rangle}{\delta \rho(\mathbf{r})}=0, \quad \frac{\delta\langle\boldsymbol{H}\rangle}{\delta g\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)}=0, \quad \frac{\delta\langle\boldsymbol{H}\rangle}{\delta u_{3}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}\right)}=0
$$

closure by hyper-netted chain \& Ornstein-Zernicke relation (classical stat mech!)

$$
g=e^{u_{2}+N+B} \quad \& \quad N(1,2)=\int d 3[g(1,3)-1-N(1,3)] \rho(3)[g(3,2)-1]
$$

- HNC-EL not exact
+ HNC-EL can be orders of magnitude more efficient than QMC
+ at low densities, u_{3} and elementary diagrams B are small ("HNC-EL/0")

anisotropic HNC-EL/0 calculation:

density $n r_{0}^{2}=\underline{256}, \alpha=0.58$: very anisotropic pair structure
pair distribution $g(\mathbf{r})$

static structure factor $S(\mathbf{k})$

- tendency towards long range order in y-direction

■ isotropic speed of sound

- Q: excitation spectrum $\epsilon(\mathbf{k})$?
- Q: isotropic solidification at $n r_{0}^{2}=290$ for $\alpha=0$ $\alpha>0$: anisotropic crystal? or stripe ("smectic") phase?

Note: HNC-EL/0 only qualitative at such high density! \rightarrow QMC

Stability analysis: positivity of eigenvalues λ of

$$
\begin{gathered}
\frac{\delta^{2} E}{\delta g^{1 / 2}(\mathbf{r}) \delta g^{1 / 2}\left(\mathbf{r}^{\prime}\right)}, \quad \mathbf{r} \equiv(x, y) \\
\Leftrightarrow\left[-\frac{\hbar^{2}}{m} \nabla^{2}+V_{d d}(\mathbf{r})+w_{l}(\mathbf{r})\right] f(\mathbf{r})-\rho g^{1 / 2}(\mathbf{r}) \int d^{2} r W\left(\mathbf{r}-\mathbf{r}^{\prime}\right) g^{1 / 2}\left(\mathbf{r}^{\prime}\right) f\left(\mathbf{r}^{\prime}\right)=\lambda f(\mathbf{r})
\end{gathered}
$$

$$
\text { where } \tilde{w}_{l}(\mathbf{k})=-\frac{\hbar^{2} k^{2}}{4 m}(1-1 / S(\mathbf{k}))^{2}(2 S(\mathbf{k})+1) \text { and } \tilde{W}(\mathbf{k})=\frac{\hbar^{2} k^{2}}{m}\left(1-1 / S^{3}(\mathbf{k})\right) .
$$

solve for lowest eigenvalue/vector by imaginary time propagation:

N-body Schrödinger equation in imag. time $=$ diffusion equation:

$$
-\frac{\partial}{\partial t} \Psi(t)=H \Psi(t) \quad \Rightarrow \quad \Psi(t)=\sum_{n} \Psi_{n} e^{-\omega_{n} t} \rightarrow \sim \Psi_{0}
$$

idea:

1 start at $t=0$ with "trial" wave function Ψ_{T}
12 propagate in imag. time towards ground state with $G(\beta)=e^{-\beta H}$

$$
\Psi_{0}(R) \propto \lim _{\beta \rightarrow \infty} \int d R^{\prime} G\left(R, R^{\prime}, \beta\right) \Psi_{T}\left(R^{\prime}\right)
$$

3 factorize $G(\beta)$ into small time steps: $G(\beta)=G(\epsilon)^{M}$, with $\epsilon=\frac{\beta}{M}$
4 use short time approximation for $G(\epsilon)$

implementation:

- probability distribution to be sampled $\left(R=\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right)\right)$:

$$
P\left(R_{0}, \ldots, R_{2 M}\right)=\Psi_{T}\left(R_{0}\right) G\left(R_{0}, R_{1} ; \epsilon\right) \ldots G\left(R_{2 M-1}, R_{2 M} ; \epsilon\right) \Psi_{T}\left(R_{2 M}\right)
$$

