
Progress Towards a 
Theory of the IMF Mark Krumholz (ANU)



Explaining the Low-Mass IMF

• The isothermal conundrum 

• Possible solutions 

• The galactic approach: ordinary or turbulent Jeans 
mass 

• The small-scale approach: equation of state and 
radiative feedback models 

• Concluding thoughts



What We’d Like to Explain

Powerlaw
Not a 

powerlaw

Bastian+ 2010



Why This Matters

• Stars have a distinctive mass scale (few x 0.1 M⊙) 

• Classical explanation: this mass reflects the Jeans mass 
in the star-forming cloud

MJ ⇡ c3sp
G3⇢

⇡ 0.3M�

✓
T

10K

◆3/2 ⇣ n

105 cm�3

⌘1/2



Why This Matters

• Stars have a distinctive mass scale (few x 0.1 M⊙) 

• Classical explanation: this mass reflects the Jeans mass 
in the star-forming cloud 

• Problem: Jeans mass depends on T and ρ; which ρ 
should we use?
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Why This Matters

• Stars have a distinctive mass scale (few x 0.1 M⊙) 

• Classical explanation: this mass reflects the Jeans mass 
in the star-forming cloud 

• Problem: Jeans mass depends on T and ρ; which ρ 
should we use?
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The Isothermal Conundrum

@⇢

@t
=�r · (⇢v)

@

@t
(⇢v) =�r · (⇢vv)� c2sr⇢+

1

4⇡
(r⇥B)⇥B� ⇢r�

@B

@t
=�r⇥ (B⇥ v)

r2� =4⇡G⇢



The Isothermal Conundrum

@⇢

@t
=�r · (⇢v)

@

@t
(⇢v) =�r · (⇢vv)� c2sr⇢+

1

4⇡
(r⇥B)⇥B� ⇢r�

@B

@t
=�r⇥ (B⇥ v)

r2� =4⇡G⇢

• Isothermal self-gravitating ideal MHD described by:
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• Isothermal self-gravitating ideal MHD described by:
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• Isothermal self-gravitating ideal MHD described by:

• Dimensionless numbers unchanged by ρ0→xρ0, 
L→x-1/2L, B0→x-1/2B0, but mass changes by M→x-1/2M

• Implication: isothermal gas has no mass scale!



How Do We Get Out of This?

• Need to bring in extra physics beyond self-gravitating 
isothermal MHD turbulence to explain low mass IMF 

• Three basic approaches 

• IMF set by the large-scale properties of the galaxy 

• IMF set by deviations from isothermal behavior due to 
dust-gas coupling and/or opacity effects 

• IMF set by local radiative feedback processes



Galactic Hypothesis v1: The Jeans Mass

• Conjecture: IMF peak ~ Jeans mass at GMC mean density (Bate 
+ Bonnell 2005; Tumlinson 2007; Narayanan & Dave 2012, 2013) 

• Implies top-heavy IMF at high SFR, high z due to high gas temp

Bate + Bonnell 2005

1210 M. R. Bate and I. A. Bonnell

Figure 6. The initial mass functions produced by the two calculations. Calculation 2 (right-hand panel) had the lower initial mean thermal Jeans mass and
produced a much higher fraction of brown dwarfs. The single shaded regions show all of the objects; the double shaded regions show only those objects that
have finished accreting. The mass resolution of the simulations is 0.0011 M⊙ (i.e. 1.1 MJ), but no objects have masses lower than 2.9 MJ due to the opacity
limit for fragmentation. We also plot fits to the observed IMF from Miller & Scalo (1979) (dashed line) and Kroupa (2001) (solid broken line). The Salpeter
(1955) slope (solid straight line) is equal to that of Kroupa (2001) for M > 0.5 M⊙. The vertical dashed line marks the star/brown dwarf boundary.

Figure 7. The cummulative initial mass functions produced by Calcula-
tions 1 (solid line) and 2 (dot-dashed line). Again, the excess of brown dwarfs
in the second calculation over the first is clear. A Kolmogorov–Smirnov test
on the two distributions shows that there is only a 1.9 per cent probability
that they are drawn from the same underlying IMF. The vertical dashed line
marks the star/brown dwarf boundary.

was that a fragment was ejected from the region of dense molecu-
lar gas in which it formed before it was able to accrete to a stellar
mass. The ejections occurred due to dynamical interactions in un-
stable multiple systems. This brown dwarf formation mechanism
was proposed by Reipurth & Clarke (2001). Thus, the formation of
more brown dwarfs in the second calculation implies either that the
accretion rates on to the fragments were lower, or that the objects
were ejected more quickly after they formed.

In Fig. 8, we plot the time-averaged accretion rates of all the ob-
jects for both Calculations 1 and 2. A time-averaged accretion rate is
defined as the mass of an object at the end of the calculation divided
by the time over which it accreted that mass. The accretion time
is measured from the formation of an object (i.e. the insertion of a
sink particle) to the last time at which its accretion rate drops below

10−7 M⊙ yr−1, or the end of the calculation (whichever occurs
first). We also define an ejection time, which is the time between
the formation of an object and the last time the magnitude of its
acceleration drops below 1000 km s−1 Myr−1 for Calculation 1 and
5000 km s−1 Myr−1 for Calculation 2 (or the end of the calculation).
The acceleration criterion is based on the fact that once an object
is ejected from a stellar cluster through a dynamical encounter, its
acceleration will drop to a low value. The specific values of the ac-
celeration mentioned above were chosen by comparing animations
and graphs of acceleration versus time for individual objects.

It can be seen that the time-averaged accretion rates of the objects
have a significant dispersion. However, with the possible exception
of the highest mass objects in Calculation 2, there is no system-
atic trend for the lower-mass objects to have lower time-averaged
accretion rates. Similarly, the accretion rates do not appear to be
systematically lower in the second calculation. The means of the
time-averaged accretion rates are 8.6 × 10−6 and 11.1 × 10−6 M⊙
yr−1 for Calculations 1 and 2, respectively. Therefore, we conclude
that the increased proportion of brown dwarfs in Calculation 2 is not
due to lower accretion rates. As a rough estimate, the mean accretion
rates might be expected to depend on the sound speed (the same for
both calculations) as ∼ c3

s/G = 1.5 × 10−6 M⊙ yr−1 (Shu 1977;
Hunter 1977). The means of the time-averaged accretion rates are
factors of a few higher than this estimate, but this is consistent with
the fact that collapsing non-singular isothermal spheres usually ac-
crete at a rate somewhat larger than c3

s /G (e.g. Foster & Chevalier
1993).

In Fig. 9, we plot the time between the formation of an object
and the termination of its accretion (or the end of the calculation)
versus the final mass of the object. Those points with arrows denote
those objects that are still accreting significantly at the end of the
calculation. Accreting objects would move towards the upper right
of the diagrams if the calculations were extended. From both cal-
culations it is clear that the lower the final mass of the object, the
earlier its accretion was terminated. We also see that in the second
calculation a much greater fraction of the objects have their accre-
tion terminated soon after their formation (less than 104 yr). This is
the origin of the larger fraction of brown dwarfs in Calculation 2.

What causes the termination of the accretion? In Fig. 10, we plot
the time between the formation of an object and its ejection from a
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Figure 3
The derived present-day mass function of a sample of young star-forming regions (Section 2.3), open clusters spanning a large age
range (Section 2.2), and old globular clusters (Section 4.2.1) from the compilation of G. de Marchi, F. Parsesce, and S. Portegies Zwart
(submitted). Additionally, we show the inferred field star initial mass function (IMF) (Section 2.1). The gray dashed lines represent
“tapered power-law” fits to the data (Equation 6). The black arrows show the characteristic mass of each fit (mp), the dotted line indicates
the mean characteristic mass of the clusters in each panel, and the shaded region shows the standard deviation of the characteristic
masses in that panel (the field star IMF is not included in the calculation of the mean/standard deviation). The observations are
consistent with a single underlying IMF, although the scatter at and below the stellar/substellar boundary clearly calls for further study.
The shift of the globular clusters characteristic mass to higher masses is expected from considerations of dynamical evolution.

2008; Kruijssen 2009). Hence, there is an expected, and observed, correlation of mp with the cluster
relaxation time (G. de Marchi, F. Paresce, and S. Portegies Zwart, submitted).

2.3. Young Clusters and Associations
2.3.1. Primordial and dynamical mass segregation. An additional complication in IMF studies
comes from the spatial distribution of stars within a cluster or association. The most massive stars
in large, young clusters are often located in a cluster’s innermost regions. This phenomenon is
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Problems with Jeans 
Mass Hypothesis

• Densities vary widely in local 
SF regions, e.g.,


• Taurus: ≲ 60 stars pc-3 
(Hartman 2002)


• ONC: ~20,000 stars pc-3 
(Hillenbrand + Hartmann 
1998)


• Factor of ~300 density 
variation should produce factor 
of ~20 IMF variation


• NOT OBSERVED!
Bastian+ 2010



Galactic Hypothesis v2: Turbulent Jeans Mass

• Conjecture: IMF peak occurs because collapse suppressed by thermal 
pressure below a critical mass ~ Jeans mass at median density (Padoan + 
Nordlund 2002; Hennebelle + Chabrier 2008, 2009; Hopkins 2012, 2013) 

• Critical mass is

spirit of Occam, let us consider the latter possibility. If, as
argued elsewhere by Elmegreen (2000a), star formation
essentially happens in a crossing time, then we may indeed
see only one generation of stars being produced at each
scale, rather than the repeated process implied by scaling
with the local dynamical time. The picture thus is one where
a particular MC forms as a consequence of the random
intersection of counterstreaming, supersonic motions (Bal-
lesteros-Paredes, Hartmann, & Vázquez-Semadeni 1999;
Hartmann, Ballesteros-Paredes, & Bergin 2001), internal
turbulence creates the distribution of core masses derived
above, and the cores are then grabbed by gravitation to
form one generation of stars. Energy feedback from stars
subsequently disperses the cloud before the process has time
to repeat.

In the process envisaged above, turbulent fragmentation
is responsible for creating the core mass distribution, while
gravity is only responsible for the collapse of each protostar.
The flattening and the turnaround of the IMF is also easily
accounted for in such a model. While scale-free turbulence
generates a power-law mass distribution down to very small
masses, only cores with a gravitational binding energy in
excess of their magnetic and thermal energy can collapse.
The shape of the stellar IMF is then determined by the PDF
of gas density, that is, by the probability of small cores to be
dense enough to collapse. The mass distribution of collaps-
ing cores derived in the previous section and based on the
lognormal PDF of mass density is indeed consistent with
the observed IMF.

