and QCD tests at hadron colliders

- \bullet world summary of α_s
- newest results (selection)
- α_s from hadron colliders
- remarks

S. Bethke MPI für Physik, Munich

Experimental Determination of α_s

in all types of reactions which contain gluons:

- e+e-annihilation
 - total hadronic cross section
 - hadronic decay width of Z bosons and τ leptons
 - jet rates and event shapes observables

- deep inelastic lepton-nucleon-scattering
 - scaling violations of structure functions
 - sum rules of structure functions
 - jet rates and event shapes observables

- proton-(anti-)proton collisions
 - jet rates
 - photoproduction
 - inklusive production of b-quarks
- b g g
- heavy quarkonia decays

World summary of α_s

1989

$$\alpha_s(M_z) = 0.110^{+0.006}_{-0.008} \text{ (NLO)}$$

G. Altarelli, Ann. Rev. Nucl. Part. Sci. 39, 1989

$\$ orld ummary of $\alpha_s(Q)$ (Sep. 2002)

4

	Q			$\Delta \alpha_{\rm s}(M_{ m Z^0})$		
Process	[GeV]	$\alpha_s(Q)$	$\alpha_{ m s}(M_{ m Z^0})$	exp.	theor.	Theory
DIS [pol. stret. fetn.]	0.7 - 8		$0.120 \pm {0.010 \atop 0.008}$	+0.004 -0.005	+0.009 -0.006	NLO
DIS [Bj-SR]	1.58	$0.375 \pm {}^{0.062}_{0.081}$	$0.121 \pm 0.005 \atop 0.009$	_	_	NNLO
DIS [GLS-SR]	1.73	$0.280 \pm 0.070 \atop 0.068$	$0.112 \pm 0.009 \atop 0.012$	+0.008 -0.010	0.005	NNLO
τ-decays	1.78	0.323 ± 0.030	0.1181 ± 0.0031	0.0007	0.0030	NNLO
DIS $[\nu; xF_3]$	2.8 - 11		$0.119 \pm \frac{0.007}{0.006}$	0.005	+0.005 -0.003	NNLO
DIS $[e/\mu; F_2]$	1.9 - 15.2		0.1166 ± 0.0022	0.0009	0.0020	NNLO
DIS [e-p \rightarrow jets]	6 - 100		0.120 ± 0.005	0.002	0.004	NLO
DIS & pp̄ →jets	1 - 400		0.119 ± 0.004	0.002	0.003	NLO
$Q\overline{Q}$ states	4.1	0.239 ± 0.012	0.121 ± 0.003	0.000	0.003	LGT
Υ decays	4.75	0.217 ± 0.021	0.118 ± 0.006	_	_	NNLO
$e^{+}e^{-}[F_{2}^{\gamma}]$	1.4 - 28		$0.1198 \pm 0.0044 \\ 0.0054$	0.0028	+0.0034 -0.0046	NLO
e^+e^- [σ_{had}]	10.52	0.20 ± 0.06	$0.130 \pm {0.021 \atop 0.029}$	$^{+\ 0.021}_{-\ 0.029}$	0.002	NNLO
e ⁺ e ⁻ [jets & shapes]	14.0	$0.170 \pm {0.021 \atop 0.017}$	$0.120 \pm 0.010 \atop 0.008$	0.002	+0.009 -0.008	resum
e ⁺ e ⁻ [jets & shapes]	22.0	$0.151 \pm {0.015 \atop 0.013}$	$0.118 \pm 0.009 \atop 0.008$	0.003	+0.009 -0.007	resum
e ⁺ e ⁻ [jets & shapes]	35.0	$0.145 \pm {}^{0.012}_{0.007}$	$0.123 \pm 0.008 \atop 0.006$	0.002	+0.008 -0.005	resum
e^+e^- [σ_{had}]	42.4	0.144 ± 0.029	0.126 ± 0.022	0.022	0.002	NNLO
e ⁺ e ⁻ [jets & shapes]	44.0	$0.139 \pm {}^{0.011}_{0.008}$	$0.123 \pm {0.008 \atop 0.006}$	0.003	+0.007 -0.005	resum
e ⁺ e ⁻ [jets & shapes]	58.0	0.132 ± 0.008	0.123 ± 0.007	0.003	0.007	resum
$p\bar{p} \rightarrow b\bar{b}X$	20.0	$0.145 \stackrel{+}{-} {}^{0.018}_{-0.019}$	0.113 ± 0.011	+ 0.007 - 0.006	+ 0.008 - 0.009	NLO
$p\bar{p}, pp \rightarrow \gamma X$	24.3	$0.135 \stackrel{+}{-} {}^{0.012}_{0.008}$	0.110 ± 0.008	0.004	+ 0.007 - 0.003	NLO
$\sigma(p\bar{p} \rightarrow jets)$	40 - 250		0.118 ± 0.012	+ 0.008 - 0.010	+ 0.009 - 0.008	NLO
e^+e^- [$\Gamma(Z^0 \to had.)$]	91.2	$0.1227^{+0.0048}_{-0.0038}$	$0.1227^{+0.0048}_{-0.0038}$	0.0038	+0.0029 -0.0005	NNLO
e ⁺ e ⁻ scal. viol.	14 - 91.2		0.125 ± 0.011	+ 0.006 - 0.007	0.009	NLO
e ⁺ e ⁻ 4-jet rate	91.2	0.1170 ± 0.0026	0.1170 ± 0.0026	0.0001	0.0026	NLO
e ⁺ e ⁻ [jets & shapes]	91.2	0.121 ± 0.006	0.121 ± 0.006	0.001	0.006	resum
e ⁺ e ⁻ [jets & shapes]	133	0.113 ± 0.008	0.120 ± 0.007	0.003	0.006	resum
e ⁺ e ⁻ [jets & shapes]	161	0.109 ± 0.007	0.118 ± 0.008	0.005	0.006	resum
e ⁺ e ⁻ [jets & shapes]	172	0.104 ± 0.007	0.114 ± 0.008	0.005	0.006	resum
e ⁺ e ⁻ [jets & shapes]	183	0.109 ± 0.005	0.121 ± 0.006	0.002	0.005	resum
e ⁺ e ⁻ [jets & shapes]	189	0.109 ± 0.004	0.121 ± 0.005	0.001	0.005	resum
e ⁺ e ⁻ [jets & shapes]	195	9.109 ± 0.005	0.122 ± 0.006	0.001	0.006	resum
e ⁺ e ⁻ [jets & shapes]	201	0.110 ± 0.005	0.124 ± 0.006	0.002	0.006	resum
e ⁺ e ⁻ [jets & shapes]	206	0.110 ± 0.005	0.124 ± 0.006	0.001	0.006	resum