- ground state expectation value $\left\langle\Psi_{0}\right| A\left|\Psi_{0}\right\rangle$ evaluated at central t-step: $A\left(R_{M}\right)$.
- MC: Metropolis sampling of $d \times N \times 2 M$ integrations
\rightarrow Path integral ground state Monte Carlo (PIGSMC) results:
Pair distribution function $g(x, y)$:
density $n r_{0}^{2}=128, \alpha=0.58$:
no long range order:
GAS PHASE

density $n r_{0}^{2}=256, \alpha=0.61$:
long range order in y-direction:
STRIPE PHASE

A. Macia et al, PRL 109, 235307(2012)
static structure factor $S(\mathbf{k})$ (gas phase):
density $n r_{0}^{2}=128, \alpha=0.0$:
$\mathrm{S}(\mathrm{k}) \mathrm{l}$
density $n r_{0}^{2}=128, \alpha=0.58:$

$S(\mathbf{k})$ and simulation snapshorts:

1 $n r_{0}^{2}=64, \alpha=0.58$
(2) $n r_{0}^{2}=128, \alpha=0.58$: very large peak of $S(\mathbf{k})$ in y-direction, but still liquid: peak height independent of N

B $n r_{0}^{2}=256, \alpha=0.61: S(\mathbf{k})$ has a Bragg peak in y-direction
peak height almost linear in N

dynamic structure function $S(\mathbf{k}, E)$ for $n r_{0}^{2}=128$: gas phase
$(0, \mathrm{k})$
($\mathrm{k}, 0$)
1 $\alpha=0.20$:

- almost isotropic dispersion relation
- "Pitaevskii" plateau at twice the roton energy
$2 \alpha=0.50$:
- roton energy in y-direction decreases, roton momentum decreases

3 $\alpha=0.58$:

- roton energy in y almost reaches zero
$■ \quad \Rightarrow$ continuous transition to stripe phase
- second roton with much smaller spectral weight at twice the wave number
- \leftrightarrow compare with phonon dispersion of crystal: $\epsilon\left(\frac{2 \pi n}{a}\right)=0$

polarized, 3D: $\quad v_{d d}^{\|}\left(\mathbf{r}_{12}\right)=\frac{d^{2}}{4 \pi \epsilon_{0}} \frac{1-3 \cos ^{2} \theta_{12}}{r_{12}^{3}}$

experiment

pancake-shaped harmonic traps: $\omega_{z} \gg \omega_{x, y}$
layer: $\omega_{z}>0, \omega_{x, y} \rightarrow 0 \Rightarrow$ translational invariance

dipoles in 1D harmonic trap

pure dipole system unstable via tunneling towards head-to-tail configurations
\Rightarrow stabilize with repulsion $(\sigma / r)^{12}$

using again units length $r_{0}=\frac{m d^{2}}{\hbar^{2}}$ and energy $\epsilon_{0}=\frac{\hbar^{2}}{m r_{0}^{2}}$, the system is characterized by

- repulsion σ
- trap frequency Ω
- area density $n=\int d z \rho(z) \quad$ unstable for $n \rightarrow \infty$
ground state calculation: HNC-EL; excitations: CBF-BW
in ${ }^{4} \mathrm{He}$: roton excitation due to strong correlations
Q: roton excitation in dilute gas?
A: Santos et al., PRL 90, 250403 (2003): yes! (based on mean field approximation)

CBF-BW results:

- "rotonization" due to attractive part of $v_{d d}$
- strong damping at $2 \times E_{\text {roton }}$: "Pitaevskii plateau"
- system unstable towards $\sigma \downarrow, n \uparrow, \Omega \downarrow$
- HNC-EL calculation unstable before roton energy $E_{\text {roton }}$ (presumably) vanishes
- above: repulsion \& high density \rightarrow roton I here: attraction \& any density \rightarrow roton II
- instability for similar parameters as for binding of 2-body problem \Rightarrow dimerization

$$
S(k, E) \text { for } n r_{0}^{2}=2, \Omega^{2}=10, \sigma=0.3:
$$

Er_{2} (magnetic dipoles):