The scaling of the mass where the IMF peaks can be
derived without a knowledge of the PDF of mass density,
using the scaling laws and the definition of the critical mass
for collapse. We first consider the magnetic critical mass,

mB ¼ mB; 0
B

B0

! "3 n

n0

! ""2

; ð25Þ

wheremB; 0 is the magnetic critical mass at the average num-
ber density n0,

mB; 0 ¼ 8:3 M%
B0

8 lG

! "3! n0
103 cm"3

""2

; ð26Þ

(McKee et al. 1993). Padoan & Nordlund (1999) have
shown that supersonic and super-Alfvénic turbulence gener-
ates a correlation between gas density and magnetic field
strength, consistent with the observational data. The two
most important properties of such a B-n relation are the
very large scatter and the power-law upper envelope
(B / n0:4). More recently, Padoan et al. (2001b) have com-
puted the magnetic field strength in dense cores produced in
numerical simulations of self-gravitating, supersonic, and
super-Alfvénic turbulence. They found typical field strength
as a function of column density in agreement with new com-
pilations of observational samples by Crutcher (1999) and
Bourke et al. (2001). Here we adopt the following empirical
B-n relation consistent with our previous works:

B ¼ B0
!

!0

! "0:5

; ð27Þ

where the exponent is 0.5, and not 0.4 as reported above,
because we now refer to the average values of B inside bins
of n, and not to the upper envelope of the B-n relation,
as above. The slight steepening is due to the fact that the

Fig. 1.—Mass distributions of gravitationally unstable cores from eq.
(24). Top: Mass distribution for different values of the largest turbulent
scale L0, assuming Larson-type relations (for rescaling n0 and MA; 0 with
L0), T0 ¼ 10 K, and " ¼ 1:8.Middle:Mass distribution for different values
of MA; 0, assuming n0 ¼ 500 cm"3, T0 ¼ 10 K, and " ¼ 1:8. Bottom: Mass
distribution for different values of n0, assumingMA; 0 ¼ 10, T0 ¼ 10 K, and
" ¼ 1:8. The mass distribution peaks at approximately 0.4M%, for the val-
ues MA; 0 ¼ 10, n0 ¼ 500 cm"3, T0 ¼ 10 K, and " ¼ 1:8, typical of nearby
molecular clouds.
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Figure 1. The exact predicted last-crossing mass function – i.e. star-forming
core MF – from Eq. 2 for the properties of different observed systems.
The predicted CMF mass scale is set by the sonic mass (Eq. 14); be-
cause of the assumption of marginal disk stability and a turbulent cascade,
the shape is entirely specified by the dimensionless Mach number on disk
scales Mh. MW: Prediction for canonical local parameters: core minimum
temperature T = 10K, disk gas surface density ⌃gas ⇠ 10M� pc�2, and
global turbulent velocity dispersion �g(h) ⇠ 10kms�1. We compare the
observed Kroupa (2002) and Chabrier (2003) IMFs, shifted in mass by
an assumed star-to-core formation efficiency M⇤/Mcore = 0.5 (Matzner
& McKee 2000). ULIRG: Prediction for properties typical in the central
⇠kpc of ULIRGs and mergers, the stellar remnants of which dominate
the central light in most ellipticals: T ⇠ 65K, ⌃gas ⇠ 3⇥ 103 M� pc�2,
�g(h)⇠ 80kms�1. We compare the bottom-heavy IMF (slope =�3 from
0.1 � 100M�) fit to the centers of ellipticals in van Dokkum & Conroy
(2010). BH: Prediction for properties of the MW ⇠pc-scale circum-BH
disk (these are less well-determined, see text). We compare a top-heavy
IMF (slope = �1.7± 0.2, the range in e.g. Bartko et al. 2010 & Lu et al.
2013) over the predicted range.
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Figure 2. The CMF as Fig. 1, but for a more “normal” range of global
parameters typical of the MW and local galaxies. We consider a few cases
that vary �gas and ⌃gas together as expected for an exponential disk with
Vc =constant. We then consider independent variations of T , �, ⌃gas. In all
cases the high-mass behavior is nearly identical and close to Salpeter. The
low-mass turnover still varies within this range, primarily with Mh, but
less severely than in Fig. 1. We compare (grey shaded) the ±1� range of
observed behavior from the IMF and PDMF compilations in Bastian et al.
(2010); De Marchi et al. (2010).4

4 CMF & IMF VARIATION IN EXTREME SYSTEMS

We now consider an observationally motivated example.
First, we consider canonical MW parameters: a minimum tem-

perature T ⇠ 10K for the cores, disk gas surface density ⌃gas ⇠
10M� pc�2, and large-scale turbulent velocity dispersion �g(h)⇠
10kms�1 (Mh ⇠ 30). For all cases, we will assume a spectrum
p = 2, which is what is expected in highly super-sonic simulations
and suggested by observations of the ISM (Burgers 1973; Larson
1981). As discussed above and in Paper II, our results are not qual-
itatively changed for p = 5/3 instead. Together this is sufficient to
completely specify the model.

Next, consider canonical parameters in ULIRG/starburst re-
gions. Observations typically find T ⇠ 60 � 80K in the dense
molecular gas (n ⇠ 105 � 107 cm�3) with turbulent velocity dis-
persions �g(h) ⇠ 40� 100kms�1 (Mh ⇠ 50� 100) (Downes &
Solomon 1998; Bryant & Scoville 1999; Westmoquette et al. 2007;
Greve et al. 2009), and surface densities ⌃gas ⇠ 103 �104 M� pc�2

(e.g. Kennicutt 1998).
In Fig. 1, we compare the CMF predicted in each case. Al-

though the broad qualitative behavior is similar, there are striking
differences. As expected from our analysis in § 3, the characteristic
mass in the ULIRG case is somewhat smaller. From Eq. 14, com-
pare Msonic ⇠ 1.6M� (MW) to Msonic ⇠ 0.4M� (ULIRG). But even
if we ignore the shift in the scale of Msonic, the low-mass turnover
occurs much more slowly in the ULIRG case, as expected from
Eq. 19 from the higher Mh. The high-mass slope is nearly identical
in both cases, as expected from Eq. 17, but there is an intermediate-
mass steepening in the ULIRG case that owes to second-order ef-
fects from the run in S(R).

An even more extreme example is the pc-scale circum-BH
disk in the MW. Here, the initial gas conditions are uncertain; but
from the observations, we can take the effective radius R ⇡ 0.5pc
and infer a surface density ⌃gas ⇠ 0.6✏�1 ⇥ 104 M� pc�2 (where
✏ = M⇤/Mgas is the unknown star formation efficiency of the pro-
genitor disk). Simulations of these circum-BH disks in Nayakshin
et al. (2007); Hobbs & Nayakshin (2009) suggest an order-unity
✏⇠ 0.5 and �g ⇠ 2kms�1, which is approximately what is needed
to give Q ⇠ 1 (for MBH = 4⇥ 106 M�, and  ⇡ ⌦ for the quasi-
Keplerian orbit here). We adopt the same typical nuclear gas tem-
peratures as the ULIRG case. The CMF in this case is very dif-
ferent from the previous cases. This is because the system is ex-
tremely thin and  large, dominated by the external BH potential,
so Mh is relatively small, but also our assumptions that Rsonic ⌧ h
and dB/dS � 1 break down and the the correction terms in f` not
captured in Eq. 11 dominate.

5 CMF & IMF VARIATION IN DIFFERENT LOCAL
REGIONS

The above examples are intentionally extreme. Normal galaxies ex-
hibit a much more narrow range of ⌃gas, T , and �g. In Fig. 2 we
compare the CMF predicted for a “typical” range in these parame-
ters. In all these cases, the high-mass slope is nearly identical and
close to the Salpeter value. Modest changes in Mh still lead to dif-
ferences at the low-mass end, although the shape is quite similar.
We compare these variations to the observed range inferred for the
IMF at these masses in different systems (or equivalently, at these
masses, the PDMF); the range in “turnover speed” is consistent.4

4 Specifically, we compile the MFs from different regions from Fig. 3 in
Bastian et al. (2010) and Fig. 1 in De Marchi et al. (2010), correct them to
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Turbulent Jeans Mass Predictions and Problems

• Prediction: characteristic mass depends on temperature / 
linewidth-size normalization OR GMC surface density 

• Predicts less variation than normal Jeans mass 
hypothesis due to cancellation: higher T ↔ higher σpc, Σ 

• Biggest variation likely in starbursts, but not yet calculated 
in detail; depends on T vs. Σ 

• May have problems in high-                                                 
mass SF-regions: σpc higher                                             
by a factor of 10, T is not

(Salpeter 1955). Massey et al. (1995) find ! ¼ "1:1#
0:1(standard deviation of the mean) for 13 OB associations.
In contrast to these slopes, molecular clouds as a whole have
a flatter distribution. Mass spectra with C of "0.6 to "0.7
have been observed for molecular clouds (see Scoville &
Sanders 1987), as well as the large clumps within clouds
(Blitz 1993; Williams, Blitz, & McKee 2000; Kramer et al.
1998). Studies of cores forming low-mass stars in Ophiuchus
reveal a steeper mass spectrum, ! ¼ "1:5 (Motte, André, &
Neri 1998; Johnstone et al. 2000), and a study in Serpens
finds ! ¼ "1:1 (Testi & Sargent 1998). These slopes begin
to resemble the slope of the IMF for massive stars, but they
mostly apply to lower mass regions where the stellar IMF
actually turns over (Scalo 1998;Meyer et al. 2000).

The cumulative mass spectrum of cores, based on the
corrected virial masses, is shown in Figure 20. The mass
spectrum is clearly incomplete below about 1000 M$. The
spectrum for Mvir % 1000M$ was fitted using least-squares
and robust estimation (Fig. 20), with resulting ! ¼ "0:91#
0:17 and ! ¼ "0:95, respectively. The mass function of
dense cores is similar to that of M*(tot) in the model of
McKee & Williams (1997). It is also within the range of the
values for the IMF of stars within OB associations (Massey
et al. 1995). The similarity of our value for C to that of the
IMF of stars within clusters suggests that the fragmentation
process keeps nearly the same mass spectrum.

Our mass spectrum is slightly steeper than found by other
studies toward high-mass star-forming regions that used

probes that trace lower densities. Kramer et al. (1998) find
! ¼ "0:6 to "0.8 for CO clumps within seven high-mass
star-forming clouds. A CS J ¼ 2 ! 1 survey toward 55
dense cores containing water masers found ! ¼ "0:6# 0:3
(Zinchenko et al. 1998).