5

orld ummary of $\alpha_s(Q)$ (Sep. 2002)

 $\alpha_{_{\rm S}}({
m M_z}) = 0.1183 \pm 0.0027$

running α_s up to 4th order:

$$Q^{2} \frac{\partial \alpha_{s}(Q^{2})}{\partial Q^{2}} = \beta \left(\alpha_{s}(Q^{2})\right)$$

$$\beta(\alpha_{s}(Q^{2})) = -\beta_{0}\alpha_{s}^{2}(Q^{2}) - \beta_{1}\alpha_{s}^{3}(Q^{2}) - \beta_{2}\alpha_{s}^{4}(Q^{2}) - \beta_{3}\alpha_{s}^{5}(Q^{2}) + \mathcal{O}(\alpha_{s}^{6})$$

$$\beta_{0} = \frac{33 - 2N_{f}}{12\pi} ,$$

$$\beta_{1} = \frac{153 - 19N_{f}}{24\pi^{2}} ,$$

$$\beta_{2} = \frac{77139 - 15099N_{f} + 325N_{f}^{2}}{3456\pi^{3}} ,$$

$$\beta_{3} \approx \frac{29243 - 6946.3N_{f} + 405.089N_{f}^{2} + 1.49931N_{f}^{3}}{256\pi^{4}}$$

$$\begin{split} \alpha_{\rm s}(Q^2) &= \frac{1}{\beta_0 L} - \frac{1}{\beta_0^3 L^2} \beta_1 \ln L \\ &+ \frac{1}{\beta_0^3 L^3} \left(\frac{\beta_1^2}{\beta_0^2} \left(\ln^2 L - \ln L - 1 \right) + \frac{\beta_2}{\beta_0} \right) \\ &+ \frac{1}{\beta_0^4 L^4} \left(\frac{\beta_1^3}{\beta_0^3} \left(- \ln^3 L + \frac{5}{2} \ln^2 L + 2 \ln L - \frac{1}{2} \right) - 3 \frac{\beta_1 \beta_2}{\beta_0^2} \ln L + \frac{\beta_3}{2\beta_0} \right) \quad L = \ln \frac{Q^2}{\Lambda_{\overline{\rm MS}}^2} \end{split}$$

