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Rotons in a dilute system?

Rotons in 4He

roton = local minimum (Er ) in the dispersion relation ε(k) at k = kr

roton = signature of short-range “order” of a dense Bose (or Fermi1) liquid

kr ≈ 2π
a

, with a the average nearest neighbor distance

compare with crystal: phonon dispersion ε( 2π
a

) = ε(0) = 0

note: Er does not continuously approach 0 at crystallisation of 4He!

Rotons in a dilute system

layer of dipolar Bose gas created by a 1D trap: infinite in xy , finite in z

polarization in z

excitation modes n with parallel momentum k, energy εn(k)

e.g. Santos et al., PRL 90, 250403 (2003):

calculation of ε1(k) in Gross-Pitaevskii
approximation (no pair correlations)

“rotonization” for gd/g > 1/2 (gd = 8πd2/3)

different kind of roton (II) than the 4He roton
(I)

1H. Godfrin et al., Nature 483, 576 (2012)



Can a dipolar Bose solidify?

layer in 1D trap with ωz →∞ =⇒ 2D Bose gas with 1/r3 repulsion

express Hamiltonian in dipole units r0 = md2

4πε0~2 and E0 = ~2

mr2
0

:

H = −
1

2

∑
i

∇2
i +

∑
i<j

1

r3
ij

⇒ only 1 parameter: density n

solidification of 2D dipolar Bose gas? (“self-assembled lattice”)

Q Can solidification at some n = ncr be achieved?

A r0 can be very large (NaCs: r0 = 5× 105Å; SrO: r0 = 0.1mm!)

QMC simulation at high n

{
H. P. Büchler et al., 98, 060404 (2007)

G. Astrakharchik et al., 98, 060405 (2007)

for ncrr2
0 ≈ 290, solificication into triangular 2D crystal (NaCs: ncr ≈ 107cm−2; SrO:

ncr ≈ 2× 106cm−2)



Experiments

experimental realizations:

magnetic dipole moments of atoms:
52Cr Lahaye et al, Nature 448, 672 (2007) [µ = 6µB ]

164Dy Lev, PRL (2011) [µ = 10µB ]
168Er Aikawa et al., PRL 108, 210401 (2012) [µ = 7µB ]

molecular quantum gases:
permanent electric dipole moments of heteronuclear dimers
transfer atom pairs to weakly bound state by Feshbach resonance −→ transfer to
rovibrational g.s. by STIRAP laser pulses

KRb Ni et al., Science 322, 231 (2008)
RbCs T. Takekoshi et al., PRA 85, 032506 (2012)

OH B. K. Stuhl et al., Nature 492, 396 (2012) (evap. cooling)
SrF Steven Hoekstra
. . .



Dipole-Dipole Interaction

Overview of Talk

given two dipoles with dipole moment d and orientations êi , i = 1, 2, the
interaction is

⊥ polarized, 2D: v
‖
dd (r12) =

d2

4πε0

1

r3
12

tilted by α, 2D: v
//
dd (r12) =

d2

4πε0

1− 3(x12/r12)2 sin2 α

r3
12

polarized, 3D: v
‖
dd (r12) =

d2

4πε0

1− 3 cos2 θ12

r3
12

unpolarized, xD: vdd (r12) =
d2

4πε0

ê1 · ê2 − 3(ê1 · r̂)(ê2 · r̂)

r3
12

(units: length r0 = md2

4πε0~2 ; energy E0 = ~2

mr2
0

; density nr2
0 )



interesting questions in dipolar QGs

effects of strong short-range interactions – pair correlations:

e.g. dipole length r0 = 5× 105Å for NaCs (d = 4.6D)

rotons I

stripe phase

effects of long range of interactions – pair correlations:

correlations between different DBG layers: inter-layer binding

effects of anisotropy of Vdd :

“instability well” for head-to-tail orientation
(e.g. homogeneous 3D Bose gas of polarized dipoles is unstable)

collapse of DBG

rotons II

effects of molecule rotation in dipolar BEC:

Roman Krems et al.: rotational excitons in optical lattices
Alexey Gorshkov, Kaden Hazzard, Misha Lemeshko: spin Hamiltonians
coupling between rotation and translation,. . .