- $\mu=14 \mu_{B}$
choice of other parameters:
- $r_{0}=850 \AA$
- $\Omega=10 \mathrm{kHz}$
- $n r_{0}^{2}=0.3$
evolution of $S(k, \omega)$
with decreasing σ :
$\sigma=0.3800$

Er_{2} (magnetic dipoles):
- $\mu=14 \mu_{B}$
choice of other parameters:
- $r_{0}=850 \AA$
- $\Omega=10 \mathrm{kHz}$
- $n r_{0}^{2}=0.3$
evolution of $S(k, \omega)$
with decreasing σ :
$\sigma=0.3700$

Er_{2} (magnetic dipoles):
- $\mu=14 \mu_{B}$
choice of other parameters:
- $r_{0}=850 \AA$
- $\Omega=10 \mathrm{kHz}$
- $n r_{0}^{2}=0.3$
evolution of $S(k, \omega)$
with decreasing σ :
$\sigma=0.3600$

Er_{2} (magnetic dipoles):
- $\mu=14 \mu_{B}$
choice of other parameters:
- $r_{0}=850 \AA$
- $\Omega=10 \mathrm{kHz}$
- $n r_{0}^{2}=0.3$
evolution of $S(k, \omega)$
with decreasing σ :
$\sigma=0.3500$

Er_{2} (magnetic dipoles):
- $\mu=14 \mu_{B}$
choice of other parameters:
- $r_{0}=850 \AA ̊$
- $\Omega=10 \mathrm{kHz}$
- $n r_{0}^{2}=0.3$
evolution of $S(k, \omega)$
with decreasing σ :
$\sigma=0.3480$

Er_{2} (magnetic dipoles):
- $\mu=14 \mu_{B}$
choice of other parameters:
- $r_{0}=850 \AA$
- $\Omega=10 \mathrm{kHz}$
- $n r_{0}^{2}=0.3$
evolution of $S(k, \omega)$
with decreasing σ :
$\sigma=0.3450$

Er_{2} (magnetic dipoles):
- $\mu=14 \mu_{B}$
choice of other parameters:
- $r_{0}=850 \AA ̊$
- $\Omega=10 \mathrm{kHz}$
- $n r_{0}^{2}=0.3$
evolution of $S(k, \omega)$
with decreasing σ :
$\sigma=0.3440$

Er_{2} (magnetic dipoles):
- $\mu=14 \mu_{B}$
choice of other parameters:
- $r_{0}=850 \AA$
- $\Omega=10 \mathrm{kHz}$
- $n r_{0}^{2}=0.3$
evolution of $S(k, \omega)$
with decreasing σ :
$\sigma=0.3437$

Er_{2} (magnetic dipoles):
- $\mu=14 \mu_{B}$
choice of other parameters:
- $r_{0}=850 \AA$
- $\Omega=10 \mathrm{kHz}$
- $n r_{0}^{2}=0.3$
evolution of $S(k, \omega)$
with decreasing σ :
$\sigma=0.3435$

Er_{2} (magnetic dipoles):
- $\mu=14 \mu_{B}$
choice of other parameters:
- $r_{0}=850 \AA \AA$
- $\Omega=10 \mathrm{kHz}$
- $n r_{0}^{2}=0.3$
evolution of $S(k, \omega)$
with decreasing σ :
$\sigma=0.3434$

Q: can we switch between roton I and roton II?
$S(k, \omega)$ for density $n r_{0}^{2}=2$, repulsion $\sigma=0.3$ and trap frequency Ω increasing from $\Omega=3.16$ (top left) to $\Omega=224$ (bottom right):

- weak trapping: roton I, caused by perpendicular correlations due to attractive part of dipole-dipole interaction

$$
k_{\text {roton }} \approx a_{h o}^{-1}
$$

- strong trapping: roton II, caused by parallel correlations due to repulsive part of dipole-dipole interaction

$$
k_{\text {roton }} \approx 6 n^{1 / 2}
$$

D. Hufnagl et al., PRL 107, 065303 (2011)

dipole interaction is long-ranged \rightarrow coupling between layers double-well potential: $U_{\text {ext }}\left(\vec{r}_{i}\right)=A\left\{\cos \left(K z_{i}-\pi\right)+\lambda \cos \left(2 K z_{i}-2 \pi\right)\right\}$

