

Cara Battersby Harvard-Smithsonian Center for Astrophysics

Galactic Longitide

 What is the large-scale structure of our Galaxy?
How do the most massive stars form in our Galaxy?
How do they form in the

210

Galactic Longitide

 What is the large-scale structure of our Galaxy?
How do the most massive stars form in our Galaxy?
How do they form in the distant Universe?

rius Arm

Perseus Arm

Galactic Longitide

Stop 1: The Skeleton of the Milky Way

us Arm

"Nessie"

210

240°

Figure Credit: NASA / JPL-Caltech / R. Hurt (SSC-Caltech)

Quiter Arm

210

Galactic Longitide

 What is the large-scale structure of our Galaxy?
How do the most massive stars form in our Galaxy?
How do they form in the distant Universe? Galactic Longitide

The Milky Way Laboratory

Stop 2: Massive star and cluster formation

Figure Credit: NASA / JPL-Caltech / R. Hurt (SSC-Caltech)

Galactic Longitide

 What is the large-scale structure of our Galaxy?
How do the most massive stars form in our Galaxy?
How do they form in the distant Universe?

Galactic Longitide

Stop 3: Extreme SF in our Galactic Center

210

Figure Credit: NASA / JPL-Caltech / R. Hurt (SSC-Caltech)

E.

Jostanus Arm

Perseus Arm

Sun

Durken Arm

Galactic Longitide

Stop 1: The Skeleton of the Milky Way

rus Arm

SCUCUM

Vorma A

The Skeleton of the Milky Way

M51: the Whirlpool Galaxy From the Hubble Space Telescope. NASA / JPL-Caltech / R. Kennicutt (U. Arizona)

IC 342 Infrared image

Spitzer's infrared array camera (IRAC) are shown in blue (3.6 and 4.5 microns) and green (5.8 and 8.0 microns), while the multiband imaging photometer (MIPS) observation is red (24 microns).

The Milky Way

"Galactic Plane"

Nessie – Bone of the Milky Way?

Goodman et al. 2014

Nessie – Bone of the Milky Way?

Goodman et al. 2014

Goodman et al. 2014

Nessie – Bone of the Milky Way?

0

0

Goodman et al. 2014

Nessie traces out the Scutum-Centaurus Arm. Are there others?

Nessie traces out the Scutum-Centaurus Arm. Are there others? Yes!

Search for more Bones of the Milky Way

Catherine Zucker 2014 SAO REU from Virginia Just started Harvard PhD program!

Zucker, Battersby, & Goodman 2015

Search for more Bones of the Milky Way

- Mid-infrared extinction feature
- Roughly parallel to the Galactic plane
- Within 20 pc of the physical Galactic mid-plane
- Within 10 km/s of the global-log spiral fit to any MW arm
- Projected aspect ratio greater than or equal to 50:1

Zucker, Battersby, & Goodman 2015

Search for more Bones of the Milky Way

6/10 candidates are excellent tracers of spiral arm in 3-D (position-position-velocity space)

We are now working to assemble a full 'Skeleton'

Zucker, Battersby, & Goodman 2015

Bones of the Milky Way

Working to characterize their physical properties and kinematics with Harvard undergraduate, Amy Cohn

Zucker, Battersby, & Goodman 2015

 Identify more Bones of the Milky Way. Combine with other tracers (e.g. CO, HI, dense gas) to develop a model of Galactic structure

- Identify more Bones of the Milky Way. Combine with other tracers (e.g. CO, HI, dense gas) to develop a model of Galactic structure
- Measure physical properties and kinematics of Bones – compare directly with simulations. Develop improved Galactic-scale simulations

 Measure physical properties and kinematics of Bones – compare directly with simulations. Develop improved Galactic-scale simulations

60 hour IRAM Project (PI: Battersby) to map our best Northern "Bone candidate"

 Measure physical properties and kinematics of Bones – compare directly with simulations. Develop improved Galactic-scale simulations

- Identify more Bones of the Milky Way. Combine with other tracers (e.g. CO, HI, dense gas) to develop a model of Galactic structure
- Measure physical properties and kinematics of Bones – compare directly with simulations. Develop improved Galactic-scale simulations

