Ionization Processes in Star Formation and Young Stellar Objects Fred C Adams – Univ. Michigan

Molecules and Dust as Fuel to Star Formation KITP -- 23 June 2016

Ionization Effects

Coupling of magnetic field
 Chemistry

Magnetic braking in protostellar phase
Location of dead zones for MRI
Location of ice-lines (for varying species)
Chemical make-up vs radial position
Affects both star and planet formation

Ionization Sources

Cosmic rays (CRs)
Short-lived radioactive nuclei (SLRs)
X-ray, EUV, FUV radiation from star
X-ray, EUV, FUV radiation from cluster
Collisions (in dense regions)

******FUV can ionize molecules (not hydrogen)

Ionization: State of the Art

 Cosmic rays (CRs) use canonical ISM rate $\varsigma \approx 10^{-17} \text{ sec}^{-1}$ Short-lived radioactive nuclei (SLRs) use values for early solar nebula (or none) X-ray, EUV, FUV radiation from star included to good approximation X-ray, EUV, FUV radiation from cluster generally NOT included

OUTLINE (complications)

 CR magnetic mirroring w. turbulence CR enhancement in molecular clouds Enrichment of short-lived radionuclides Radiation backgrounds from clusters CR suppression by T-Tauriospheres Observational signatures and physical implications of varying ionization rates

Effects of Turbulence on Cosmic Ray Propagation in Young Stellar Objects

Fred Adams and Marco Fatuzzo

Hour-Glass Field Shape

M. Warnez and F. Adams (U. Michigan) J. Girart (CSIC-IEEC), R. Rao (ASIAA) and D. Marrone (CfA)

Coordinate System

Four different field lines with varying levels of turbulence

$$\eta = 1, 3, 10, 30$$
$$\eta = \frac{\left< \delta B^2 \right>}{B_0^2}$$

Mirroring and Funneling effects tend to cancel out

Effect of Turbulence

Distributions of Mirror Radii

 $\gamma = 100$, $\cos \alpha_P = 0.99 = const$, $\eta = 1$ and 10

CR Flux Enhancement from Supernovae in Molecular Clouds

Marco Fatuzzo, Fred Adams, & Fulvio Melia

Cosmic Ray Flux Variations [Ionization rate controls diffusion rate] [Cosmic ray flux controls ionization rate] Supernovae produce the cosmic rays SN often associated w. molecular clouds Cosmic rays injected into the clouds Molecular clouds have magnetic fields Cosmic rays must diffuse to get out Cosmic ray flux can be enhanced in clouds compared to standard galactic value

Magnitude of the Effect:

 Cosmic Ray Energy Density can be enhanced by factor of 1000 (at most) Enhancement can be sustained over a Time Scale of few Myr Time Scale for Ambipolar Diffusion is increased by factor of 30 Cosmic Ray Flux, Ambipolar Diffusion Rate, and Ionization rates will all vary with location and with time

Fatuzzo, Adams, Melia, 2006, ApJ, 643, L49

Radiation Fields Provided by Background Cluster Environments: UV & X-ray

Composite Distribution of FUV Flux

FUV Flux depends on:

- Cluster FUV luminosity
- Location of disk within cluster

Assume:

- FUV point source at center of cluster
- Stellar density $\rho \sim 1/r$

G₀ Distribution

Median	900
Peak	1800
Mean	16,500

Adams et al. 2006, ApJ

Composite Distribution of EUV Flux

Composite Distribution of X-ray Flux

With NO dilution, Stellar X-ray flux Fx = 0.04 (cgs) dominates bkgrd If dilution included, Bkgrd >> stellar (@30AU)

$$N_{\rm max} = 3000$$

 $\rho \propto r^{-2} \ (dashed)$
 $\rho \propto r^{-1} \ (solid)$

Adams et al. 2012, PASP

Distributions of SLRs Provided by Supernovae in Young Embedded Clusters

Fred Adams, Marco Fatuzzo, & Lisa Holden

Nuclear Yields from Supernovae

Comparison of WW and LC Models

Analytic Form for Distribution of Nuclear Mass Delivered to Systems

$$\frac{dP}{dY} = (3-p)B_{\lambda}\int_{0}^{1} d\xi \ \xi^{4-p} \exp\left[-\frac{(Y\xi^{2}-1)^{2}}{2\lambda^{2}}\right]$$

$$Y = M_{0}X \quad where \quad M_{0} = \langle Y \rangle_{C} \frac{\pi r_{d}^{2}}{4\pi R_{C}^{2}}$$

$$Y >> 1 \implies \frac{dP}{dY} = C \ Y^{-(5-p)/2} \quad (power-law!)$$

26AI Delivered to Solar Systems

Mass Scale Summary

- Yields per supernova for important isotopes: 10 -- 100 microsun
- Yields per star (averaged over stellar IMF) : fraction of a microsun
- Yields per cluster (for N = thouands): millisuns

 Yields delivered to solar system disks fall in the range 1 – 100 picosuns

Our Solar System received 100 picosuns

SLR Midplane Ionization Rate Including Losses and Decay

Protoplanetary Disks: Observational Signatures resulting from Different Ionization Scenarios

Ilse Cleeves, Fred Adams, Ted Bergin

Chemical Codes

1+1D disk model for chemistry Disk density (power-law in r, gaussian in z) Use TW-Hya as template for UV, X-ray 2D Monte Carlo radiative transfer code 1000s of chemical reactions in network Coupling between gas and dust Predict abundances v. position of key species LIME 3D code to predict obs. signatures Code References: Fogel et al. 2011; Cleeves et al. 2011, 2013; Bethell & Bergin 2012; Brinch & Hogerheijde 2011, etc.