 β_0 and β_1 do not depend on renormalisation scheme; β_2 and β_3 ... do !

choose \overline{MS} scheme for all of the following discussion.

relative size of higher order corrections

heavy quark threshold matching

Matching conditions for the choice $\mu^{(Nf)} = M_q$ (pole mass definition):

$$\frac{a'}{a} = 1 + C_2 \ a^2 + C_3 \ a^3$$
 (with $a' = \alpha_s^{(Nf-1)}/\pi$; $a = \alpha_s^{(Nf-1)}/\pi$)
$$C_2 = -0.291667 \text{ and } C_3 = -5.32389 + (N_f - 1) \cdot 0.26247$$

(3-loop condition; Chetyrkin, Kniehl, Steinhauser)

perturbative predictions for physical quantities

$$\mathcal{R}(Q^2) = P_l \sum_n R_n \alpha_s^n \qquad \text{in } n^{th} \text{ order perturbation theory}$$

$$= P_l \left(R_0 + R_1 \alpha_s(\mu^2) + R_2 (Q^2/\mu^2) \alpha_s^2(\mu^2) + \ldots \right) \qquad R_I \text{ : "leading order coefficient" (lo)}$$

in n^{th} order perturbation theory

 R_2 : "next to leading coefficient" (nlo)

 R_3 : "next-next-to leading" (nnlo)

Resummation of logs arising from soft and collinear singularities:

$$\Sigma(\mathcal{R}) \equiv \int_{0}^{\mathcal{R}} \frac{1}{\sigma} \frac{d\sigma}{d\mathcal{R}} d\mathcal{R} = C(\alpha_s) \exp \left[G(\alpha_s, L)\right] + D(\alpha_s, \mathcal{R}) \qquad L = \ln(1/\mathcal{R}) \qquad C(\alpha_s) = 1 + \sum_{n=1}^{\infty} C_n \hat{\alpha}_s^n$$

$$G(\alpha_s, L) = \sum_{n=1}^{\infty} \sum_{m=1}^{n+1} G_{nm} \hat{\alpha}_s^n L^m$$

$$\equiv Lg_1(\alpha_s L) + g_2(\alpha_s L) + \alpha_s g_3(\alpha_s L) + \alpha_s^2 g_4(\alpha_s L) \cdots$$

$$\ln \Sigma(\mathcal{R}) = \begin{array}{|c|c|c|c|c|}\hline Leading & Next-to- & Subleading & Non-log. \\ logs & Leading logs & logs & terms \\ \hline \\ ln \Sigma(\mathcal{R}) = & G_{12}\hat{\alpha}_sL^2 & +G_{11}\hat{\alpha}_sL & +\alpha_s\mathcal{O}(1) & \mathcal{O}(\alpha_s) \\ & +G_{23}\hat{\alpha}_s^2L^3 & +G_{22}\hat{\alpha}_s^2L^2 & +G_{21}\hat{\alpha}_s^2L & +\alpha_s^2\mathcal{O}(1) & \mathcal{O}(\alpha_s^2) \\ & +G_{34}\hat{\alpha}_s^3L^4 & +G_{33}\hat{\alpha}_s^3L^3 & +G_{32}\hat{\alpha}_s^3L^2+\cdots & +\cdots & \mathcal{O}(\alpha_s^3) \\ & & +\cdots & +\cdots & +\cdots & & +\cdots & \vdots \\ \hline \\ = & Lg_1(\alpha_sL) & +g_2(\alpha_sL) & +\cdots & +\cdots & +\cdots \\ \hline \end{array}$$

renormalisation scale dependence

$$\mathcal{R} \equiv \mathcal{R}(Q^2/\mu^2, \alpha_s); \ \alpha_s \equiv \alpha_s(\mu^2)$$

since choice of μ is arbitrary, physical observables \mathcal{R} should not depend on μ

$$\mu^2 \frac{\mathrm{d}}{\mathrm{d}\mu^2} \mathcal{R}(Q^2/\mu^2, \alpha_\mathrm{s}) = \left(\mu^2 \frac{\partial}{\partial \mu^2} + \mu^2 \frac{\partial \alpha_\mathrm{s}}{\partial \mu^2} \frac{\partial}{\partial \alpha_\mathrm{s}}\right) \mathcal{R} \stackrel{\perp}{=} 0$$

$$0 = \mu^2 \frac{\partial R_0}{\partial \mu^2} + \alpha_s(\mu^2) \mu^2 \frac{\partial R_1}{\partial \mu^2} + \alpha_s^2(\mu^2) \left[\mu^2 \frac{\partial R_2}{\partial \mu^2} - R_1 \beta_0 \right]$$