 Detect Bones in nearby face-on spiral galaxies to understand their role in Galactic structure

 Detect Bones in nearby face-on spiral galaxies to understand their role in Galactic structure

- Identify more Bones of the Milky Way. Combine with other tracers (e.g. CO, HI, dense gas) to develop a model of Galactic structure
- Measure physical properties and kinematics of Bones – compare directly with simulations. Develop improved Galactic-scale simulations
- Detect Bones in nearby face-on spiral galaxies to understand their role in Galactic structure

210

Galactic Longitide

 What is the large-scale structure of our Galaxy?
How do the most massive stars form in our Galaxy?
How do they form in the distant Universe?

Galactic Longitide

Stop 2: Massive star and cluster formation

Figure Credit: NASA / JPL-Caltech / R. Hurt (SSC-Caltech)

Evolution

Starless proto-cluster

Star-forming proto-cluster

Battersby et al. 2010; 2011

Search for Starless Proto-Clusters

Embedded cluster

First ever complete search for massive, compact starless protoclusters (BGPS: Ginsburg, Battersby, et al. 2012)

• Massive, Tightly Bound: $3 \times 10^4 M_{\odot}$ (1 × 10° M_o) r < 2.5 pc

Embedded cluster

First ever complete search for massive, compact starless protoclusters (BGPS: Ginsburg, Battersby, et al. 2012)

- Massive, Tightly Bound: $3 \times 10^4 M_{\odot}$ ($1 \times 10^4 M_{\odot}$) r < 2.5 pc
- yields 3 (18), none of which are starless

First ever complete search for massive, compact starless protoclusters (BGPS: Ginsburg, Battersby, et al. 2012)

- Massive, Tightly Bound: $3 \times 10^4 M_{\odot}$ ($1 \times 10^4 M_{\odot}$) r < 2.5 pc
- yields 3 (18), none of which are starless

Starless clumps are *less massive* overall \rightarrow corresponds to mass accretion rate of ~1000 M_{\odot} / Myr Svoboda, Shirley, Battersby, et al. 2015

Starless clumps are *less massive* overall \rightarrow corresponds to mass accretion rate of ~1000 M_{\odot} / Myr Svoboda, Shirley, Battersby, et al. 2015

15 Ari

Follow-up SMA and ALMA surveys toward most massive starless clumps → initial structure before disruption by stellar feedback Starless proto-cluster

From Battersby et al. 2014b; Hi-GAL: Molinari et al. (2011), MIPSGAL: Carey et al. (2009), GLIMPSE: Benjamin et al. (2003),

→ look for evidence of infall in line asymmetries

70 μ m, 24 μ m, 8 μ m, Herschel N(H₂) contours

G32.03+0.05, Battersby+ in prep

HCO⁺ (1-0) and H¹³CO⁺ (1-0) on the ARO 12m

70" FWHM 1.8 pc at 5.5 kpc

G32.03+0.05, Battersby, Myers, Keto, et al. in prep

0

HCO⁺ (1-0) and H¹³CO⁺ (1-0) on the ARO 12m

→ Clear evidence of infall

G32.03+0.05, Battersby, Myers, Keto, et al. in prep

0

Perform modified blackbody fitting of Herschel data to derive $N(H_2)$ and dust temperature.

70 μ m, 24 μ m, 8 μ m, Herschel N(H₂) contours

G32.03+0.05, Battersby, Myers, Keto, et al. in prep

0

Add the density and temperature profiles

Density Temp Profile Profile

70 μ m, 24 μ m, 8 μ m, Herschel N(H₂) contours

Vin

$$\dot{\mathrm{M}} = \rho \sigma \mathrm{v} = \left[\frac{\mathrm{n}}{\mathrm{10^4 \ \mathrm{cm^{-3}}}}\right] \left[\frac{\sigma}{\mathrm{pc^2}}\right] \left[\frac{\mathrm{v}}{\mathrm{kms^{-1}}}\right] 700 \ \mathrm{M_{\odot}/Myr}$$