- density profile $\rho(z)$

$$
\left(n r_{0}^{2}=\int d z \rho(z)=1\right)
$$

- dispersion relatiom of lowest mode in Bjil-Feynman approximation

first two excitation spectra:

Bjil-Feynman spectra for bilayers (symbols: corresponding 2D limit)

- top left:

- layers far apart
\Rightarrow negligible coupling
- almost degenerate collective excitations
- weak trap
\Rightarrow intra-layer dimerization instability, same as for single layer
- bottom right:
- layers close together \Rightarrow inter-layer dimerization instability
- splitting of collective excitations
- strong trap
\Rightarrow each layer almost 2D

inter- and intra-layer pair distribution function:

- inter-layer:

$$
\rho_{12}\left(r_{\|}\right)=\int_{-\infty}^{0} \int_{0}^{\infty} d z d z^{\prime} \rho_{2}\left(r_{\|}, z, z^{\prime}\right)
$$

\Rightarrow intra-layer dimerization
\Rightarrow collapse

- intra-layer:
$\rho_{11}\left(r_{\|}\right)=\int_{0}^{\infty} \int_{0}^{\infty} d z d z^{\prime} \rho_{2}\left(r_{\|}, z, z^{\prime}\right)$
\Rightarrow inter-layer dimerization

dynamic structure function $S\left(k_{\|}, \omega\right)$: close narrow layers

Q: how to stabilize against inter-layer "instability" /dimerization?
A: increase distance or increase density
critical distance d as function of density $n r_{0}^{2}$ for two 2D layers:

note: $n \rightarrow 0$ (2 particles on different 2D planes) leads to bound state regardless of d !
what next? bi/multilayers of tilted dipoles

$$
\text { unpolarized, 3D: } \quad v_{d d}\left(\mathbf{r}_{12}\right)=\frac{d^{2}}{4 \pi \epsilon_{0}} \frac{\hat{\mathbf{e}}_{1} \cdot \hat{\mathbf{e}}_{2}-3\left(\hat{\mathbf{e}}_{1} \cdot \hat{\mathbf{r}}\right)\left(\hat{\mathbf{e}}_{2} \cdot \hat{\mathbf{r}}\right)}{r_{12}^{3}}
$$

PIGSMC simulations:

mean field approach (GP):

- unpolarized molecules:
splitting of first rotational
excitation $(j=1): \quad \Delta E=\frac{\rho d^{2}}{3 \epsilon_{0}}$
e.g. $n=10^{14} \mathrm{~cm}^{-3}$ and $d=5 D$:
$\Delta E \approx 1.6 \mathrm{MHz}$
- polarized molecules:
fixed-orientation approximation with $d=\langle d\rangle$ generally good, but corrections for very small polarization $d=\langle d\rangle$

Phys. Chem. Chem. Phys. 13, 18835 (2011)

MC sampling of rotations
e.g. 1D dipole lattice:
ordering as $g=\frac{d^{2}}{B a^{3}}$ increases:

B. Abolins et al., JLTP 165, 249 (2011)

HNC-EL calculations:

preliminary results: at high density, system collapses via self-polarization
what next:
■ self-assembled crystalline phases: stable?
■ 3-body physics of rotating dipoles?

- ions in dipolar gases

People

Brendan Abolins, UC Berkeley
Vesa Apaja, Univ. Jyväskylaä
Grigori Astrakharchik, UPC Barcelona
Jordi Boronat, UPC Barcelona
Diana Hufnagl, JKU

Rainer Kaltseis, JKU
Eckhard Krotscheck, JKU
Adrian Macia, UPC Barcelona
Ferran Mazzanti, UPC Barcelona
K. Birgitta Whaley, UC Berkeley

Money

FWF grant P23535-N20
OeAD WTZ exchange program "Acciones Integradas", ES 19/2009 (Spain)
Programa de movilidad de profesores visitantes en masteres oficiales, Ministerio de
Educacion y Ciencia de Espana
Austrian Marshall Plan Fellowship

Fin

[^0]: ${ }^{1} \mathrm{H}$. Godfrin et al., Nature 483, 576 (2012)

