Fine-structure line diagnostics of the SFR and ISM conditions

Ilse De Looze¹, Diane Cormier^{2,3}, Suzanne Madden², Sacha Hony³, Vianney Lebouteiller², Eric Pellegrini³, with inputs of the Dwarf Galaxy Survey and KINGFISH teams

¹ University College London, UK
 ² Laboratoire AIM, CEA, Saclay, Paris
 ³ Zentrum für Astronomie der Universität Heidelberg

Outline

Fine-structure lines to trace the SFR

- how is FIR line emission linked with SFR?
- do we see the same trends across all metallicities and galaxy types?
- which FIR line = best SFR indicator?

FIR line diagnostics of ISM conditions

- origin of [CII] deficit and other line deficits
- multi-phase ISM modelling

Why use FIR lines to trace the SFR?

- ◇ C⁺, O, O⁺⁺ are important coolants of the ISM
- strong line emission in star-forming galaxies
- Observable diagnostics at high redshift
 - \rightarrow line shifts to submm λ

(ALMA, IRAM, SMA, CARMA, ...)

Need to calibrate FIR lines as SFR tracer in the local Universe on metal-poor galaxies

Why use FIR lines to trace the SFR?

 $[CII]_{158} \longrightarrow photo-dissociation regions (PDRs), diffuse HI clouds+ionized media (due to low ionization potential)$

 $[OI]_{63}$ \rightarrow warm and/or dense PDRs

 $[OIII]_{88} \rightarrow$ highly **ionised**, low-density gas

	[CII] ₁₅₈	[OI] ₆₃	[OIII] ₈₈
n _{cr} (cm ⁻³)	3-5x10 ³	>10 ⁵	510
$T_{exc}(K)$	91	228	163
IP (eV)	11.3		35.1

FIR line view of 30 Dor (Chevance+ 2016):

Why use FIR lines to trace the SFR?

Good SFR tracers?

- $[CII]_{158}$ \rightarrow brightest FIR line (1% of TIR)
 - → ambiguous origin (HII region, diffuse ionised, PDR)
 - → [CII] line deficit
- $[OI]_{63} \rightarrow 2^{nd}$ brightest line in PDR
 - → self-absorption, optical depth effects
 - → possible shock excitation
- $[OIII]_{88}$ \rightarrow brightest line towards low Z
 - → line emission depends strongly on IP, electron density

In an ideal world...

Gas cooling (line emission) is linked to star formation

Higher SFR —> increased input to gas heating —> need for more cooling through line emission

More efficient cooling --> easier contraction of molecular clouds
--> higher level of SF

Wolfire+ 1995

Previous [CII] calibrations

Boselli et al. (2002)

Calibration of SFR relation based on:

- $H\alpha+[NII]$ lines
- ISO [CII] data
 - → dispersion $L_{H\alpha}$ $L_{[CII]}$ relation: ≈ 3
 - → uncertainty on SFR estimate: ≈ 10

Conclusion: large dispersion in SFR-L_[CII] relation due to different contributions to [CII] emission in galaxies

→ [CII] = poor SFR tracer?

BUT: large uncertainty on [NII] correction and $H\alpha$ extinction

Previous [CII] calibrations

De Looze et al. (2011)

Calibration of SFR relation based on

- FUV+24 µm data
- ISO [CII] data (Brauher+ 2008)
- \rightarrow tight correlation: SFR and L_[CII]

Conclusion:

less dispersion (0.27 dex) than in Boselli et al. (2002)

BUT

- Limited sample of merely metal-rich galaxies
- No spatially resolved observations → no constraint on origin of C⁺

Previous [CII] calibrations

Sargsyan et al. (2012)

- [CII] can be used as SFR tracer in starburst galaxies
- deficit in [CII] for AGNs due to contribution from AGN to $L_{\rm IR}$

Conclusions: [CII] = reliable SFR indicator in normal star-forming galaxies, possibly also in AGNs

Previous calibrations

Sargsyan et al. (2014)

- enlarged sample compared to Sargsyan et al. (2012)
- SFR-[CII] calibration is similar using L_{IR} or [Ne II]+[Ne III] to trace the SFR