$$+ \alpha_s^3(\mu^2) \left[\mu^2 \frac{\partial R_3}{\partial \mu^2} - \left[R_1 \beta_1 + 2R_2 \beta_0 \right] \right]$$

$$+ \mathcal{O}(\alpha_s^4) .$$

$$R_0 = \text{const.},$$

$$R_1 = \text{const.},$$

$$R_2 \left(\frac{Q^2}{\mu^2}\right) = R_2(1) - \beta_0 R_1 \ln \frac{Q^2}{\mu^2},$$

$$R_3 \left(\frac{Q^2}{\mu^2}\right) = R_3(1) - [2R_2(1)\beta_0 + R_1\beta_1] \ln \frac{Q^2}{\mu^2} + R_1\beta_0^2 \ln^2 \frac{Q^2}{\mu^2}$$

Perturbative QCD coefficients beyond leading order become renormalisation scale dependend!

This dependence is used to quantify theoretical uncertainties due to unknown higher orders.

Example: hadronic width of Z⁰ boson

Renormalisation scale dependence

$$R_Z = \frac{\Gamma(Z^0 \to hadrons)}{\Gamma(Z^0 \to leptons)} = 20.767 \pm 0.0024$$

$$R_Z = 19.934 \left[1 + 1.045 \frac{\alpha_s(\mu)}{\pi} + 0.94 \left[\frac{\alpha_s(\mu)}{\pi} \right]^2 - 15 \left[\frac{\alpha_s(\mu)}{\pi} \right]^3 \right]$$
 Larin, van Ritbergen,, Vermaseren, Chetyrkin, Tarasov, Kühn, Steinhauser, Hoang,.....

$$\Rightarrow \alpha_s(M_Z) = 0.124 \pm 0.004 \text{ (exp.)}$$

$$\pm 0.002 \text{ (M}_H, M_{top})$$

$$+ 0.003 \text{ (QCD)}$$

error source	$\Delta \alpha_{ m s}(M_{ m Z^0})$
$\Delta M_{{ m Z}^{0}} = \pm 0.0021 \; { m GeV}$	± 0.00003
$\Delta M_t = \pm 5 \text{ GeV}$	± 0.0002
$M_H = 100 \dots 1000 \text{ GeV}$	± 0.0017
$\mu = (\frac{1}{4} \dots 4) M_{Z^0}$	+ 0.0028 - 0.0004
renormalization schemes	± 0.0002
total	+ 0.003 - 0.002

Improved Calculation of F₂ and xF₃

hep-ph/0102247 (Santiago / Yndurain):

- complete NNLO calculations for moments of structure functions
- use all available DIS data (3.5 GeV² \leq Q² \leq 230 GeV²)
- extract α_s in NNLO for ep-scattering (F₂) and for vN-scattering (xF₃).
- error calculation:

Source of error	$\Lambda(n_f = 4; 3 \text{ loop})$	$\Delta \Lambda(n_f = 4; 3 \text{ loop})$	$\Delta \alpha_s(M_Z^2)$
No TMC	279	5	0.0004
Interpolation	279	5	0.0004
$_{ m HT}$	268	6	0.0004
Quark mass effect	269	5	0.0004
Q_0^2 to 12 ${ m GeV}^2$	279	5	0.0004
NNNLO	265	10	0.0006

• results:
$$\alpha_s(M_Z) = 0.1166 \pm 0.0009 \text{ (stat) } \pm 0.0010 \text{ (sys)}$$
 (F₂)

$$\alpha_s(M_Z) = 0.1153 \pm 0.0040 \text{ (stat) } \pm 0.0061 \text{ (sys)}$$
 (xF₃)

Global analysis of DIS and hadron collider data

hep-ph/0307262 (Martin, Roberts, Stirling, Thorne; MRST03):

NLO:
$$\alpha_s(M_z) = 0.1165 \pm 0.002 \pm 0.003$$

NNLO:
$$\alpha_s(M_z) = 0.1153 \pm 0.002 \pm 0.003$$

Note: "NNLO" QCD not complete for DIS, absent for hadron collider jet production -> not a complete NNLO analysis

α_s from DIS and pp->jets

hep-ph/0110215 A. Martin et al.