4.5. Surface Density, Pressure, and Confinement
of UCH iiRegions

McKee & Tan (2002, 2003) have emphasized the impor-
tance of the surface density of a molecular core (which they
call a clump) in the stellar mass accretion rate (dm&=
dt / "0:75) and the time to form a star (t&f / ""0:75). Based
on the results in Paper II, they assumed" ¼ 1:0 g cm"2.

The surface density of the core can be calculated from

" ¼ MvirðRCSÞ
!R2

CS

) 0:665
Mvir=1:0* 104 M$
! "

RCS=1 pcð Þ2
g cm"2 : ð9Þ

The average over the sample with well-determined sizes is
" ¼ 0:82# 0:78 g cm"2 with a median of 0.60 g cm"2. The
median surface density corresponds to 2870 M$ pc"2. The
surface densities range from 0.07 g cm"2 (G58.78+0.06) to
4.6 g cm"2 (G20.08"0.13). While the distribution is sharply
peaked for " < 1 g cm"2, a few cores (6) have surface den-
sities greater than 2 g cm"2 (Fig. 15f ). The median surface
density would imply a decrease in the mass accretion rate
and increase in the star formation time for the accretion

Fig. 18.—Line width–size relationship using C34S line widths. The
FWHM size, RCS, is shown in the top panel, and the size at an intensity of
10 K km s"1, R10, is shown in the bottom panel. The extrapolated line
width–size relationships for low- and high-mass regions are labeled, and the
least-squares fit and robust estimation for our sample are shown.

Fig. 19.—Logarithm of IðT&
R Þ and logMvir are compared in the upper

panel and the virial mass and dust-determined mass are compared in the
lower panel. More massive cores are typically brighter in CS intensity:
log IðT&

R Þ ¼ ð"0:76# 0:11Þ þ ð0:81# 0:04Þ logMvir. The virial mass and
mass derived from dust continuum emission correlate well, but Mvir >
Mdust. The solid line in the top panel is the least-squares fit, while the solid
line in the bottom panel indicatesMvir ¼ Mdust.
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The Non-Isothermal 
EOS Hypothesis

• Gas not perfectly isothermal:

• Dust-gas coupling imperfect 

below ~105 pc-3

• Gas becomes optically thick 

at ~1010 pc-3


• EOS has near-discontinuities in 
ɣ at these densities


• Conjecture: stellar mass scale 
set by MJ at such a 
discontinuity (Larson 2005; 
Omukai+ 2005; Bonnell+ 2006; 
Elmegreen+ 2008; Guszejnov & 
Hopkins 2015)

Omukai (2000) for a thorough discussion of this issue. The initial
ionization degree and H2 concentration are assumed to be the
values for uniform matter in the postrecombination universe:
y (e) ¼ 10"4, y (H2) ¼ 10"6. Initially, carbon is fully ionized
and helium and oxygen are neutral.

3. RESULTS

In this section, we first present the thermal and chemical evo-
lution for different initial values of the gas metallicity (x 3.1);
then, a reduced chemical model for low-metallicity clouds is
presented (x 3.2). Using the derived effective equation of state, we
discuss the fragmentation properties of prestellar clouds and es-
timate the typical mass scales of fragmentation in the Appendix.

3.1. Thermal and Chemical Evolution

3.1.1. Results for the Fiducial Cases

The temperature evolution for prestellar clouds for different
metallicities is shown in Figure 1. The cases with metallicities
½Z/H$ ¼ "1 (i.e., Z ¼ 0 metal-free case), "5, "3, and "1
(½Z/H$ ¼ "6, "4, "2, and 0) are indicated by solid (dashed)
lines. As an external radiation field, only the present-day (2.73K)
CMB is included, although its effect can be neglected except for
in the lowermost temperature regime in the ½Z/H$ ¼ 0 case. We
refer to this set of models as the fiducial cases hereafter. The
dotted lines indicate those of a constant Jeans mass. The dashed
line labeled ‘‘!J ¼ 1’’ shows the locationwhere the central part of
a cloud becomes optically thick to continuum radiation (eq. [20];
see discussion below). Before this condition ismet, i.e., to the left
of the line, clouds are still optically thin to the continuum.

The evolution of clouds with metallicity ½Z/H$ ¼ "(4 3) at
nH % 104"8 cm"3 is mostly affected by the improvements of the
model, namely, by the inclusion of HD cooling and the modifi-
cation of the collapse timescale. Conversely, both at lower and
higher metallicity values, the thermal evolution is hardly altered.

In Figure 2 we illustrate separately the contribution by each
processes to cooling/heating rates in the fiducial cases. For the
same cases, we also show the evolution of H2 and HD fractions
in Figures 3 and 4, respectively. In terms of major coolants, the
thermal evolution can be classified into the following three
metallicity ranges: (1) quasi-primordial clouds (½Z/H$P"6),
(2) metal-deficient clouds ("5P ½Z/H$P"3), and (3) metal-
enriched clouds ("2P ½Z/H$). For each of these ranges, we now
describe the evolution presented in Figures 1–4.
1. Quasi-primordial clouds (½Z/H$P"6).—The presence of

metals at metallicity levels as low as [Z/H$P"6 does not sig-
nificantly alter the thermal evolution in any density range. The
evolution of both temperature and chemical species follows closely
those of the metal-free case. Molecular hydrogen is always an
important cooling agent. HD hardly affects the overall evolution
despite contributing as much to the cooling as H2 at %105 cm"3

(see also Bromm et al. 2002).
To clarify the reasons for this trend, we first describe the

HD formation process. The abundance of HD is determined by
the equilibrium between the formation reaction (reaction D4 in
Table 1) and its inverse dissociation reaction (D6),

D4; D6: Dþ þ H2 $ Hþ þ HD: ð12Þ

The deuterium ionization degree is set by the equilibrium be-
tween reactions D1 and D2,

D1; D2: Dþ Hþ $ Dþ þ H: ð13Þ

The HD to H2 ratio is then

n(HD)

n(H2)
¼ kD4n(D

þ)

kD6n(H
þ)

¼ kD4kD1n(D)

kD6kD2n(H)
¼ 2 exp

421 K

T

! "
n(D)

n(H)
;

ð14Þ

Fig. 1.—Temperature evolution of prestellar clouds with different metallicities. Those with metallicities ½Z/H$ ¼ "1(Z ¼ 0),"5,"3, and"1 ("6,"4,"2, and 0)
are shown by solid (dashed) lines. Only the present-day CMB is considered as an external radiation field. The lines for constant Jeans mass are indicated by thin dotted
lines. The positions at which the central part of the clouds becomes optically thick to continuum self-absorption is indicated by the thin solid line (eq. [20]). The
intersection of the thin solid line with each evolutionary trajectory corresponds to the epoch when the cloud becomes optically thick to the continuum. To the right of this
line, the clouds are optically thick and there is little radiative cooling. [See the electronic edition of the Journal for a color version of this figure.]
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Nevertheless, the differences between the star formation histories
of the clouds simulated in these four runs are relatively small, despite
the significant differences that exist in the chemical make-up of the
clouds. The presence of H2 and CO within the gas appears to make
only a small difference in the ability of the cloud to form stars.
Furthermore, the fact that a cloud that does not form any molecules
is not only able to form stars, but does so with only a short delay
compared to one in which all of the hydrogen and a significant
fraction of the carbon is molecular is persuasive evidence that the
formation of molecules is not a prerequisite for the formation of
stars.

Examination of the nature of the stars formed in these four sim-
ulations is also informative. Naively, one might expect that in the
absence of molecular cooling, or more specifically CO cooling, the
minimum temperature reached by the star-forming gas would be
significantly higher. If so, then this would imply that the value of
the Jeans mass in gas at this minimum temperature would also be
significantly higher. It has been argued by a number of authors (e.g.
Jappsen et al. 2005; Larson 2005; Bonnell, Clarke & Bate 2006) that
it is the value of the Jeans mass at the minimum gas temperature in
a star-forming cloud that determines the characteristic mass in the
resulting initial mass function (IMF). Following this line of argu-
ment, one might therefore expect the characteristic mass to be much
higher in clouds without CO. However, our results suggest that this
is not the case. In runs C, D1 and D2, the mean mass of the stars that
form is roughly 1–1.5 M⊙ (Fig. 1, bottom panel) and shows no clear
dependence on the CO content of the gas. Indeed, the mean mass
is slightly lower in run C, which has no CO, than in run D2, which
does. The mean stellar mass that we obtain from these simulations
is slightly higher than the characteristic mass in the observation-
ally determined IMF, which is typically found to be somewhat less
than a solar mass (Chabrier 2001; Kroupa 2002). However, this is
a consequence of our limited mass resolution, which prevents us
from forming stars less massive than 0.5 M⊙, and hence biases our
mean mass towards higher values. (We return to this point in Sec-
tion 3.3.) In run B, we again find a greater difference in behaviour,
but even in this case, the mean stellar mass remains relatively small,
at roughly 2 M⊙. It therefore appears that the presence or absence
of molecules does not strongly affect either the star formation rate
of the clouds or the mass function of the stars that form within them.

Conspicuous by its absence from our discussion so far has been
run A, the run in which we assumed that the gas remained optically
thin throughout the simulation. In this run, we find a very different
outcome. Star formation is strongly suppressed, and the first star
does not form until t = 7.9 Myr, or roughly three global free-fall
times after the beginning of the simulation. The results of this run
suggest that it is the ability of the cloud to shield itself from the
effects of the ISRF, rather than the formation of molecules within
the cloud, that plays the most important role in regulating star
formation within the cloud (cf. Krumholz, Leroy & McKee 2011).