Methodology

methodology:

quantum many-body method: hypernetted chain Euler-Lagrange for ground state
(HNC-EL) and excited states (TDHNC-EL, “dynamic many-body theory”)

QMC: path integral ground state MC (PIGSMC) and diffusion MC (DMC)

combining QMC for ground state and TDHNC-EL for excitations: previously
applied and tested for molecule rotation dynamics in superfluid 4He nanodroplets.

mean field approach (GP)



polarized, 2D: v
‖
dd(r12) =

d2

4πε0

1

r 3
12



Dipoles in 2D

x,y

ground state solidification (self-assembled lattice) at density nr2
0 = 290

Astrakharchik et al., PRL 98, 060405 (2007)
Büchler et al., PRL 98, 060404 (2007)

excitations combining DMC for ground state with CBF-BW for excitations
(only gas phase)

Calculation of dynamic structure function S(k, ω)

S(k, ω) . . . response to perturbation imparting momentum ~k and energy ~ω
(cond. mat.: neutron scattering; cold gases: Bragg spectroscopy)
excitations ⇔ peaks of S(k, ω) at ω =excitation energy



Many-Body Approach to Excitations

Dynamic many-body approach (Bose)

time-dependent hyper-netted chain Euler-Lagrange method, assuming the many-body ground state
Φ0 is known (e.g. from time-independent HNC-EL or from QMC):

1 t-dependent ansatz:

Ψ(R; t) = e−iE0t
eδU(R;t)/2

〈Ψ|Ψ〉1/2
Φ0(R) with δU(R; t) =

∑
i

δu1(ri ; t) +
∑
i<j

δu2(ri , rj ; t) + . . .

2 t-dependent generalization of Ritz’ principle

δ

∫
dt
〈

Ψ(t)
∣∣H + Vpert(t)− i~

∂

∂t

∣∣Ψ(t)
〉

= 0

3 linear response theory:

Vpert(t)→ Vpert(ω)→ δρ(ω) = χ̂(ω) ∗ Vpert(ω)

χ̂ =density-density response operator

δu1(ri ; t) only: Bjil-Feynman approximation

δu2(ri , rj ; t) & some approximations (CBF-BW,. . . ):

accounts for phonon-phonon coupling of Bjil-Feynman modes

Campbell, Krotscheck PRB 80, 174501 (2009)

δu3(ri , rj , rk ; t) triplets (homogeneous system)



Many-Body Approach to Excitations

Calculation of dynamic structure function S(k, ω) (homogeneous system):

S(k, ω) = −
1

π
Imχ(k, ω) = −

1

π
Im

S(k)

~ω − εF (k)− Σ(k, ω) + iη

S(k) . . . static structure function (← from ground state calculation)

εF (k) =
~2k2

2mS(k)
. . . Bjil-Feynman spectrum

Σ(k, ω) . . . energy-dependent self energy: coupling between modes, relaxation

Σ(k, ω) =
1

2

∫
dp dq

(2π)3ρ
δ(−k + p + q)

|V3(k, p, q)|2

~ω − εF (p)− εF (q) + iζ

V3(k, p, q) =
~2

2m

√
S(p)S(q)

S(k)

[
k · p

(
1−

1

S(p)

)
+ k · q

(
1−

1

S(q)

)
− k2u3(k, p, q)

]



Many-Body Approach to Excitations

S(k, ω) = −
1

π
Im

S(k)

~ω − εF (k)− Σ(k, ω) + iη

Collective excitations:

1 if
~ω − εF (k)− Σ(k, ω) = 0

has a real solution, ~ω ∈ R, then ε(k) = ~ω is spectrum of collective excitations
with ∞ lifetime (ImΣ(k, ω) = 0)
⇒ δ peak in S(k, ω)

2 if
~ω − εF (k)− ReΣ(k, ω) = 0

has solutions, with a small ImΣ(k, ω), excitation of energy ε(k) is damped, has
finite lifetime
⇒ peak with linewidth ImΣ(k, ω) in S(k, ω)

3 whereever ImΣ(k, ω) is large, there are no well-defined excitation modes
(“multi-excitation continuum”)



Dipoles in 2D

x,y

ground state solidification (self-assembled lattice) at density nr2
0 = 290

Astrakharchik et al., PRL 98, 060405 (2007)
Büchler et al., PRL 98, 060404 (2007)

excitations combining DMC for ground state with CBF-BW for excitations
(only gas phase)

Calculation of dynamic structure function S(k, ω)

S(k, ω) . . . response to perturbation imparting momentum ~k and energy ~ω
(cond. mat.: neutron scattering; cold gases: Bragg spectroscopy)
excitations ⇔ peaks of S(k, ω) at ω =excitation energy

S(k, ω) for low density nr2
0 = 2−7 ( k√

n
= 6.4):

broad peak: short life-time

sharp peak: ∞/long life-time
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Dipoles in 2D

dynamic structure function S(k, ω):
(artificial broadening by η = 0.15)