Conclusions: a.) [CII] is good SF diagnostic in starbursts, b.) 158 µm continuum = reliable SF tracer, less affected by line deficits

FIR lines as SFR tracers:

effect of metallicity and galaxy type

Herschel program:
Dwarf Galaxy Survey
PACS/SPIRE phot+spec of 50 low-Z galaxies

Literature sample of 530

- dwarfs
- starbursts
- AGNs
- ULIRGs
- high-redshift galaxies with FIR line measurements

Herschel Dwarf Galaxy Survey

Madden+ 2013

- Sample of 50 dwarf galaxies
- \diamond Wide metallicity range: 1/50 $Z_{sun} \le Z \le Z_{sun}$

Influence of Z?

- > Lower Z ---- less dust
- → longer free path lengths
- → photo-dissociation of CO
- → larger C⁺ emitting zone

- > Lower Z -> peculiar grain properties
 - dearth of PAHs
- high abundance of very small grains (VSGs)

Dust SED of dwarf NGC1569 Galliano+2003

PAHs/VSGs dominate photoelectric effect

→ influence on gas heating/cooling balance?

Spatially resolved SFR relations

- ☐ Offset between individual galaxies
- dispersion in SFR relations = driven by diversity in ISM properties (e.g. Z, RF, ionisation, dust properties, heating mechanisms)?
 - ☐ Dispersion is largest for SFR-[CII] relation
- → [CII] = poor SFR tracer in metal-poor galaxies!

Global SFR relations

- ☐ [CII] = poor SFR tracer on global scales
- □ [OI] = most reliable SFR tracer in metal-poor dwarfs
- ☐ Weak [CII] emission towards lower metallicities

Why [CII] = poor SFR tracer?

- ☐ Hard radiation field in low-Z galaxies
- photo-electric efficiency drops due to PAH destruction (e.g. Boselli+ 2004, Engelbracht+ 2005, Jakcson+ 2006, Madden+ 2006, Draine+ 2007, Engelbracht+ 2008, Galliano+ 2008)
- increase of grain charging parameter, lowers photo-electric efficiency (e.g. Tielens & Hollenbach 1985a, Malhotra+ 1997, Negishi+ 2001, Croxall+ 2012, Farrah+ 2013)
- → carbon might be locked in C⁺⁺ rather than C⁺

On spatially resolved scales...

Why [CII] = poor SFR tracer?

- ☐ Different ISM structure towards low Z
- → hard radiation + transparency of ISM
 - = large filling factor of ionised gas (Lebouteiller+ 2013, Cormier+ 2015)
- → @ extreme low Z (0.1 Z_{sun}): pseudo-PDRs dominated by soft X-ray heating (not photo-electric effect!) (Pequignot 2008, Lebouteiller in prep.)

Combining $[CII]_{158}$, $[OI]_{63}$, $[OIII]_{88}$

In an ideal world... we combine FIR lines from different ISM phases

Significant *reduction of scatter* in SFR-L_{line} relation

-> other FIR cooling lines more important than C⁺ at low Z

Literature sample

Sample consisting of dwarfs, starburst, AGNs, ULIRGs, high-redshift galaxies with [CII] (530), [OI]₆₃ (150) and [OIII]₈₈ (102)

Literature sample

- \Diamond [OI]₆₃, [CII] = most reliable SFR tracers, [OIII]₈₈ = unreliable SFR tracer
- Line deficit in ULIRGs causes offset in SFR calibrations
- [CII] = best calibrated SFR tracer @ high-redshift

Requirement: separate SFR calibrations + prescriptions per galaxy type

De Looze et al. (2014)

Correlation between [CII] and SFR surface densities $\Sigma_{\text{[CII]}}\text{-}\Sigma_{\text{SFR}}$

Offset for galaxy centers in MIPS 24-[CII] relation

Residuals in $\Sigma_{\text{[CII]}}\text{-}\Sigma_{\text{SFR}}$ relation correlate with IR color, not q_{PAH}