3.2 Thermal and chemical state of the gas

3.2.1 Temperature distribution

In order to understand why molecular gas appears to be of only
very limited importance in determining the star formation rate, it is
useful to look at the thermal state of the gas in the different runs
at the point at which they begin forming stars. This is illustrated in
Fig. 2 for runs B, C, D1 and D2. For comparison, we also show the
temperature distribution of the gas in run A at t = 2.3 Myr (i.e. at
a similar time to the other four runs, albeit roughly 5.6 Myr before

Figure 2. Gas temperature plotted as a function of n, the number density of
hydrogen nuclei, in runs B, C, D1 and D2 (panels 2–5) at a time immediately
prior to the onset of star formation in each of these runs. Note that this
means that each panel corresponds to a slightly different physical time. For
comparison, we also plot the temperature of the gas as a function of density
in run A (panel 1, at the top) at a similar physical time, t = 2.3 Myr, although
in this case, this is long before the cloud begins to form stars.

run A itself begins to form stars). The first point to note is the basic
similarity of the temperature distribution in most of the runs. In runs
B, C, D1 and D2, the temperature decreases from roughly 100 K at n
∼ 10 cm−3 to 10 K at n = 105 cm−3 and to 8 K at n = 106 cm−3. This
corresponds to a relationship between temperature and density that
can be approximated as T ∝ ρ−0.25 at n < 105 cm−3, or a relationship
between pressure and density P ∝ ρ0.75, in good agreement with
the relationship P ∝ ρ0.73 proposed by Larson (1985, 2005). The
fact that the effective equation of state of the gas is significantly
softer than isothermal (i.e. P ∝ ρ) means that the local Jeans mass
decreases rapidly with increasing density within the cloud, a factor
which is known to greatly assist gravitational fragmentation (see

C⃝ 2012 The Authors, MNRAS 421, 9–19
Monthly Notices of the Royal Astronomical Society C⃝ 2012 RAS

Glover + Clark 2012
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Simulations and Models for the Non-Isothermal 
EOS Hypothesis

A.-K. Jappsen et al.: Mass spectrum from non-isothermal gravoturbulent fragmentation 617

Fig. 3. Column density distribution of the gas and location of identified protostellar objects (black circles) using the high-resolution models
R6..8k2b at the stage where approximately 50% of the gas is accreted. Projections in the xy-, xz-, and yz-plane are shown for three different
critical densities.

solutions exist for γ < 1 but not for γ > 1. These authors also
found that for γ < 1, the collapse becomes slower and slower as
γ approaches unity from below, asymptotically coming to a halt
when γ = 1. This result shows in a particularly clear way that
γ = 1 is a critical case for the collapse of filaments. Kawachi
& Hanawa (1998) suggested that the slow collapse that is pre-
dicted to occur for γ approaching unity will in reality cause
a filament to fragment into clumps, because the timescale for
fragmentation then becomes shorter than the timescale for col-
lapse toward the axis of an ideal filament. If the effective value
of γ increases with increasing density as the collapse proceeds,
as is expected from the predicted thermal behavior discussed

in Sect. 2, fragmentation may then be particularly favored to
occur at the density where γ approaches unity. In their numer-
ical study Li et al. (2003) found, for a range of assumed poly-
tropic equations of state, that the amount of fragmentation that
occurs is indeed very sensitive to the value of the polytropic
exponent γ, especially for values of γ near unity (see also,
Arcoragi et al. 1991).

The fact that filamentary structure is so prominent in our
results and other simulations of star formation, together with
the fact that most of the stars in these simulations form in
filaments, suggests that the formation and fragmentation of
filaments may be an important mode of star formation quite

Article published by EDP Sciences and available at http://www.edpsciences.org/aa or http://dx.doi.org/10.1051/0004-6361:20042178
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Figure 3. Core mass function for M = 6 and M2
∗ = 2 and various values of

the polytropic exponent γ , namely, γ =1.3, 1.1, 1, 0.9, 0.8, and 0.7.

4.5. Results for a Polytropic Equation of State

Figure 3 compares the CMF/IMF obtained for various values
of γ , namely, γ =1.3, 1.1, 1, 0.9, 0.8, and 0.7 for a typical
Mach number M = 6 and M2

∗ = 2.5 Varying γ has a drastic
influence on the CMF. As expected from Equation (31), more
compressible turbulent flows (γ < 1) produce more small-
scale overdense collapsing structures for a given σ than the
isothermal gas. For γ < 1 the number of small objects increases
dramatically. In contrast, the number of small-mass objects
decreases abruptly when γ > 1. We also see that the flow will
not produce collapsing structures for γ ! 1.3. These results
arise from the density dependence of the local Jeans mass,
MJ ∝ ρ

3
2 (γ− 4

3 ) (see Equation (22)), which implies that the Jeans
mass increases with density for γ > 4/3, leading the collapse
to choke itself, as pointed out in hydrodynamical simulations
by Larson (1985), Vázquez-Semadeni et al. (1996), and Li et al.
(2003).

On the other hand, with the chosen valueM2
∗ = 2, the number

of large-mass objects is almost unchanged when γ varies. This
stems from the fact that, as long as γ " 0.2, turbulent support
is dominant for large masses, as expected from Equation (32).

5. BAROTROPIC EQUATION OF STATE

As shown in the previous section, changing γ has a drastic
influence on the mass function. In particular, small values of γ
tend to produce more small-mass objects which form at high
density in the very cold gas. However, the thermal behavior of
the gas in molecular clouds is not expected to be well described
by a single power law (e.g., Larson 1985). Various authors (e.g.,
Glover & Mac Low 2007) found that for densities smaller than
n̄ ≃ 105 cm−3, i.e., ρ̄ ∼ 10−18 g cm−3, the effective polytropic
exponent is about γ ≃ 0.7, whereas at higher densities γ ≃ 1
(Masunaga & Inutsuka 2000). As seen from Figure 3, the CMF
obtained with γ = 0.7 is rather different from the one obtained
for γ = 1. Thus, taking into account the variations of γ appears
to be important.

5.1. Core Mass Function with a Barotropic Equation of State

Jappsen et al. (2005) adopt the following prescription for the
temperature variation in the clouds

T = a1ρ
γ1−1 ρ < ρcrit,

T = a2ρ
γ2−1 ρ > ρcrit, (33)

5 We recall that we assume a constant width σ of the lognormal distribution,
which would correspond to M = 6 in the isothermal case.

Figure 4. Temperature distribution as stated by Equation (34) for m equals to
m = 1, 2, and 3 (from top to bottom). The dotted and dashed lines correspond
to the prescription of Jappsen et al. (2005).

where the critical density, ρcrit ≃ 10−18 g cm−3 corresponds to
n̄crit = 2.5 × 105 cm−3, γ1 = 0.7, and γ2 = 1.1. In our work,
we find it more convenient to write

C2
s =

[(

(C0
s,1)2

(
ρ

ρ̄

)γ1−1
)m

+

(

(C0
s,2)2

(
ρ

ρ̄

)γ2−1
)m]1/m

= (C0
s,1)2

⎡

⎣
(

ρ

ρ̄

)(γ1−1)m

+

(
C0

s,2

C0
s,1

)2m (
ρ

ρ̄

)(γ2−1)m
⎤

⎦
1/m

, (34)

where m is a real number of order unity and where C0
s ≡

C0
s (γ ) is given by Equation (20). The exact dependence of the

temperature upon density is not well known and may vary from
place to place. Figure 4 shows the temperature distribution as
a function of the density. The two dash/dot lines correspond
to the prescription of Jappsen et al. (2005). In the following,
we investigate how the CMF depends on the critical density
ρcrit and on the parameter m which, as seen from Figure 4,
has some impact on the temperature variation. Low values of
m correspond to a smooth transition between the two regimes
whereas larger values lead to a more abrupt transition. As can
be seen from Figure 2 of Larson (1985), our knowledge of the
temperature distribution is not very accurate and it is unclear
what would be the most appropriate choice for m.

Since at the critical density, the two contributions are equal,
we have the relation

(
C0

s,1

)2
(

ρcrit

ρ̄

)γ1−1

=
(
C0

s,2

)2
(

ρcrit

ρ̄

)γ2−1

, (35)

leading to

Kcrit =
(

C0
s,2

C0
s,1

)2

=
(

ρcrit

ρ̄

)γ1−γ2

. (36)

The value of Kcrit depends on the cloud’s mean density n̄ and on
the critical density, n̄crit. Since molecular clouds have an average
density of about n̄ ≃ 100 cm−3, we find that the aforementioned
value of n̄crit leads to Kcrit ≃ 0.06. Taking a higher value,
n̄ ≃ 103 cm−3, which could be more representative of denser
environments, yields Kcrit ≃ 0.14.

With these expressions, Equations (26) and (29) now become

M̃c
R = R̃

(
A1/m + M2

∗R̃
2η

)
, (37)

with A =
(

M̃c
R

R̃3

)(γ1−1)m

+ (Kcrit)m
(

M̃c
R

R̃3

)(γ2−1)m

,
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Label
Input Parameters Derived Parameters

Thermodynamics
Msonic [M⊙] Rsonic [pc] T0 [K] R0 [pc] M0 Σ0 [M⊙pc−2] nH2,0 [cm−3]

IsoTherm T10 2.3 0.1 10 9.3 9.6 9.3 50 Isothermal

EOSΣ T10 2.3 0.1 10 9.3 9.6 9.3 50 γ(Σ) EOS
EOSΣ T20 4.6 0.1 20 6.5 8.1 18.6 150 γ(Σ) EOS
EOSΣ T75 17.25 0.1 75 3.4 5.8 70.7 1100 γ(Σ) EOS

EOSΣ hiMach 0.09 0.004 10 1.88 21.7 224 6200 γ(Σ) EOS

EOSΣ ULIRG 0.42 0.0026 75 0.57 14.75 2480 2.3 × 105 γ(Σ) EOS

EOSρ T10 2.3 0.1 10 9.3 9.6 9.3 50 γ(ρ) EOS
EOSρ T20 4.6 0.1 20 6.5 8.1 18.6 150 γ(ρ) EOS
EOSρ T75 17.25 0.1 75 3.4 5.8 70.7 1100 γ(ρ) EOS

EOSρ hiMach 0.09 0.004 10 1.88 21.7 224 6200 γ(ρ) EOS

EOSρ ULIRG 0.42 0.0026 75 0.57 14.75 2480 2.3 × 105 γ(ρ) EOS

Heated T10 2.3 0.1 10 9.3 9.6 9.3 50 Protostellar Heating
Heated T20 4.6 0.1 20 6.5 8.1 18.6 150 Protostellar Heating
Heated T75 17.25 0.1 75 3.4 5.8 70.7 1100 Protostellar Heating

Heated hiMach 0.09 0.004 10 1.88 21.7 224 6200 Protostellar Heating

Heated ULIRG 0.42 0.0026 75 0.57 14.75 2480 2.3 × 105 Protostellar Heating

Table 1. Initial conditions of the different simulation runs presented in this paper. The actual input parameters of the code are the
sonic mass Msonic and length Rsonic, from which more physical parameters like initial temperature (T0), radius (R), Mach number (M0),
surface density (Σ0) and number density (nH2,0) can be derived. All runs were performed for a large statistical ensemble (∼ 500) of 104 M⊙
GMCs.

3.2 Can a Universal Mass Scale Come from the

Equation of State?

One mechanism to imprint a mass scale onto the process of
turbulent fragmentation is to have the equation of state de-
viate from isothermality, either because the gas becomes op-
tically thick to its own cooling radiation, or due to a change
in the cooling process such as the onset of grain-gas coupling.
We investigate this approach in our EOS models.