Density fromSurface area HCO+ linePlummer fitof cylinderprofile fit

$$\dot{\mathbf{M}} = \rho \sigma \mathbf{v} = \left[\frac{\mathbf{n}}{10^4 \text{ cm}^{-3}}\right] \left[\frac{\sigma}{\mathbf{pc}^2}\right] \left[\frac{\mathbf{v}}{\mathbf{kms}^{-1}}\right] 700 \text{ M}_{\odot}/\text{Myr}$$

Density fromSurface area HCO+ linePlummer fitof cylinderprofile fit

Infall Rates

Battersby et al., in prep. See also Peretto et al. (2013), SDC335 Mass infall rate of 700 M_{\odot} / Myr.

Infall Rates

Region can double its mass in a Myr!

Battersby et al., in prep. See also Peretto et al. (2013), SDC335 Mass infall rate of 700 M_{\odot} / Myr.

Evolution

Starless proto-cluster

Star-forming proto-cluster

Battersby et al. 2010; 2011

(e.g. Battersby et al. in prep., Longmore et al. (2011); Schneider et al. 2010; Barnes et al. 2010; Galván-Madrid et al. 2010; Liu et al. 2012)

 Add more species and improve radiative transfer modeling (JCMT, PI: Kirk).

 Add more species and improve radiative transfer modeling (JCMT, PI: Kirk).

• Measure infall rates toward many more regions. Does it correlate with mass or evolutionary stage? What determines the final mass of a cluster?

 Measure infall rates toward many more regions. Does it correlate with mass or evolutionary stage? What determines the final mass of a cluster?

 Add more species and improve radiative transfer modeling (JCMT, PI: Kirk).

 Measure infall rates toward many more regions. Does it correlate with mass or evolutionary stage? What determines the final mass of a cluster?

The Milky Way Laboratory

Galactic Longitide

 What is the large-scale structure of our Galaxy?
How do the most massive stars form in our Galaxy?
How do they form in the distant Universe?

seus Arm

The Milky Way Laboratory

210

Galactic Longitide

Stop 3: Extreme SF in our Galactic Center

Figure Credit: NASA / JPL-Caltech / R. Hurt (SSC-Caltech)

Outen A

Star Formation over cosmic time

Star Formation over cosmic time **Dark Energy** The peak of **Accelerated Expansion** star formation Ages **Development of** Galaxies, Planets, etc. was z~1-3 Quantum Fluctuations **1st Stars** about 400 million yrs. **Big Bang Expansion**

13.7 billion years

Star Formation over cosmic time **Dark Energy** The peak of **Accelerated Expansion** star formation Ages **Development of** Galaxies, Planets, etc. was z~1-3 Quantum Fluctuations **1st Stars** about 400 million yrs. **Big Bang Expansion**

13.7 billion years

Star Formation over cosmic time

Star Formation over cosmic time

Kruijssen & Longmore 2013

The Milky Way Laboratory

210

Galactic Longitide

Stop 3: Extreme SF in our Galactic Center

Figure Credit: NASA / JPL-Caltech / R. Hurt (SSC-Caltech)

Outer A

EL PROPERTY

Extreme Star Formation

24 μm 8 μm 4.5 μm

Extreme Star Formation

- $\Delta v \sim 10x$ higher
- n ~ 10-100x higher
- High temperatures, ubiquitous exotic molecules

100 pc

The Central Molecular Zone: CMZ

N(H₂) from HiGAL Battersby+, in prep., 70 μm from HiGAL, Molinari+ 2011, 8 μm from GLIMPSE (Benjamin+ 2003)

Basic Science Questions:

- 1) What is the cause of the extremely low star formation efficiency (given the reservoir of dense gas) in the CMZ?
- 2) Is there an energy and SF cycle in the CMZ? Where does gas enter the CMZ?
- 3) Is SF induced by tidal compression by SgrA*?
- 4) Can we find precursors to the most massive stars in the Galaxy?
Central Molecular Zone

"Bricklet" D

SMA Legacy Survey of the Central Molecular Zone

- Long wavelength + high angular resolution -> detect early star formation
- First survey of the CMZ ever to be able to do so!