→ SFR-[CII] relation with IR color as secondary parameter

Can be applied to normal SF galaxies and non-AGN LIRGs:

$$\log_{10}(\Sigma_{\rm SFR}) = m \times (\log_{10}(\Sigma_{\rm [CII]} \times \Psi(\gamma)) - 40) + N$$

Herschel HIFI observations along 500 sight-lines in the Milky Way

Langer+ 2011

Separate [CII] emission from different ISM phases

→ compare [CII] velocity profiles/spatial distribution with HI, ¹²CO, ¹³CO

Pineda+ 2013

- most [CII] emission at radii 4-11 kpc, associated to spiral arms
- traces ISM phase intermediate extended HI and dense CO clouds

Separate [CII] emission from different ISM phases

→ [CII] originates from: PDRs (47%), CO-dark H₂ (28%), cold atomic gas (21%), ionised gas (7%)

fraction of CO-dark gas increases with Galactocentric radius

How does SFR relate to [CII] emission in our Milky Way?

→ SFR derived from radio observations (free-free emission)

Pineda+ 2014

→ SFR-[CII] relation holds over six orders of magnitude

How does SFR relate to [CII] emission in our Milky Way?

→ SFR-[CII] relation behaves different in various ISM phases

Pineda+ 2014

→ only global SFR-[CII] relation consistent with other galaxies

[CII] as SFR tracer @ high redshift?

Himiko (z=6.6, Ouchi+2013, see also González-López+ 2014)

Bright HST source \longrightarrow SFR $\approx 100 M_{\odot}/yr$ No FIR and [CII] detection \longrightarrow low metal content!

other cooling mechanisms (e.g. Lya)

[CII] is NOT good SFR tracer in those objects!

[CII] as SFR tracer @ high redshift?

- ♦ IOK-1 (z=6.96, Ota+2014)
 - Similar properties as Himiko
 - Mostly unobscured SF (SFR ≈ 29 M_®/yr)
 - + no [CII] detection > low metal content!

SED similar to local dwarf irregulars

local dwarfs are important study cases!

[CII] is NOT good SFR tracer in objects that have just started forming stars after cosmic re-ionization!

How unique are objects as Himiko, IOK-1?

→ not many [CII] detections @ z ≥ 6

Conclusions: Part I

Which FIR lines to use as SFR tracers?

1.) Effect of *metallicity*

- ♦ [CII] = poor SFR tracer
 - at low metallicities
 - at warm IR colours ([CII] deficit!)
 - → other cooling lines dominate @ ≠ gas density/ionisation state

2.) Effect of galaxy type

Need for separate calibrations per galaxy type (ULIRGs!)

3.) Best SFR indicator

- OI] shows tightest correlation with SFR, but is weaker than [CII]
- Use galaxy-specific or colour-based SFR relation for [CII]

Guideline: Without info on metallicity/galaxy type/IR colour: [OI]₆₃=best SFR tracer

Outline

Fine-structure lines to trace the SFR

- how is FIR line emission linked with SFR?
- do we see the same trends across all metallicities and galaxy types?
- which line = best SFR indicator?

FIR line diagnostics of ISM conditions

- origin of [CII] and other line deficits
- multi-phase ISM diagnostics

Origin of [CII] (line) deficit

What?

- Drop in [CII]/FIR ratio with increasing FIR
- [CII] line deficit seems to correlate with IR colours

Origin of [CII] (line) deficit

At high-redshift:

- no continuation of line deficit
- trend = more dispersed trend

Origin of [CII] (line) deficit

Possible explanations?

- 1.) self-absorption of C⁺ line emission
- 2.) saturation of [CII] line flux above n_{crit}
- 3.) charging of dust grains —> drop in photo-electric efficiency (no decrease in dust emission)
- 4.) high dust-to-gas opacity due to high ionisation parameter
- 5.) AGN contribution

- <u>Herschel SHINING</u> program (local starbursts, Seyferts, low-metallicity galaxies, (U)LIRGS at low/high redshift)
- [CII]/FIR —> correlates better with L_{FIR}/M_{H2}

- <u>Herschel SHINING</u>: line deficits detected for [CII]158, [OI]145, [NII]122, [OIII]88, ...
 - -> mechanism that causes deficit not restricted to PDRs