Figure 2 shows the results of simulations using our γ(Σ)
(surface density-dependent) EOS (EOSΣ models), for a va-
riety of initial conditions. We see that, with an appropriate
choice of Σcrit, one can obtain a stellar mass function that
agrees reasonably well with the observed IMF. However, one
can do so only for a particular choice of initial conditions.
As shown in GH15, an EOS with stiffening suppresses frag-

mentation below mass scale Mcrit ∼
c4
s

ΣcritG
2 ∝ T2/Σcrit which

is clearly shown by the Figure. Also, stronger turbulence
leads to more fragmentation and thus more brown dwarfs
(see EOSΣ T75 and EOSΣ ULIRG) in accordance with pre-
dictions (e.g. Hopkins 2013c). At first EOSΣ hiMach might
seem to contradict that as it has more large protostars than
the standard case. This, however, is caused by the interac-
tion of the initial conditions with the adopted EOS. In this
model the initial surface density Σinit ∼ Msonic/

(

R2
sonic8π

)

∝
T/Rsonic is already above the stiffening transition surface
density Σcrit. As a result, there is very little fragmentation
because the EOS is always “stiff”. It is also worth noting
that the EOS model always has a slow cutoff at low masses
despite the fact that protostellar disk fragmentation (a po-
tential source of brown dwarfs) is neglected, so it is likely to
overproduce brown dwarfs,

We have similarly tested an EOS that becomes stiff at a
critical volume density ρcrit (see Eq. 3). Fig. 3 shows that, as
in the case for the γ(Σ) models, the volume density depen-
dent EOS is also very sensitive to initial conditions. This can
be easily understood using a similar arguments as the ones
used by GH15 in the γ(Σ) case: using the collapse condition

Figure 2. The IMF of the surface density dependent EOS
model (EOSΣ) for standard (EOSΣ T10 : T = 10 K, Rsonic =

0.1 pc), high temperature (EOSΣ T20 : T = 20 K), extreme tur-
bulence (EOSΣ hiMach: Rsonic = 0.0026 pc), extreme tempera-
ture (EOSΣ T75 : T = 75 K) and ULIRG (EOSΣ ULIRG: T =

75 K, Rsonic = 0.0026 pc) initial conditions (see Table 1). There is a
clear trend of increasing turnover mass with initial temperature,
consistent with our expectation that, for these EOS models, the
turnover should scale as Mcrit ∝ T 2

0
.

and size-mass relations (see Sec. 2.2 in GH15) one can find
the size and mass of a self gravitating fragment whose den-
sity is ρcrit, which leads to the corresponding turnover mass

scale Mcrit ≈ MJeans(ρcrit) ∝ T3/2
0
ρ
−1/2
crit (this is also shown by

Bate 2009c).
We have therefore shown that, while it is possible to

choose critical values Σcrit or ρcrit such that a stiffened equa-
tion of state produces an IMF peak that is qualitatively con-
sistent with observations, such a choice works for only one
particular set of initial conditions (see Figures 2-3). Sub-
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Problems with the Non-Isothermal EOS Hypothesis

• IMF in BD regime exquisitely sensitive to assumed EOS 
• Proposed EOS’s not a good fit once stars turn on, since 

these dominate the energy budget 
• Not possible to describe T vs. ρ with a single function once 

this happens
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Figure 2. Histogram of the gas temperatures weighted by volume fraction for RT at 0.0, 0.5, 0.75, and 1.0 tff .

Figure 3. Magnitude of the heating rate due to all stellar sources, viscous
dissipation, and gas compression at the times shown in Figure 1.

Thus, the temperature at a distance, r, from an emitting source,
L∗, is given by

T =
(

L∗

4πσBr2

)1/4

, (17)

where σB is the Stefan–Boltzman constant, and the gas distribu-
tion is assumed to be spherically symmetric. Then the difference
in accretion luminosity for a simulation with minimum resolu-
tion of Rres = 0.5 AU versus a simulation resolving down to the
stellar surface at R∗ = 5 R⊙ is given by

∆L = Gmṁ

Rres
×

(
Rres

R∗
− 1

)
≃ Gmṁ

Rres
× (20). (18)

Thus, the actual accretion luminosity at the higher resolution is
a factor of 20 larger. Since we adopt a stellar model to calculate

Figure 4. Gas temperature as a function of distance from the source for all
sources in the RT simulation at 1.0 tff . The sources are separated into two plots
for viewing, where the earlier forming sources are on the left. The line indicates
T ∝ r−1/2.

the protostellar radii self-consistently, we include the entire
accretion luminosity contribution down to the stellar surface
in our simulations. From (18), the difference in luminosity
corresponds to a factor of (20)1/4 or ∼2 underestimation of
the gas temperature. Nonetheless, this estimate is conservative
since it does not include the additional luminosity emitted by
the protostar, which may become significant during the class II
and late class I phases. Thus, we expect that the simulation
of Bate (2009b) may overestimate the extent of small-scale
fragmentation and BDs formed in disks.

3.1.2. Stellar Mass Distribution

The large temperature range in the RT simulation has a
profound effect on the stellar mass distribution. Figure 6 depicts
the total mass of the star–disk systems in each simulation, where
we define the surrounding disk as cells with ρ > 5 × 10−17

Offner+ 2009

Krumholz+ 2010



The Radiation 
Hypothesis

• Stars heat up the gas around 
them via accretion luminosity


• Heating is immediate, as soon 
as a collapse object forms


• Heating raises Jeans mass, 
chokes off fragmentation in a 
region around each star


• Conjecture: mass of heated 
region determines 
characteristic mass of IMF 
(Krumholz 2006, 2011; Offner+ 
2009; Bate 2009, 2014)

1368 M. R. Bate

Figure 2. The star formation in the main dense core of the BBB2003 RT0.5 calculation. The first object forms at t = 1.042 tff . Large gaseous filaments collapse
to form single objects and multiple systems. These objects fall together to form a small group. Radiative feedback from the accreting protostars heats the gas
in the dense core. Each panel is 0.025 pc (5150 au) across. These may be compared to the equivalent figures in the original BBB2003 paper. Time is given in
units of the initial free-fall time of 1.90 × 105 yr. The red-yellow-white panels show the logarithm of column density, N, through the cloud, with the scale
covering −0.5 < log N < 2.5 with N measured in g cm−2. The blue-red-yellow-white panels show the logarithm of mass weighted temperature, T, through the
cloud with the scale covering 9–300 K.

panels (using the red-yellow-white colour scale) display the column
density, while the centre-left panels (using the blue-red-yellow-
white colour scale) display the mass weight temperature in the
cloud. Fig. 2 shows the evolution of the main dense core from the
BBB2003 RT0.5 calculation in much greater detail than Fig. 1.
These snapshots are shown at the same times as the equivalent fig-
ures in the original BBB2003 paper. An animation comparing the
original calculation with the radiation hydrodynamical calculation
can be downloaded from http://www.astro.ex.ac.uk/people/mbate/

Comparison of the snapshots and/or the animations shows that
the barotropic and radiation hydrodynamical calculations diverge
quickly on small scales. In the original calculation, the first pro-
tostar to form is surrounded by a massive circumstellar disc that
quickly fragments into three more objects – two brown dwarfs and
a low-mass star. With radiation hydrodynamics, this massive disc

does not fragment. The accretion luminosity released as gas falls
on to the disc and then spirals in towards the central protostar is
sufficient to heat the disc and prevent its fragmentation. This is
one of the two main differences between the original calculation
using the barotropic equation of state and the radiation hydrody-
namical calculation – discs and dense filaments close to existing
protostars are inhibited from fragmenting by the radiative feedback
due to the accretion luminosity released by the low-mass stars and
brown dwarfs. This is not surprising. Whitehouse & Bate (2006)
previously showed that replacing the barotropic equation of state
with radiative transfer can lead to temperatures up to an order of
magnitude higher near young low-mass protostars and, thus, poten-
tially strongly inhibits fragmentation, while Krumholz (2006) made
a similar argument analytically. Rafikov (2005), Matzner & Levin
(2005), Kratter & Matzner (2006) and Whitworth & Stamatellos

C⃝ 2009 The Author. Journal compilation C⃝ 2009 RAS, MNRAS 392, 1363–1380

Krumholz 2006

Bate 2009



Testing the Radiation Hypothesis

Krumholz+ 2012



Testing the Radiation Hypothesis

Krumholz+ 2012



Testing the Radiation Hypothesis

Krumholz+ 2012



Testing the Radiation Hypothesis

Krumholz+ 2012



How Does Radiation Work? A Detailed View

• Examine all stars formed in radiation-MHD simulations so we 
can compare radiative and magnetic effects (Myers+ 2014, 
Cunningham+ 2016

14 Myers et al.

Figure 11. Protostellar mass distributions in our simulations at M⇤ ⇡ 20 M� compared to the theoretical PMFs in McKee & O↵ner
2011. The blue histograms are the simulation data. The green solid curve is the PMF associated with the TC model, the red solid curve
the CA model, and the blue solid curve is the IS model. The green and red dotted curves are the 2CTC and 2CCA PMFs, respectively.

Figure 13. Top - zoomed in views of the four most massive protostars in the Strong field calculation at t = 0.4 t↵ . The window size
has been set to 3000 AU. The color scale shows the logarithm of the column density, and the black arrows show the mass-weighted,
plane-of-sky magnetic field vectors. The masses of the protostars have been indicated in each panel. Bottom - same, but for the Weak
MHD run.

In general, dust polarization maps of star-forming cores
tend to reflect magnetic fields that are quite well-ordered.
If Crutcher et al. (2010) is correct, and cores with µ� &
10 are not rare, then chaotic magnetic field geometries like
those shown in the bottom panels of 13 should not be rare,
either. Crutcher et al. (2010) argues for a flat distribution of
field strengths from approximately twice the median value
down to very near 0 µG. If this is true, and the median field
corresponds to µ� = 2, then a flat distribution implies that
⇡ 10% of cores should have µ� > 10.