SMA Legacy Survey of the Central Molecular Zone

- Long wavelength + high angular resolution -> detect early star formation
- First survey of the CMZ ever to be able to do so!

CMZoom

- 240 arcmin² (above N(H₂) = 10^{23} cm⁻² or $3x10^{22}$ cm⁻²)
- 4'' (0.2 pc) resolution, $\Delta v \sim 1.1$ km/s

र रहे. जुर

- dust continuum + spectral lines (H₂CO, ¹²CO, ¹³CO, C¹⁸O, SiO, CH₃OH, CH₃CN, etc.): 8 GHz bandwidth
- 3 mJy RMS continuum, 0.4 K
- 500 hours (50 subcompact, 450 compact/custom)
- Complement with single-dish (APEX, CSO) observations

CMZoom

Find star formation!

- 230 GHz (1.3 mm)
- 240 arcmin² (above N(H₂) = 10^{23} cm⁻² or 3×10^{22} cm⁻²)
- 4'' (0.2 pc) resolution, $\Delta v \sim 1.1$ km/s

र रहे. इस्

- dust continuum + spectral lines (H₂CO, ¹²CO, ¹³CO, C¹⁸O, SiO, CH₃OH, CH₃CN, etc.): 8 GHz bandwidth
- 3 mJy RMS continuum, 0.4 K
- 500 hours (50 subcompact, 450 compact/custom)
- Complement with single-dish (APEX, CSO) observations

CMZoom

Team:

CfA: Cara Battersby, Eric Keto, Qizhou Zhang, Xing 'Walker' Lu, Mark Graham (Southampton), Nimesh Patel, Volker Tolls, Dennis Lee, Jimmy Castaño, Liz Gehret

the as

- Bonn: Jens Kauffmann, Thushara Pillai
- University of Colorado, Boulder: John Bally
- Liverpool: Steve Longmore, Daniel Walker, Jonny Henshaw
- MPA: Diederik Kruijssen
- ESO: Adam Ginsburg, Katharina Immer
- Peking University: Luis C. Ho, NRAO: Betsy Mills

Basic Science Questions:

- 1) What is the cause of the extremely low star formation efficiency (given the reservoir of dense gas) in the CMZ?
- 2) Is there an energy and SF cycle in the CMZ? Where does gas enter the CMZ?
- 3) Is SF induced by tidal compression by SgrA*?
- 4) Can we find precursors to the most massive stars in the Galaxy?

Basic Science Questions:

- 1) What is the cause of the extremely low star formation efficiency (given the reservoir of dense gas) in the CMZ?
- 2) Is there an energy and SF cycle in the CMZ? Where does gas enter the CMZ?
- 3) Is SF induced by tidal compression by SgrA*?
- 4) Can we find precursors to the most massive stars in the Galaxy?

The "Molinari Ring" (Molinari+2011)

Kruijssen, Dale, Longmore 2015

Dan Walker – PhD student in Liverpool SAO Pre-doc

Cloud 'b'

 $\begin{array}{c} 70 \ \mu m \\ 8 \ \mu m \end{array}$

5

SMA 1.3mm contours

A 3mm contours, borne+ 2014; 2015

00. S

Basic Science Questions:

- 1) What is the cause of the extremely low star formation efficiency (given the reservoir of dense gas) in the CMZ?
- 2) Is there an energy and SF cycle in the CMZ? Where does gas enter the CMZ?
- 3) Is SF induced by tidal compression by SgrA*?
- 4) Can we find precursors to the most massive stars in the Galaxy?

Basic Science Questions:

- 1) What is the cause of the extremely low star formation efficiency (given the reservoir of dense gas) in the CMZ?
- 2) Is there an energy and SF cycle in the CMZ? Where does gas enter the CMZ?
- 3) Is SF induced by tidal compression by SgrA*?
- 4) Can we find precursors to the most massive stars in the Galaxy?

Where is the Galactic Center?

Map of Galaxy in a Star Formation Tracer (water maser)

HOPS: A. Walsh

Where is the Galactic Center?