Mazzanti, REZ, Astrakharchik, Boronat, PRL 102, 110405 (2009)

increasing density:

sharp phonon dispersion splits off
from broader peak

roton I appears at about nr2
0 = 4 due

to strong pair correlations
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−→ appearance of a maxon-roton dispersion similar to 4He
−→ evolution towards maxon & roton can be studied as density is increased
−→ now do it for Fermi dipoles



tilted by α, 2D: v
//
dd(r12) =

d2

4πε0

1− 3(x12/r12)
2 sin2 α

r 3
12



Tilted Dipoles in 2D

anisotropy is not probed in 2D with perpendicular polarization axis

−→ tilt polarization axis along x-axis (i.e. rotate about y -axis) to form homogeneous
anisotropic 2D quantum gas (similar to “nematic”)

y x

v
//
dd (r12) =

d2

4πε0

1− 3(x12/r12)2 sin2 α

r3
12

(α < αmax = 0.61548 = 35.26◦)

α=35
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strong repulsion in y and weak repulsion in x



hyper-netted chain Euler-Lagrange, HNC-EL

HNC-EL for Bose ground state

Φ0(R) =
∏
i

ϕ(ri )
∏
i<j

f (ri , rj ) · · · = e
1
2

∑
i u1(ri )e

1
2

∑
i<j u2(ri ,rj )

. . .

(Fermi: ΦF
0 (R)= e

1
2

∑
i u1(ri )e

1
2

∑
i<j u2(ri ,rj ) · · · × Φsl (r1, . . . , rN )

u1(ri ): needed for inhomogeneous systems (u1 only → Hartree)

u2(ri , rj ): correlations (Jastrow-Feenberg; used also for QMC)

u3(ri , rj , rk ): even better

express E = 〈H〉 as functional of density ρ, pair distribution function g and triplet correlations u3.
Use Ritz’ variational principle:

δ〈H〉
δρ(r)

= 0 ,
δ〈H〉

δg(r1, r2)
= 0 ,

δ〈H〉
δu3(r1, r2, r3)

= 0

closure by hyper-netted chain & Ornstein-Zernicke relation (classical stat mech!)

g = eu2+N+B & N(1, 2) =

∫
d3 [g(1, 3)− 1− N(1, 3)] ρ(3) [g(3, 2)− 1]

− HNC-EL not exact

+ HNC-EL can be orders of magnitude more efficient than QMC

+ at low densities, u3 and elementary diagrams B are small (“HNC-EL/0”)



Tilted Dipoles in 2D

anisotropic HNC-EL/0 calculation:

density nr2
0 = 256, α = 0.58: very anisotropic pair structure

pair distribution g(r)
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tendency towards long range order in y -direction

isotropic speed of sound

Q: excitation spectrum ε(k)?

Q: isotropic solidification at nr2
0 = 290 for α = 0

α > 0: anisotropic crystal? or stripe (“smectic”) phase?

Note: HNC-EL/0 only qualitative at such high density! → QMC



Tilted Dipoles in 2D

Stability analysis: positivity of eigenvalues λ of

δ2E

δg1/2(r) δg1/2(r′)
, r ≡ (x , y)

⇔
[
−
~2

m
∇2 + Vdd (r) + wI (r)

]
f (r)− ρg1/2(r)

∫
d2r W (r − r′)g1/2(r′)f (r′) = λf (r)

where w̃I (k) = − ~2k2

4m
(1− 1/S(k))2(2S(k) + 1) and W̃ (k) = ~2k2

m
(1− 1/S3(k)).

solve for lowest eigenvalue/vector by imaginary time propagation:
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Path integral ground state Monte Carlo (PIGSMC)

N-body Schrödinger equation in imag. time = diffusion equation:

−
∂

∂t
Ψ(t) = HΨ(t) ⇒ Ψ(t) =

∑
n

Ψne
−ωnt →∼ Ψ0

idea:

1 start at t = 0 with “trial” wave function ΨT

2 propagate in imag. time towards ground state with G(β) = e−βH

Ψ0(R) ∝ lim
β→∞

∫
dR′ G(R,R′, β)ΨT (R′)

3 factorize G(β) into small time steps: G(β) = G(ε)M , with ε = β
M

4 use short time approximation for G(ε)

implementation:

probability distribution to be sampled (R = (r1, . . . , rN)):

P(R0, . . . ,R2M) = ΨT (R0) G(R0,R1; ε) . . .G(R2M−1,R2M ; ε) ΨT (R2M),

ground state expectation value 〈Ψ0|A|Ψ0〉 evaluated at central t-step: A(RM).