3.6 Turbulent Core Accretion

The turbulent core (TC) model of McKee & Tan (2002;
2003) is a generalization of the singular isothermal sphere
(Shu 1977) that was developed in the context of massive
stars. In this model, both the gravitationally bound clump
of gas where a cluster of stars is forming and the cores that
form individual stars and star systems are assumed to be su-
personically turbulent. The predicted accretion rate in the
TC model is:

ṁ⇤ = 1.2⇥ 10�3

✓
m⇤,f

30 M�

◆3/4

⌃3/4
cl

✓
m⇤

m⇤,f

◆1/2

M� yr�1
,

(9)
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Dissecting Radiation 
Feedback

• Examine concentric shells 
around each star at each time


• Compare gas mass mgas to:


• mBE — thermal pressure 
support


• mBE,10 — thermal pressure 
support we would have had 
without radiation feedback


• mB — magnetic support


• Mass of stabilized region set 
by mgas = max(mBE, mB)  

Core Structure in Radiation-MHD 3

not run to the end of the star formation process. As a result, new
stars were continuing to appear, and those stars that formed at ear-
lier times were continuing active accretion, and had not yet reached
their final masses. Consequently, the median mass was somewhat
smaller than the observed peak of the IMF. This median mass re-
sulted from the balance between the growth of existing stars to
higher masses and the formation of new stars at the bottom of the
mass distribution. Once the formation of new stars ceases or ta-
pers off, the median mass will have to rise, unless for some reason
accretion onto existing stars stops at the same time; we show in
Section 4.2 that such a rapid halt to accretion is implausible. For a
population is still forming, the relevant comparison to observations
is not with the IMF but with the protostellar mass function (McKee
& Offner 2010; Offner & McKee 2011), which is the mass func-
tion expected for a population of class 0 and class 1 protostars that
will end up with a mass distribution that follows the IMF. Myers
et al. (2014) show that the mass distribution produced in these sim-
ulations is in good agreement with the protostellar mass function
expected for the observed IMF. Since we are interested in precisely
the question of how a protostellar mass function transforms into
the IMF, this makes the simulations a particularly useful vehicle
for analysis.

2.2 Core Profiles and Critical Masses

We are interested in determining the role of thermal pressure (both
with and without radiative transfer effects) and magnetic support
in inhibiting fragmentation in the collapsing regions in our simu-
lations. To this end, we identify every sink particle at each output
time slice, and use the yt software package (Turk et al. 2011) to
compute a series of quantities. We examine 128 concentric spheri-
cal shells centred on each sink particle, with the inner edge of the
innermost shell placed at a distance of 100 AU from the particle and
the most distant at 4000 AU.2 For each shell, we compute the to-
tal gas mass enclosed mgas (excluding the sink particle), the mean
density ⇢, and, in order to assess the amount of thermal support,
the mass-weighted mean isothermal sound speed cs. We compute
these quantities both cumulatively, meaning that we take the mass
and mean sound speed of all gas within the shell, and differentially,
meaning that we consider only the material between two shells. We
show in Appendix A that the results for using either method are
qualitatively the same, and so for the remainder of the paper we
will focus on the cumulative quantities, which are somewhat less
noisy. From ⇢ and cs, we compute the Bonnor-Ebert mass (Ebert
1955; Bonnor 1956),

mBE = 1.86

s
c3s
G3⇢

, (1)

and we therefore have mBE as a function of radius around each
sink particle. Note that the coefficient here is 1.86 rather than the
more familiar 1.18 because we are using the mean density rather
than the surface density; in the isothermal case, this is a factor of

2 We consider spherical shells rather than cylinders, and below we con-
sider support against fragmentation in 3D rather than 2D geometry, because
for the most part our stars are not surrounded by large disks as a result
of magnetic braking. This is consistent with the general finding of MHD
simulations that magnetic fields at realistic strengths either, depending on
the problem setup, prevents disk formation entirely, or reduces the sizes of
disks to tens of AU – see the recent review by Li et al. (2014). Such disks
are too small for us to resolve given our 23 AU resolution.

Figure 1. Example of the density, effective temperature, effective magnetic
field strength, and mass profiles around a 0.17 M� protostar, in a sim-
ulation with 23 AU resolution. The top panel show the mean density of
the material enclosed within each radius. The next two panels show the
temperature and magnetic field strength that would yield values equal to
the mass-weighted mean sound speed and mean magnetic flux interior to
that radius, respectively. In the final panel, the solid line shows the mass of
gas enclosed, the thick dashed line shows the Bonnor-Ebert mass computed
from the mass-weighted mean sound speed and mean density, the dotted
line shows the Bonnor-Ebert mass computed from the mean density using a
fixed gas temperature of 10 K, and the dot-dashed line shows the magnetic
critical mass.

2.465 higher (McKee & Holliman 1999), explaining the increased
coefficient. The Bonnor-Ebert mass characterises the level of ther-
mal support in the gas; objects with a mass less that mBE are stable
against collapse. Note that, since the Bonnor-Ebert mass has been
computed for isothermal gas (or more generally for polytropic gas
– McKee & Holliman 1999), while our gas is neither isothermal
nor polytropic, this calculation of the mass that can be supported is
only approximate. Nonetheless, it should provide a useful estimate
of the importance of thermal pressure support.

To assess the importance of radiative heating by stars, we re-
peat the computation of the Bonnor-Ebert mass with the sound

c� 2015 RAS, MNRAS 000, 1–13
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Gas Stabilization by Radiative Feedback 
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Figure 5. Critical masses of gas supported by thermal pressure (mBE, blue), thermal pressure at a fixed temperature of 10 K (mBE,10, green), and magnetic
fields (mB , red) as a function of central star mass m⇤ in each of the three simulations, as labeled at the top of each panel. The shaded bands show the 1�
dispersion about each mean; places where the shaded band is absent indicate bins containing only a single star, so no dispersion can be computed. The dashed
black line indicates m⇤ = mcrit, i.e., it shows where the mass supported against collapse by pressure or magnetic forces is sufficient to double the present
stellar mass.

Figure 6. Ratio of stellar plus supported gas mass, m⇤ + mcrit, to stellar mass alone, m⇤, versus stellar mass. We show this quantity computed for the
critical masses computed using the Bonnor-Ebert mass, mBE,crit (blue), the Bonnor-Ebert mass using a gas temperature of 10 K, mBE,crit,10 (green), and
the magnetically-supported mass, mB,crit (red). For mBE,crit, solid lines show means, and shaded regions show the 1� dispersion; we omit the shaded
regions around mBE,crit and mB,crit to reduce clutter. The black dashed horizontal line shows mcrit = m⇤, i.e., it is the point at which the supported mass
is sufficient to double the stellar mass.

⇠ 0.1 M�, suggesting that thermal support is ultimately the more
important process.

To illustrate this, in Figure 6 we show the ratio (mBE,crit +
m⇤)/m⇤ (blue line), i.e., this is the fraction by which the mass of
the star would be increased by accretion of all the material around
itself that is too warm to fragment. This is & 5 at the lowest masses,
which naturally explains why brown dwarfs are comparatively rare:
a “prospective” dwarf of mass ⇠ 0.01 M� is usually luminous
enough to have heated ⇠ 0.05 M� of material around itself to a
point where it is too hot to collapse, and instead seems very likely
to be accreted. By the time the object has accreted this gas and
grown to ⇠ 0.05 M�, it has heated up another ⇠ 0.05 M� of ma-
terial to the point where it cannot fragment, enabling it to grow to
⇠ 0.1M�, and so forth. This process continues but comes ever less
important as stars gain in mass. By the time stars approach the peak

of the IMF, ⇠ 0.2 � 0.3 M�, the amount of heated mass around
them has fallen to tens of percent of their current mass, and rep-
resents a relatively minor perturbation if and when it is accreted,
particularly since protostellar outflows are likely to eject ⇠ 50%
of it (Matzner & McKee 2000). Conversely, because stars much
above ⇠ 0.2� 0.3M� are unable to stabilise enough mass around
themselves to significantly augment their mass, they seem likely
to be starved by fragmentation of this gas into other stars, as sug-
gested by Peters et al. (2010). This explains why we should expect
the peak of the IMF to fall at ⇠ 0.2 � 0.3 M�. Only in rare cir-
cumstances does this heating mechanism allow an object to remain
at ⇠ 0.01 M�, rather than continuing to grow. It is worth noting
here the analogy between this explanation for the rarity of brown
dwarfs and the analysis of giant planet formation by disc instabil-
ity by Kratter, Murray-Clay & Youdin (2010), who show that disc

c� 2015 RAS, MNRAS 000, 1–13
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Figure 3. Cumulative mass distributions from all four runs at t = 0.5tff . f (> m)
the fraction of the total stellar mass that is in stars with masses greater than m.

(A color version of this figure is available in the online journal.)

Table 2
P-values from Two-sided K-S Tests for the Simulated Mass Distributions

Run Solar 0.2 Solar 0.05 Solar High Σ
Solar . . . 0.1 0.62 0.02
0.2 Solar . . . 0.16 0.01
0.05 Solar . . . 0.02

the fraction of the total stellar mass than is in stars with masses
greater than m. Visually, there appears to be little difference
between the curves, particularly for the Σ = 2 g cm−2 runs. To
test whether the IMF is indeed the same in the different runs, we
have performed two-sided Kolmogorov–Smirnov (K-S) tests
between each pair of distributions. The results are shown in
Table 2. At the 10% level, we cannot reject the null hypothesis
that the three Σ = 2 g cm−2 have the same underlying IMF.
The High Σ distribution, on the other had, does seem to be
statistically different from the others.

In contrast to the minor effect reported here, Krumholz et al.
(2007a) found that isothermal runs fragmented completely dif-
ferently from radiative ones, and KCKM10 found a major differ-
ence in fragmentation between runs with low and high surface
density. To summarize, the differences in the fragmentation of
all of our runs are minor. To the extent that there are significant
differences, they are due to changes in the surface density, rather
than to changes in the metallicity. At least within the range of
parameters considered here, metallicity appears to have little ef-
fect on either the temperature or the fragmentation of molecular
gas.

4. DISCUSSION

4.1. Analytic Model

The above simulations suggest that metallicity plays little role
in the fragmentation of star-forming gas. To understand why,
consider a simple model system like the initial conditions above:
a core of gas and dust with radius Rc, mass M, surface density
Σ = M/πR2

c , and a power-law density profile ρ(r) ∝ r−kρ . We
would like to understand what happens to the temperature of
this core once stars have started to form, so we will place a point

source of luminosity L in the center to represent the combined
radiant output of the central collection of stars. We assume that
the dust opacity follows a power law in the far IR regime:

κν = δκ0

(
λ0

λ

)β

= δκ0

(
T

T0

)β

, for 3 mm < λ < 30 µm, (16)

where the subscript “0” refers to an arbitrary reference value
and δ is the dust-to-gas mass ratio relative to solar. The T in this
equation is the dust temperature, which we assume is identical to
the radiation temperature. We will adopt the dust opacity model
of Weingartner & Draine (2001), for which κ0 = 0.27 cm2 g−1

at λ0 = 100 µm and β = 2; however, we have verified that
using the opacities of Semenov et al. (2003; as used by ORION)
or Pollack et al. (1994) makes little difference. For reference,
the corresponding T0 is 144 K.