Map of Galaxy in a Star Formation Tracer (water maser)

Map of Galaxy in Dense Gas (HC_3N)

Be der hanne

HOPS: A. Walsh

Krumholz & Kruijssen 2015

Torrey et al., submitted

Mark Graham SAO Pre-doc, now a PhD student at Oxford

The Three Little Pigs: Very similar global properties but vastly different substructure Mass ~ $3 \times 10^4 M_{\odot}$ $T_{dust} \sim 20K$ $N(H_2)_{peak} \sim 2 \times 10^{23} \text{ cm}^{-2}$ $\Delta v \sim 10 \text{ km/s}$ Battersby, Bally, Longmore, in prep.

Is it star forming?
Dense gas
Shocked, highly excited gas
Virial ratio < 2
Power-law tail in N-PDF
Outflow or localized hot-core chemistry

Is it star forming?
✓ Dense gas
✓ Shocked, highly excited gas
□ Virial ratio < 2
□ Power-law tail in N-PDF
□ Outflow or localized hot-core chemistry

-00.06°	SMA	1.3 mm	n dust			leaf leaf	leaf
Structure ID	$\begin{array}{c} \rm H_2CO\ Flux \\ \rm (Jy) \end{array}$	Dust Flux (Jy)	Central Velocity (km/s)	$\Delta u_{ m FWHM} \ (m km/s)$	${ m M}_{dust}$ (M _{\odot})	${}^{\mathrm{M}_{vir}}_{\mathrm{(M}_{\odot})}$	Virial Ratio M_{vir}/M_{dust})
$egin{array}{c} 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \end{array}$	$1.085 \\ 1.012 \\ 0.879 \\ 0.837 \\ 0.719 \\ 0.359 \\ 0.233 \\ 0.154 \\ 0.54$	$\begin{array}{c} 4.224 \\ 4.197 \\ 3.997 \\ 3.868 \\ 3.725 \\ 1.501 \\ 0.943 \\ 0.656 \\ 2.899 \end{array}$	49.66 49.34 49.36 49.54 49.43 45.46 46.03 45.17 49.28	$\begin{array}{c} 20.63 \\ 20.03 \\ 19.96 \\ 19.95 \\ 19.85 \\ 16.65 \\ 17.06 \\ 16.30 \\ 20.43 \end{array}$	7.15E+03 7.10E+03 6.77E+03 6.55E+03 6.31E+03 2.54E+03 1.60E+03 1.11E+03 4.91E+03	6.22E+04 5.85E+04 5.70E+04 5.59E+04 5.41E+04 2.36E+04 1.90E+04 1.46E+04 5.03E+04	$8.70 \\ 8.23 \\ 8.42 \\ 8.53 \\ 8.58 \\ 9.28 \\ 11.91 \\ 13.18 \\ 10.26$
$9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15$	$\begin{array}{c} 0.288\\ 0.075\\ 0.035\\ 0.008\\ 0.053\\ 0.02\\ 0.083\end{array}$	$\begin{array}{c} 1.153 \\ 0.339 \\ 0.100 \\ 0.045 \\ 0.171 \\ 0.068 \\ 0.363 \end{array}$	$\begin{array}{c} 46.09 \\ 43.52 \\ 39.86 \\ 42.00 \\ 55.23 \\ 41.35 \\ 51.82 \end{array}$	$16.86 \\12.44 \\7.01 \\9.13 \\15.23 \\7.51 \\12.31$	1.912+00 $1.95E+03$ $5.74E+02$ $1.69E+02$ $7.57E+01$ $2.90E+02$ $1.16E+02$ $6.14E+02$	$\begin{array}{c} 2.11E+04\\ 6.05E+03\\ 1.27E+03\\ 1.11E+03\\ 8.20E+03\\ 1.20E+03\\ 6.64E+03\\ \end{array}$	$10.20 \\ 10.80 \\ 10.55 \\ 7.54 \\ 14.68 \\ 28.26 \\ 10.31 \\ 10.82$
$ \begin{array}{r} 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ \end{array} $	$\begin{array}{c} 0.154 \\ 0.017 \\ 0.012 \\ 0.008 \\ 0.024 \\ 0.018 \\ 0.008 \\ 0.011 \\ 0.02 \end{array}$	$\begin{array}{c} 0.723 \\ 0.131 \\ 0.109 \\ 0.031 \\ 0.090 \\ 0.122 \\ 0.067 \\ 0.081 \\ 0.197 \end{array}$	58.80 54.87 49.58 50.85 53.91 57.90 55.09 57.67 65.77	$12.03 \\ 6.12 \\ 2.77 \\ 4.58 \\ 6.05 \\ 7.65 \\ 6.40 \\ 6.99 \\ 10.39$	$\begin{array}{c} 1.22E + 03\\ 2.22E + 02\\ 1.85E + 02\\ 5.30E + 01\\ 1.52E + 02\\ 2.07E + 02\\ 1.13E + 02\\ 1.37E + 02\\ 3.33E + 02 \end{array}$	6.94E+03 9.80E+02 1.85E+02 4.37E+02 7.76E+02 1.87E+03 8.48E+02 1.13E+03 3.16E+03	5.67 4.41 1.00 8.24 5.11 9.05 7.51 8.23 9.48