MC: Metropolis sampling of d × N × 2M integrations



Tilted Dipoles in 2D

→ Path integral ground state Monte Carlo (PIGSMC) results:

Pair distribution function g(x , y):

density nr2
0 = 128, α = 0.58:

no long range order:

GAS PHASE

density nr2
0 = 256, α = 0.61:

long range order in y -direction:

STRIPE PHASE

A. Macia et al, PRL 109, 235307(2012)



Tilted Dipoles in 2D

static structure factor S(k) (gas phase):

density nr2
0 = 128, α = 0.0:
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Tilted Dipoles in 2D

S(k) and simulation snapshorts:

1 nr2
0 = 64, α = 0.58

2 nr2
0 = 128, α = 0.58:

very large peak of S(k) in
y -direction, but still liquid:
peak height independent of N

3 nr2
0 = 256, α = 0.61: S(k)

has a Bragg peak in
y -direction
peak height almost linear in
N



Tilted Dipoles in 2D

dynamic structure function S(k,E) for nr2
0 = 128: gas phase

1 α = 0.20:
almost isotropic dispersion relation
“Pitaevskii” plateau at twice the
roton energy

2 α = 0.50:
roton energy in y -direction decreases,
roton momentum decreases

3 α = 0.58:
roton energy in y almost reaches zero
⇒ continuous transition to stripe
phase
second roton with much smaller
spectral weight at twice the wave
number
↔ compare with phonon dispersion of
crystal: ε( 2πn

a ) = 0



polarized, 3D: v
‖
dd(r12) =

d2

4πε0

1− 3 cos2 θ12

r 3
12



Quasi-2D: Layer of Dipolar Bose Gas

experiment

pancake-shaped harmonic traps: ωz � ωx,y

layer: ωz > 0, ωx,y → 0 ⇒ translational invariance

dipoles in 1D harmonic trap

pure dipole system unstable via tunneling towards head-to-tail configurations
⇒ stabilize with repulsion (σ/r)12

σ = 0: σ 6= 0:

using again units length r0 = md2

~2 and energy ε0 = ~2

mr2
0

, the system is characterized by

repulsion σ unstable for σ → 0

trap frequency Ω unstable for Ω→ 0

area density n =
∫
dz ρ(z) unstable for n→∞

ground state calculation: HNC-EL; excitations: CBF-BW



Roton II in dilute gas

in 4He: roton excitation due to strong correlations
Q: roton excitation in dilute gas?
A: Santos et al., PRL 90, 250403 (2003): yes! (based on mean field approximation)

CBF-BW results:

“rotonization” due to attractive part of vdd

strong damping at 2× Eroton: “Pitaevskii
plateau”

system unstable towards σ ↓, n ↑, Ω ↓
HNC-EL calculation unstable before roton
energy Eroton (presumably) vanishes

above: repulsion & high density → roton I
here: attraction & any density → roton II

instability for similar parameters as for binding
of 2-body problem ⇒ dimerization

S(k,E) for nr2
0 = 2, Ω2 = 10, σ = 0.3:



Roton in dilute system: Er2

Er2 (magnetic dipoles):

µ = 14µB

choice of other parameters:

r0 = 850Å

Ω = 10kHz

nr2
0 = 0.3

evolution of S(k, ω)
with decreasing σ:

σ = 0.3800



Roton in dilute system: Er2

Er2 (magnetic dipoles):

µ = 14µB

choice of other parameters:

r0 = 850Å

Ω = 10kHz

nr2
0 = 0.3

evolution of S(k, ω)
with decreasing σ:

σ = 0.3700



Roton in dilute system: Er2

Er2 (magnetic dipoles):

µ = 14µB

choice of other parameters:

r0 = 850Å

Ω = 10kHz

nr2
0 = 0.3

evolution of S(k, ω)
with decreasing σ:

σ = 0.3600



Roton in dilute system: Er2

Er2 (magnetic dipoles):

µ = 14µB

choice of other parameters:

r0 = 850Å

Ω = 10kHz

nr2
0 = 0.3

evolution of S(k, ω)
with decreasing σ:

σ = 0.3500



Roton in dilute system: Er2

Er2 (magnetic dipoles):

µ = 14µB

choice of other parameters:

r0 = 850Å

Ω = 10kHz

nr2
0 = 0.3

evolution of S(k, ω)
with decreasing σ:

σ = 0.3480



Roton in dilute system: Er2

Er2 (magnetic dipoles):

µ = 14µB

choice of other parameters:

r0 = 850Å

Ω = 10kHz

nr2
0 = 0.3

evolution of S(k, ω)
with decreasing σ:

σ = 0.3450



Roton in dilute system: Er2

Er2 (magnetic dipoles):

µ = 14µB

choice of other parameters:

r0 = 850Å

Ω = 10kHz

nr2
0 = 0.3

evolution of S(k, ω)
with decreasing σ:

σ = 0.3440



Roton in dilute system: Er2

Er2 (magnetic dipoles):

µ = 14µB

choice of other parameters:

r0 = 850Å

Ω = 10kHz

nr2
0 = 0.3

evolution of S(k, ω)
with decreasing σ:

σ = 0.3437



Roton in dilute system: Er2

Er2 (magnetic dipoles):

µ = 14µB

choice of other parameters:

r0 = 850Å

Ω = 10kHz

nr2
0 = 0.3

evolution of S(k, ω)
with decreasing σ:

σ = 0.3435



Roton in dilute system: Er2

Er2 (magnetic dipoles):

µ = 14µB

choice of other parameters:

r0 = 850Å

Ω = 10kHz

nr2
0 = 0.3

evolution of S(k, ω)
with decreasing σ:

σ = 0.3434



Roton-Roton Crossover in quasi-2D Dipolar Bose Gas

Q: can we switch between roton
I and roton II?

S(k, ω) for density nr2
0 = 2,

repulsion σ = 0.3 and trap
frequency Ω increasing from
Ω = 3.16 (top left) to Ω = 224
(bottom right):

weak trapping:
roton I, caused by
perpendicular correlations
due to attractive part of
dipole-dipole interaction

kroton ≈ a−1
ho

strong trapping:
roton II, caused by parallel
correlations due to
repulsive part of
dipole-dipole interaction

kroton ≈ 6n1/2

D. Hufnagl et al., PRL 107, 065303 (2011)



Bilayer dipolar Bose Gas

dipole interaction is long-ranged → coupling between layers

double-well potential: Uext(~ri ) = A {cos (Kzi − π) + λ cos (2Kzi − 2π)}

density profile ρ(z)
(nr2

0 =
∫
dzρ(z) = 1)

dispersion relatiom of lowest
mode in Bjil-Feynman
approximation
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Bilayer dipolar Bose Gas

first two excitation spectra:

top left:
layers far apart
⇒ negligible coupling
almost degenerate collective
excitations
weak trap
⇒ intra-layer dimerization
instability, same as for single layer

bottom right:
layers close together ⇒
inter-layer dimerization instability
splitting of collective excitations
strong trap
⇒ each layer almost 2D

Bjil-Feynman spectra for bilayers
(symbols: corresponding 2D limit)
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Bilayer dipolar Bose Gas

inter- and intra-layer pair distribution function:

inter-layer:

ρ12(r‖) =

∫ 0

−∞

∫ ∞
0

dzdz′ ρ2(r‖, z, z
′)

⇒ intra-layer dimerization
⇒ collapse

intra-layer:

ρ11(r‖) =

∫ ∞
0

∫ ∞
0

dzdz′ ρ2(r‖, z, z
′)

⇒ inter-layer dimerization
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Bilayer dipolar Bose Gas

dynamic structure function S(k‖, ω): close narrow layers
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Bilayer dipolar Bose Gas

Q: how to stabilize against inter-layer “instability”/dimerization?
A: increase distance or increase density

critical distance d as function of density nr2
0 for two 2D layers:

 0.1

 1

 1  10  100

d

n

note: n→ 0 (2 particles on different 2D planes) leads to bound state regardless of d!

what next? bi/multilayers of tilted dipoles



unpolarized, 3D: vdd(r12) =
d2

4πε0

ê1 · ê2 − 3(ê1 · r̂)(ê2 · r̂)

r 3
12



Rotating Dipoles

mean field approach (GP):

unpolarized molecules:
splitting of first rotational

excitation (j = 1): ∆E = ρd2

3ε0

e.g. n = 1014cm−3 and d = 5D:
∆E ≈1.6MHz

polarized molecules:
fixed-orientation approximation
with d = 〈d〉 generally good, but
corrections for very small
polarization d = 〈d〉

Phys. Chem. Chem. Phys. 13, 18835 (2011)

PIGSMC simulations:

MC sampling of rotations
e.g. 1D dipole lattice:

ordering as g = d2

Ba3 increases:

B. Abolins et al., JLTP 165, 249 (2011)

HNC-EL calculations:

preliminary results: at high density,
system collapses via self-polarization

what next:

self-assembled crystalline phases: stable?

3-body physics of rotating dipoles?

ions in dipolar gases
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