The emission from such a system is considered in Chakrabarti
& McKee (2005; hereafter CM2005). They find that even though
cores do not have sharply delineated photospheres as stars do,
the radiation they emit is still well described by

L = L̃4πR2
chσT 4

ch, (17)

where L̃ is a constant of order unity and Tch and Rch are a
characteristic temperature and the radius from which radiation
with frequency νch = kTch/h has an optical depth of 1. These
are given by

R̃c = Rc

Rch

=

⎧
⎨

⎩
(L/M)Σ(4+β)/β

4σ L̃

[
(3 − kρ)δκ0

4(kρ − 1)T β
0

]4/β
⎫
⎬

⎭

− β
α

(18)

and

Tch =

⎧
⎨

⎩
L/M

4σ L̃Σ
3−kρ
kρ−1

[
4(kρ − 1)T β

0

(3 − kρ)δκ0

] 2
kρ−1

⎫
⎬

⎭

kρ−1
α

, (19)

where α = 2β+4(kρ −1). Rather than using the expression for L̃
given in CM2005, we will adopt the more accurate expression
from Chakrabarti & McKee (2008), which they report gives
excellent agreement with results from the DUSTY code, based
on the work of Ivezic & Elitzur (1997):

L̃ = 1.6R̃c
0.1

. (20)

A final result we will take from CM2005 is that the temperature
profile in the vicinity of the photosphere is also well described
by a power law:

T (r) = Tch

(
r

Rch

)−kT

. (21)

We can solve the above equations simultaneously to get that the
temperature as a function of density (or, equivalently, radius) in
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Figure 7. The cumulative stellar mass distributions produced by the four
radiation hydrodynamical calculations with different opacities, correspond-
ing to metallicities of Z = 0.01 Z⊙ (green long-dashed line), Z = 0.1 Z⊙
(red dashed line), Z = Z⊙ (black solid line), and Z = 3 Z⊙ (blue dot–dashed
line). We also plot the Chabrier (2005) IMF (black dotted line). The ver-
tical dashed line marks the stellar/brown dwarf boundary. The form of the
stellar mass distribution does not vary significantly with different opacities:
Kolmogorov–Smirnov tests show that even the two most different distri-
butions (Z = 0.01 Z⊙ and Z = 0.1 Z⊙) have a 1.2 per cent probability of
being drawn from the same underlying distribution (equivalent to a ≈2.5σ

difference). However, in the lowest opacity case there does seem to be a
slight excess of brown dwarfs.

in fact members of triple or quadruple systems and some ‘triple’
systems are components of quadruple or higher order systems. From
this point on, unless otherwise stated, we define the numbers of
multiple systems as follows. The number of binaries excludes those
that are components of triples or quadruples. The number of triples
excludes those that are members of quadruples. However, higher
order systems are ignored (e.g. a quintuple system may consist of
a triple and a binary in orbit around each other, but this would be
counted as one binary and one triple). We choose quadruple systems
as a convenient point to stop as it is likely that most higher order
systems will not be stable in the long term and would decay if the
cluster was evolved for many millions of years.

The numbers of single and multiple stars produced by each of
the three calculations with the highest opacities are given in Table 2
following these definitions. We do not provide the statistics of the
multiple systems for the lowest opacity calculation because the ther-
mal behaviour of the gas is so unrealistic in this calculation that we
do not believe that it is worthwhile discussing the calculation any
further. We do note, however, that, as with the mass function, we
find no statistically significant difference between the lowest opac-
ity calculation and the other calculations in terms of the multiple
systems that are produced.

Bate (2012) provided a table of the properties of each of the multi-
ple systems produced by the solar metallicity calculation. However,
in total the three calculations with the highest opacities produce
108 multiple systems. Therefore, rather than include them with the
paper, this information is provided electronically in ASCII tables.
For all four calculations, we provide tables that list the masses,
formation times, and final accretion rates of the stars and brown
dwarfs (see Table 3 for an example). These tables are given file
names such as Table3_Stars_Metal01.txt for the Z = 0.1 Z⊙

Table 2. The numbers of single and multiple systems for different primary
mass ranges at the end of the three radiation hydrodynamical calculations
with the highest opacities (Z ≥ 0.1 Z⊙).

Mass range (M⊙) Single Binary Triple Quadruple

Metallicity Z = 0.1 Z⊙
M < 0.03 7 0 0 0

0.03 ≤ M < 0.07 17 1 0 0
0.07 ≤ M < 0.10 11 0 0 0
0.10 ≤ M < 0.20 10 2 1 0
0.20 ≤ M < 0.50 25 9 0 4
0.50 ≤ M < 0.80 6 2 1 2
0.80 ≤ M < 1.2 0 2 0 1

M > 1.2 0 4 4 2

Metallicity Z = Z⊙
M < 0.03 7 0 0 0

0.03 ≤ M < 0.07 20 0 0 0
0.07 ≤ M < 0.10 8 3 0 0
0.10 ≤ M < 0.20 17 7 1 0
0.20 ≤ M < 0.50 21 9 2 2
0.50 ≤ M < 0.80 5 2 0 1
0.80 ≤ M < 1.2 2 1 1 0

M > 1.2 4 6 1 4

Metallicity Z = 3 Z⊙
M < 0.03 8 0 0 0

0.03 ≤ M < 0.07 24 0 0 0
0.07 ≤ M < 0.10 13 1 0 0
0.10 ≤ M < 0.20 18 5 2 0
0.20 ≤ M < 0.50 18 5 3 2
0.50 ≤ M < 0.80 4 2 0 2
0.80 ≤ M < 1.2 3 3 0 1

M > 1.2 4 1 3 3

All masses, three calculations 252 65 19 24

Table 3. For each of the four calculations, we provide online tables of
the stars and brown dwarfs that were formed, numbered by their order of
formation, listing the mass of the object at the end of the calculation, the
time (in units of the initial cloud free-fall time) at which it began to form
(i.e. when a sink particle was inserted), and the accretion rate of the object
at the end of the calculation (precision ≈10−7 M⊙ yr−1). The first five lines
of the table for the solar metallicity calculation are provided.

Object number Mass tform Accretion rate
(M⊙) (tff) (M⊙ yr−1)

1 1.3749 0.7266 3.18 × 10−5

2 1.8626 0.8034 2.3 × 10−6

3 2.2732 0.8046 0
4 1.3284 0.8066 3.0 × 10−6

5 2.5311 0.8120 4.3 × 10−6

calculation. For each calculation with Z ≥ 0.1 Z⊙, we also pro-
vide tables that list the properties of each multiple system (see
Table 4 for an example). These tables are given file names such as
Table4_Multiples_Metal3.txt for the Z = 3 Z⊙ calculation.

The overall multiplicities for all stars and brown dwarfs from
each of the three remaining calculations are 32 per cent, 32 per cent,
and 26 per cent, each with 1σ uncertainties of ±5 per cent for opac-
ities corresponding to metallicities of 1/10, 1, and 3 times solar,
respectively. Therefore, there is no significant overall dependence
of the multiplicity on opacity.

However, observationally, it is clear that the fraction of stars or
brown dwarfs that are in multiple systems increases with stellar
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Extending the Radiation Hypothesis

• Accretion luminosity set by surface escape speed, which 
in turn is set by Tcore, which D burning fixes to ~ 106 K 

• Escape speed can therefore be written approximately in 
terms of fundamental constants 

• Analytically solve for size of heated region and 
characteristic mass, with almost no dependence in 
interstellar parameters (Krumholz 2011):

M⇤ ⇡ 0.15

✓
P/kB

106 Kcm�3

◆�1/18

M�



Radiation In a 
(Semi-)Analytic Model

• Use excursion set-like model 
based on Hopkins+ 
fragmentation tree


• Add local radiative heating: in 
any collapsing region, use 
temperature computed from 
Krumholz+ 2011 formalism


• Vary environment:

• Background T = 10, 20, 75 K

• Mach number = 6 - 30

• Σ = 10 - 3000 M⊙ pc−2


• Compare to isothermal, EOS 
not including radiation

4 Guszejnov, Krumholz & Hopkins

Figure 1. The IMF in the case of purely isothermal equation
of state (model IsoTherm T10, solid black), a surface density
dependent “stiff” EOS (EOSΣ T10, solid blue), a volume den-
sity dependent “stiff” EOS (EOSρ T10, solid green) and a pro-
tostellar heating (Heating STD, solid red) models. We compare
these to the canonical IMFs of Kroupa (2002) and Chabrier
(2005). Isothermal collapse leads to a featureless power-law close
to dN/dM ∝ M−2 while both protostellar heating and the EOS in-
troduce a turnover at lower masses while having close to canonical
behavior at higher masses.

ExtMach model has an enhanced Mach number but fixed
temperature; we are unaware of a physical analog for this
case, but include it because it provides useful insight into
the physics of the model.

3 SOURCE OF INVARIANT MASS SCALE

One of the key features of the IMF is the turnover mass
which appears to be close to universal. In this section we in-
vestigate different models of turbulent fragmentation – start-
ing from the simplest – to test whether they are capable of
producing a nearly-invariant turnover mass, as demanded by
the observations.

3.1 Failure of Isothermal Fragmentation

We first examine our isothermal case, IsoTherm T10, the re-
sults for which are shown in Fig. 1. As the Figure shows, the
IMF we obtain in the isothermal case is a pure power-law,
with no visible turnover. Although not shown in Figure 1,
we obtain a similar scale-free result for the IMF produced by
purely isothermal fragmentation independent of our choice
of initial conditions. It is important to note that, in the
isothermal case, the core mass function (CMF) does have a
turnover, at the sonic mass Msonic ∼ c2

sRsonic/G, which is set
by the initial conditions (see GH15). However, this does not
result in an IMF with a turnover.

This result might at first seem surprising, but we can
understand it through a simple analytic argument. In a num-
ber of analytical studies (e.g. Hopkins 2012b) the IMF is in-
ferred from the CMF by shifting the mass scale by a factor
of 1/3 (rule of thumb: “a third of the bound mass ends up
in the star”), which is not physically correct, as cores un-
dergo gravitational collapse which takes a finite amount of

time, allowing them to further fragment into a spectrum of
submasses (Guszejnov & Hopkins 2015b).

This means that a single initial core forms its own sub-
cores starting from different initial conditions. The collapse
of highly supersonic clouds is self-similar so every factor of
2 contraction takes about a dynamical time (see Sec. 9.2 in
Hopkins (2013b)). This means that the cloud can fragment
at any scale thus there is the same “amount of fragmen-
tation” at each scale, producing an infinite fragmentation
cascade. This explains why numerical studies have been un-
able to get converged results, as higher resolution leads to
fragmentation on even smaller scales.