- L_{FIR}/M_{H2} separates galaxies in two SF modes
- Line deficit occurs @ high ionisation parameter / high SFE

- Herschel GOALS: sample of 202 LIRGs + ULIRGs
- Most galaxies show line deficit
- [CII] deficit correlates with IR colour

Herschel GOALS: [CII] deficit correlates with

- 9.7 µm silicate absorption feature
- mid-IR luminosity surface density (Σ_{MIR})
- -> line deficit occurs in warmer, more compact starbursts

Herschel GOALS: resolving the emission of nuclei and disk:

- -> nuclei show the strongest deficits
- -> models attribute deficit in nuclei to lower C⁺ abundance in the presence of X-rays, when L(X-ray) >10⁴³ erg/s

Diaz-Santos+ 2014 Langer&Pineda 2015

Multi-phase ISM model = the only way to constrain

- origin of [CII] emission/deficit
- SFR calibrations (for different metallicities, galaxy-types)
- FIR lines as gas mass tracers (K-S law!)

Multi-phase ISM model Haro 11:

Compact HII region: $n_H = 10^3 \text{ cm}^{-3}$, $A_{burst} = 4 \text{ Myr}$ Dense PDR model: $n_H = 10^5 \text{ cm}^{-3}$, $G_0 = 10^3 \text{ Habing}$

Diffuse medium: $n_H = 10 \text{ cm}^{-3}$, $T_{eff} = 35 000 \text{ K}$

D = 84 Mpc LIR = 1.6x1011Lsun Z=0.3Zsun SFR=22Msun/yr

Cormier+ 2012

-> 40% of the [CII] emission comes from ionised gas, 60% from PDR

Dwarf Galaxy Survey

How different is the ISM at low-metallicity?

No line deficits! (even enhanced gas cooling!)

Model setting:

Continuous SF ISM abundances

Grids varying: n_H and U

Z = 0.05, 0.1, 0.25, 0.5, 1.0 Zo

- 1) Derive the best fit model for HII region
- 2) Next predict PDR phase pressure equilibrium throughout

Diagnostics:

[SIII]18/33 => HII region electron density

[NeIII]/[NeII]

[SIV]/[SIII]18 => radiation field hardness
[OIII]/[NII]

[OI]/[CII] [CII]/L(TIR) [CII]/CO => PDR temperature, density

=> Av

Model comparison:

low-metallicity dwarfs vs normal SF galaxies

HII region:

	Low-Z dwarfs	High-Z SF gal
n _e [cm ⁻³] log U R _{S,eff} [pc]	10 ^{2.0} -2.5 46	10 ^{2.5} -3.0 16
'		

At low metallicity:

- Harder RF
- Dilution of UV field

Cormier+ 2015

Model comparison:

low-metallicity dwarfs vs normal SF galaxies

Photo-dissociation region:

	Low-Z dwarfs	High-Z SF gal
n _H [cm ⁻³] log G ₀	10 ^{4.0} 2.7	10 ^{3.5} 3.3

At low metallicity:

- We need to reduce PDR covering factor is lower by factor of ~3 to reproduce line-to-IR ratios.

Low-metallicity dwarf galaxies

- -> very different ISM structure:
- 1. volume-dominated by diffuse high-ionisation gas
- 2. small filling factor of PDRs

!problem! CO = not good tracer of molecular gas!

Conclusions: Part II

Multi-phase ISM conditions

- 1.) [CII] and other line deficits
 - ♦ Drop in [CII]/TIR in local (U)LIRGs
 - Wide spread in [CII]/TIR at high redshift
 - Significant drop in galaxy nuclei (AGN and SB)
 - Origin = unclear: dusty, more compact HII regions,
 - X-ray ionisation -> C in higher ionisation states
 - photo-electric efficiency affected by grain abundance, grain charging
 - -> might be a mixture of effects at play in different environments

2.) Multi-phase modelling

- Unique tool to constrain how ISM conditions change (at low metallicity)
- Models can help to constrain CO-dark gas fraction (e.g., [CII]/CO)