Is it star forming?
✓ Dense gas
✓ Shocked, highly excited gas
X Virial ratio < 2
□ Power-law tail in N-PDF
□ Outflow or localized hot-core chemistry

Preliminary Core mass estimates, assuming 20 K

A: 550 M_☉ B: 340 M_☉ C: 140 M_☉ D: 130 M_☉

> Battersby, Graham, et al., in prep.

Is it star forming?

- ✓ Dense gas
- \checkmark Shocked, highly excited

gas

- \Box Virial ratio < 2
- Power-law tail in N-PDF
- ✓ Outflow or localized hotcore chemistry

Battersby, Graham, et al., in prep.

Is it star forming?

- ✓ Dense gas
- Shocked, highly excited gas
- \checkmark Virial ratio < 2
- Power-law tail in N-PDF
- ✓ Outflow or localized hotcore chemistry

Core	$\begin{array}{c} \text{Gas Mass} \\ \text{M}_{\text{gas}} \\ \text{(M}_{\odot}) \end{array}$	${ m M_{vir}/M_{gas}}$	$\begin{array}{c} \mathrm{Mean} \\ \mathrm{Radius} \\ \mathrm{(pc)} \end{array}$	Number Density $(\times 10^5 \text{ cm}^{-3})$	Significance (σ^{-1})	$\frac{\Delta v_{\rm H_2CO}}{\rm (km \ s^{-1})}$
$\frac{1}{2}$	$550 \\ 340$	$\begin{array}{c} 0.9 \\ 0.4 \end{array}$	$\begin{array}{c} 0.14 \\ 0.13 \end{array}$	$7.4 \\ 5.5$	$\begin{array}{c} 14.5 \\ 10.5 \end{array}$	$5.3\\2.3$

Is it star forming?

- ✓ Dense gas
- Shocked, highly excited gas
- \checkmark Virial ratio < 2
- ✓ Power-law tail in N-PDF
- ✓ Outflow or localized hotcore chemistry

Battersby, Graham, et al., in prep.

Driving Science Questions:

- 1) What is the cause of the extremely low star formation efficiency (given the reservoir of dense gas) in the CMZ?
 → High levels of turbulence are important
- 2) Is there an energy and SF cycle in the CMZ? Where does gas enter the CMZ?
- 3) Is SF induced by tidal compression by SgrA*?
 - \rightarrow Observations are consistent with this scenario
- 4) Can we find precursors to the most massive stars in the Galaxy?
 - \rightarrow We have some good candidates

The Milky Way Laboratory

Norma A

us Arn

Galactic Longitide

Stop 1: The Skeleton of the Milky Way

Stop 2: Massive star and cluster formation Stop 3: Extreme SF in our Galactic Center

The Milky Way Laboratory

210

Stop 1: The Skeleton of the Milky Way: We are tracing our Galaxy with long, skinny clouds called the Bones of the Milky Way

Stop 2: Massive star and cluster formation: clusters grow as the stars form! Stop 3: Extreme SF in our Galactic Center: new, large survey shows turbulence can prevent SF, tidal compression can trigger it, and it can happen where we least expect it.