To more rigorously understand the behavior here, let us
introduce the mass distribution function fi (M |M0) defined
such that fi (M |M0) d ln M is the fraction of mass ending up in
fragments of M mass in a parent cloud of M0 mass after the
ith generation of fragmentation3. Since turbulent fragmenta-
tion is scale-free, it must be true that fi (M |M0) = fi

(

M
M0

)

i.e. the absolute scale factors out. We can therefore relate fi
and fi+1 as:

fi+1(M/M0) =
∫

fi (M̃/M0) f1(M/M̃)d ln M̃, (6)

where M0 is the mass of the fragmenting parent cloud and
M is the fragment mass. This is just the statement that fi+1

represents “one more generation” of fragmentation (convo-
lution of fi with f1, the single generation mass distribution
function). The IMF is the result of an infinite fragmentation
cascade, so the final mass distribution f∞ must be

f∞(M/M0) =
∫

f∞(M̃/M0) f1(M/M̃)d ln M, (7)

This implies that independent of the functional form of fi (x)
the final distribution f∞(x) must be a power-law. In prac-
tice this means that for pure isothermal turbulence the IMF
will become a power-law independent of the CMF shape. By
further considering that fi (x) is completely scale-free, it is
expected that the equilibrium solution satisfies detailed bal-
ance (i.e. the mass distribution is steady state), so the flux
of mass “coming into” a bin from a scale 1/y times higher
must be equal to the mass flux “going out” of the bin to the
fractional scale y, so:

f∞(xy) f (y)d ln x = f∞(x) f (y)d ln x. (8)

But this requires f∞(x) = const. Recall that f∞ is the mass
fraction per logarithmic interval in fragment mass i.e. f∞ ∝
dN
dM M2, so this leads to an IMF of M−2.

In summary: although isothermal models like Hopkins
(2012b) recover the CMF shape, they are unable to explain
the shape of the IMF. In the case of isothermal fragmenta-
tion, independent of the form of the CMF, the IMF becomes
a power-law of M−2 as the initial conditions are “forgotten”
during the fragmentation cascade. This means that to pro-
duce an IMF that is not a pure power-law, as observed, an
extra physical process is required that would provide a mass
scale invariant to the initial conditions.

3 The “generation number” of fragments is defined by how many
larger structures it is embedded in. Thus fragments that are only
embedded in the parent cloud are the first generation while their
direct fragments are the second generation.
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Figure 4. The IMF of the protostellar heating model with stan-
dard (Heating STD : T = 10 K, Rsonic = 0.1 pc), high temperature
(Heating T20 : T = 20 K), extreme turbulence (Heating ExtMach:
Rsonic = 0.0026 pc), extreme temperature (Heating T75 : T = 75 K)
and ULIRG (Heating ULIRG: T = 75 K, Rsonic = 0.0026 pc) initial
conditions (see Table 1). The predicted IMF is remarkably invari-
ant to initial conditions. The turnover point does shift slightly to
lower masses for both very strong turbulence and high tempera-
ture (stronger turbulence makes fragmentation easier and a higher
initial temperature means that protostellar heating becomes dom-
inant at a smaller size scale).

density and become thick to their own cooling radiation.
This does provide a mass scale for the system, and by tun-
ing the parameters of the model appropriately one can repro-
duce the observed IMF turnover. However, we find that this
approach results in a mass scale that is extremely sensitive to
initial conditions (Mcrit[γ (Σ)] ∝ T2 and Mcrit[γ

(

ρ
)

] ∝ T3/2),
rendering these models unable to provide a universal mass
scale as is observed. Moreover, producing agreement with
the observed mass scale even for initial conditions similar
to those found in Solar neighborhood star-forming regions
requires parameter choices that are very far from what one
would have estimated based on any first-principles physical
argument.

We argue instead that feedback physics can provide a
mass scale that is both in good agreement with observations
and insensitive to the conditions in the star-forming region.
As an example, based on Krumholz (2011), we have for-
mulated a simple prescription for protostellar heating. This
alone of all the analytical models we consider is able to pro-
vide a universal IMF turnover, despite large variations in
initial gas temperature, densities, Mach number and masses
of star forming clouds.

4.1 Caveats and Future Work

We close with a discussion of the limitations of
our model, and how we plan to improve it in fu-
ture work. We utilize the semi-analytical framework of
Guszejnov & Hopkins (2015a) with a very basic physical
models which all make several strong approximations. Moti-
vated by Robertson & Goldreich (2012) we assume collapse
at constant virial parameter as turbulence is pumped by

gravity. While this assumption has empirical support, it has
not been rigorously demonstrated (although simulations so
far seem to confirm this, see Murray et al. 2015). Further-
more, the simulation only follows the evolution of self gravi-
tating structures until they reach the size scale where angu-
lar momentum becomes important, and, thus processes that
act on the scales of disks or smaller (e.g. disk fragmenta-
tion) are neglected. This could have a significant effect on
the low mass end of the resulting IMF. Finally, the proto-
stellar heating model assumes isotropic, steady state heating
and neglects other forms of feedback (e.g. outflows).

Some of these limitations will be easier to remove than
others. The assumption that collapse occurs at constant
virial parameter can be investigated by simulations, as can
be the fragmentation of disks, and in principle results from
these calculations could be incorporated into our model.
Similarly, a number of authors have proposed more com-
plex models for the protostellar heating, including the effects
of fluctuations in time (e.g., Lomax et al. 2014), and these
could be included as well. The entire framework can also be
checked against radiation-hydrodynamic simulations such as
those of Krumholz et al. (2012) or Myers et al. (2014).

In addition to these improvements in the model itself,
an obvious next step is to identify predictions of the model
that can be compared with real data. We mention here two
obvious, first order predictions that we plan to investigate
in future work. First, using the output of cosmological sim-
ulations or semi-analytic models, we can investigate the ex-
tent to which the small amount of variation we do find in
the protostellar heating model produces significant varia-
tions in the IMFs of elliptical galaxies over cosmological
times. These predictions can then be compared to obser-
vations (e.g., van Dokkum & Conroy 2010; Cappellari et al.
2012). Second, because our model retains spatial informa-
tion, it makes predictions for the clustering of stars as well as
for their mass distribution. This too can be checked against
the spatial distribution of stars in nearby star-forming re-
gions, a test that has been performed before using both an-
alytic (Hopkins 2013a) and numerical (Hansen et al. 2012;
Myers et al. 2014) models.
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Semi-Analytic Model Also Gets Binaries Right

Protostellar Feedback in Common Core Fragmentation: Consequences for Stellar Clustering and Multiplicity

Figure 4. The relative frequency of most massive companions compared with the observed values for solar type stars (left,
Raghavan et al. 2010) and VLM stars (right, Burgasser et al. 2007). Unlike the isothermal model the “heated” case reproduces the
observations for both solar type and VLM stars.

Figure 5. Fraction of stars in bound systems as a function of mass in our models of isothermal fragmentation (left; IsoT STD) and
including protostellar heating (right; Heated M1E5 ). We assign each star one of the single, multiple and nonprimary labels. As expected
low mass stars are much more likely to be bound to larger stars (“nonprimary”), while more massive stars are likely to form systems with
one or more companions (“multiple”).

good fit to observed data, while the “at formation” period
distribution qualitatively agrees with the long-range end of
the distribution inferred from observations. The lack of short
range binaries implies another source of binaries is required
to fully reproduce the observations. We believe protostellar
disk fragmentation could fulfill this role as it could provide
the missing short range binaries.

ACKNOWLEDGMENTS

Support for PFH and DG was provided by an Al-

fred P. Sloan Research Fellowship, NASA ATP Grant
NNX14AH35G, and NSF Collaborative Research Grant
#1411920 and CAREER grant #1455342. MRK is sup-
ported by NSF grants AST-0955300, AST-1405962 and
NASA ATP grant NNX15AT06G. Numerical calculations
were run on the Caltech compute cluster “Zwicky” (NSF
MRI award #PHY-0960291) and allocation TG-AST130039
granted by the Extreme Science and Engineering Discovery
Environment (XSEDE) supported by the NSF.
REFERENCES

Basri G., Reiners A., 2006, AJ, 132, 663
Bate M. R., 2009a, MNRAS, 392, 590

MNRAS 000, 000–000 (0000)

Protostellar Feedback in Common Core Fragmentation: Consequences for Stellar Clustering and Multiplicity

Figure 4. The relative frequency of most massive companions compared with the observed values for solar type stars (left,
Raghavan et al. 2010) and VLM stars (right, Burgasser et al. 2007). Unlike the isothermal model the “heated” case reproduces the
observations for both solar type and VLM stars.

Figure 5. Fraction of stars in bound systems as a function of mass in our models of isothermal fragmentation (left; IsoT STD) and
including protostellar heating (right; Heated M1E5 ). We assign each star one of the single, multiple and nonprimary labels. As expected
low mass stars are much more likely to be bound to larger stars (“nonprimary”), while more massive stars are likely to form systems with
one or more companions (“multiple”).

good fit to observed data, while the “at formation” period
distribution qualitatively agrees with the long-range end of
the distribution inferred from observations. The lack of short
range binaries implies another source of binaries is required
to fully reproduce the observations. We believe protostellar
disk fragmentation could fulfill this role as it could provide
the missing short range binaries.

ACKNOWLEDGMENTS

Support for PFH and DG was provided by an Al-

fred P. Sloan Research Fellowship, NASA ATP Grant
NNX14AH35G, and NSF Collaborative Research Grant
#1411920 and CAREER grant #1455342. MRK is sup-
ported by NSF grants AST-0955300, AST-1405962 and
NASA ATP grant NNX15AT06G. Numerical calculations
were run on the Caltech compute cluster “Zwicky” (NSF
MRI award #PHY-0960291) and allocation TG-AST130039
granted by the Extreme Science and Engineering Discovery
Environment (XSEDE) supported by the NSF.
REFERENCES

Basri G., Reiners A., 2006, AJ, 132, 663
Bate M. R., 2009a, MNRAS, 392, 590

MNRAS 000, 000–000 (0000)



Implications and Possible Problems for the 
Radiation Hypothesis

• Suggests (very slightly) bottom-heavy IMF in the highest 
pressure star-forming environments 

• Not clear yet what sets the shape of the IMF below the 
feedback break 

• Probably need to extend models to include disk 
fragmentation — not currently captured, appear to have 
too few brown dwarfs in analytic model as compared to 
simulations



Summary

• Non-powerlaw part of the IMF must be controlled by 
deviations from isothermal behavior 

• Two possibilities: 

• Important deviations are at galactic scale; apparent 
lack of IMF variation is due to convenient cancellation 

• Important deviations are at ≪ 1 pc scale, due to stellar 
feedback or dust-gas coupling; predicts at most weak 
IMF variation in very high pressure / density regions