Basic Disk Model

Gas density dust density dust temperature

Gas temperature X-rays

UV

Relative Contribution of UV, X-rays, CRs to Disk Ionization

Hatched regions: more than 30% by given source

THE HELIOSPHERE

Graphic from IBEX Mission

Reduces CR flux inside the Solar System

THE T-TAURIOSPHERE

Reduces CR flux striking T Tauri Disks

Modulated Cosmic Ray Fluxes

CR Ionization Rate vs Column

Mid-plane Ionization Rates

Index for Ionization Scenarios

Ionization Rates and Dead Zones

Include SLRS: Increase Ionization, Reduce Dead Zones

$$\zeta_{total} = \zeta_{CR} + \zeta_X + \zeta_{SLR}$$

Column Density Profiles

Face-on Line-center Optical Depth

M02: purple, W98: yellow, SSX: blue, and TTX: green

 $H^{13}CO^+$ (3-2) N_2H^+ (4-3) Schematic of 9.5 217.2 162.9 7.1 LIME φ 0 4.70 Simulated $-2^{\frac{1}{2}}$ 2.4 0.0 0.0 4 - 2 04-2.0 2 2 **Observations** θ'' θ" (L.I. Cleeves) 4.3 51.0 51.0 s/ms/ 38.3 g/ms/ 12.8 ms/ s/ms/ s/ s/ s/ms/ 0 -3.3 2.2 θ -2 : 1 Simulated -4 0.5 0.0 CASA -4 - 2 02 -4-202 4 4 **Observations** θ'' θ'' Amplitude (Jy km/s) 0.2 0.0 0.0 Amplitude (Jy km/s) 5.5w. Full array 4.12.71.40.0 100 100 0 200 0 200 kλ kλ Cut across (m]y/beam km/s) (m]y/beam km/s) (m]y/beam km/s) (m]y/beam km/s) (m]y/beam km/s) 37.7 12.6 0.0 5.550.2 Image Cut **On-sky Emission Map** 0.0 0. 2 3 2 3 4 1 4 5 1 Ó) 0 5 θ'' θ''

Radiative Transfer Output

Simulated ALMA Observations

MO2: purple, W98: yellow, SSX: cyan, TTX: blue

On-Sky ALMA Profiles

$$Log_{10}L_X = 29.5 \text{ and } 30.5$$

(*in erg*/sec)

4 Cosmic Ray profiles: M02, W98, SSX, TTX

Goodness of Fit for Observed ALMA Lines in TW Hya

CR Flux is Low!

$$\zeta_{CR} = 7 \times 10^{-21} s^{-1}$$

 $\zeta_{CR} << \zeta_{ISM}$
Cleeves et al. (2015)

SUMMARY

 Ionization rates vary significantly CR mirroring enhanced by turbulence CRs further suppressed by T-Tauriospheres CR fluxes can be enhanced by supernovae SLRs delivered to disks at picosun level Background radiation from clusters can dominate in some systems Effects of different ionization rates are now observable with ALMA (and others)

Every Sea has its Dragons

How to mix and match ionization agents
Time dependence of X-rays, backgrounds
Dust settling affects SLR ionization
Dust formation affects SLR capture
Geometry of T Tauri winds
Turbulent spectrum for magnetic fluct.

UNRESOLVED ISSUES

Dead zones (turn off MRI, turbulence)
Ice-lines (affect composition)
Heating due to SLRs
Dust settling
Implication for planet formation

References

Adams 2010, ARA&A, 48, 47 Adams & Fatuzzo 2015, ApJ, 813, 55 Adams, Fatuzzo, & Holden 2014, ApJ, 789, 86 Adams, Fatuzzo, & Holden 2012, PASP, 124, 913 Adams, Proszkow, Fatuzzo, Myers 2006, ApJ, 641 Cleeves, Adams, & Bergin 2013, ApJ, 772, 5 Cleeves, Adams, & Bergin 2014, ApJ, 794, 123 Cleeves, Adams, Bergin, Visser 2103, ApJ, 777, 28 Cleeves et al. 2015, ApJ, 799, 204 Fatuzzo & Adams 2014, ApJ, 787, 26 Fatuzzo & Adams 2008, ApJ, 675, 1361 Fatuzzo, Adams, & Melia 2006, ApJ, 653, 49