ZEUS: scaling violation from jet production in γp interactions at HERA Phys. Lett. B560 (2003) 7

H1 and ZEUS combined (jet prod.): $\alpha_s(M_z) = 0.120 \pm 0.002$ (exp) ± 0.004

Reanalysis of data from Jade at PETRA:

 α_s from hadronic event shapes hep-ex/0205014

in resummed $O(\alpha_s^2)$ (P. Fernandez)

19

\sqrt{s} [GeV]	$\alpha_S(\sqrt{s})$	fit	exp.	hadr.	higher ord.	total
14.0	0.1704	±0.0	0051	$^{+0.0141}_{-0.0136}$	$^{+0.0143}_{-0.0091}$	$^{+0.0206}_{-0.0171}$
22.0	0.1513	±0.0	0043	± 0.0101	+0.0101 -0.0065	$^{+0.0144}_{-0.0121}$
34.6 ('82)	0.1409	± 0.0012	± 0.0017	± 0.0071	+0.0086 -0.0057	$^{+0.0114}_{-0.0093}$
35.0 ('86)	0.1457	± 0.0011	± 0.0020	± 0.0076	+0.0096 -0.0064	$^{+0.0125}_{-0.0101}$
38.3	0.1397	± 0.0031	± 0.0026	± 0.0054	+0.0084 -0.0056	+0.0108 -0.0087
43.8	0.1306	±0.0019	± 0.0032	± 0.0056	$^{+0.0068}_{-0.0044}$	+0.0096 -0.0080

Renormalisation scale dependence in NLO

- exp. scale optimisation gives consistent results in NLO
- how to define the corresponding scale uncertainty?

e+e- annihilation:

α_s from hadronic event shapes

in resummed NLO QCD, i.e. resummed $O(\alpha_s^2)$

Combination of LEP results at major energy points: S.B., J. Phys. G26 (2000) R27; hep-ex/0211012

Soon to come: new and standardised error definition and treatment, LEP QCD WG, R. Jones et al., see JHEP 0312:007,2003

LEP-II: α_s from hadronic event shapes

(most are preliminary)

in resummed NLO QCD, i.e. resummed $O(\alpha_s^2)$

```
LEP:
====
alphas(q) \pm (stat) \pm (sys)
     189 GeV
Exp
                    195 GeV
                                     201 GeV
                                                     206 GeV
     .1119(15)(32)
                    .1065(27)(39)
                                   .1133(30)(47)
                                                   .1051(28)(41)
     .1102(23)(30) <198:> .1094(19)(45)
                                                   .109 (2) (5)
D
L
     .1105(18)(58)
                    .1123(14)(53)
                                   .1138(18)(54)
                                                   .1132(14)(53)
     .107 (1) (4) .103 (2) (5) .104 (2) (4)
                                                   .107 (2) (4)
0
   .1090(10)(40)
                                   .1101(12)(47)
                    .1088(11)(47)
                                                   .1100(11)(46)
(Mz) .1213(13)(49) .1217(14)(60)
                                   .1239(16)(60)
                                                   .1242(14)(59)
all as(Mz): .1228(7)(57)
```

α_s determinations from hadron colliders (1)

• α_s from W plus jet production

UA1, UA2 (1991/92):
$$\alpha_s(M_z) = 0.121 \pm 0.017 \pm 0.016$$

D0 (1997):

no match with NLO QCD predictions!

α_s determinations from hadron colliders(2)

• α_s from b cross sections

UA1 (1996):

$$\alpha_{\rm s}({\rm M_z})$$
 = 0.113 $^{+0.007}_{-0.006}$ $^{+0.008}_{-0.009}$

NLO QCD: Mangano, Nason, Ridolfi (1992)

α_s determinations from hadron colliders (3)

• α_s from prompt photon production $[\sigma(p\overline{p} \rightarrow \gamma X) - \sigma(pp \rightarrow \gamma X)]$

UA6 (1996):
$$\alpha_s(M_z) = 0.110 \pm 0.004 ^{+0.007}_{-0.003}$$

NLO QCD: P. Aurenche et al., 1988

α_s determinations from hadron colliders (4)

• CDF: inclusive jet production at the Tevatron PRL 88 (2002) 042001

NLO QCD: Giele, Kosover, Yu (1996)

 $\alpha_s(M_Z) = 0.1178 \pm 0.0001 \text{ (stat)} ^{+0.008}_{-0.010} \text{ (exp.sys)} ^{+0.007}_{-0.005} \text{ (ren.scale)} \pm 0.006 \text{ (pdf)}$

Remarks on α_s determinations from hadron colliders:

- due to large (exp and theoretical) uncertainties, do not significantly influence or determine the world average of $\alpha_{\rm s}$
- limited to uncertainties of
 - NLO QCD (higher orders; matching with exp. jet algorithm),
 - structure functions,
 - quality of available MC's,
 - underlying events and beam remnants,
 - energy calibration ...
- improvements needed:
 - NNLO QCD calculations, and/or resummation
 - improved parton distributions
 - alternative and improved tools (jet algorithms)
 - improved MC models
 - correction for nonperturbative effects (hadronisation); parton level analyses
 - more data statistics with highest quality
 - more data at different energies

$$\alpha_s(M_z) = 0.1183 \pm 0.0027$$

29

World average of $\alpha_s(M_7)$ - and it's overall error

- problem: errors of most results are dominated by theoretical uncertainties!
- therefore these errors are correlated to an unknown degree!
- there is no accepted unique definition of the theoretical uncertainties!

so how to estimate overall uncertainties?

try several definitions and treatment of errors:

- "optimised correlation": assume overall correlation factor such that overall χ^2 equals 1 per degree of freedom
- compare with error assuming all measurements being totally uncorrelated
- "simple rms": unweighted rms of all results (without their errors)
- "rms box": assume rectengular shaped error (rather than gaussian) of each result, sum up resulting weigths (inverse of total error squared) in histogram, take resulting rms of that distribution

Summary 2002 / 2003

see: hep-ex/0211012

Subsamples; various methods of error calculation:

sample	#entries	$\alpha_{\rm s}(M_{\rm z})$	corr.err.	corr.fact	uncorr.err	simple	box.err.
all	33	.1189	.0037	.65	0.0009	.0042	.0051
NNLO all	9 2 8	.1183	.0031	.67 .75	0.0015 0.0020	.0053	.0049
NNLO <.00	08 6	.1183	.0027	.60	0.0015	.0022	.0035
" " - F2	2 5	.1197	.0038	.75	0.0020	.0020	.0037
DIS only DIS - F2 e+e- only	7 6 7 22	.1178 .1192 .1195	.0034 .0054 .0041	.81 .90 .66	0.0016 0.0024 0.0022	.0031 .0033 .0040	.0042 .0044 .0050

$$\alpha_s(M_Z) = 0.1183 \pm 0.0027$$

- shift & overall error largely dominated by Santiago/Yndurain result
- small error reliable ?
- no significant changes since Sept 2002 —> keep 2002 average for 2003.

quantifying the running of α_s :

determination of β_0 , of N_c and of the functional Q-dependence

• Choose 5 maximally uncorrelated α_s measurements:

$$-$$
 from τ decays

$$\alpha_{\rm s}(1.78~{\rm GeV}) = 0.323 \pm 0.030$$

$$\alpha_s(2.96 \text{ GeV}) = 0.249 \pm 0.010$$

$$\alpha_s(4.75 \text{ GeV}) = 0.217 \pm 0.021$$

- from
$$\Gamma(Z^0)$$

$$\alpha_{\rm s}(91.2~{\rm GeV}) = 0.123 \pm 0.004$$

$$\alpha_{\rm s}(206~{\rm GeV}) = 0.110 \pm 0.004$$

• fit simple functional forms:

$$-\alpha_s(Q) = B / \ln(Q^2 / C^2)$$

(l.o. QCD; B =
$$1/\beta_0$$
; C = $\Lambda_{\overline{MS}}$)

$$-\alpha_s(Q) = A + C Q$$

$$-\alpha_s(Q) = A + C / Q$$

quantifying the running of α_s : fit results

$\alpha_{s}(Q) =$	A	В	С	χ^2 / dof	prob.
$B / ln(Q/C)^2$	_	1.64±.08	0.115±.027	0.78 / 3	0.85
A+CQ	0.173±.005	_	-0.00037	130 / 3	10-62
A + C / Q	0.115±.002	_	0.40±.03	5.5 / 3	0.14

$$B = 1.64 \pm 0.08$$
 -> $N_c = 3.00 \pm 0.10$ (for $N_f = 5$ quark flavours)

Conclusions

- huge amounts of data, from different h.e. processes, in large range of energies (1 ... 400 GeV).
- consistent behaviour of data: running α_s convincingly proven
- complete NNLO now for 9 classes of measurements
- 2002/2003 world average (in NNLO): $\alpha_s(M_Z) = 0.1183 \pm 0.0027$
- results from NLO QCD compatible with NNLO world average
- no significant difference between DIS and e+e-

Future:

- error limited by theoretical uncertainties —> need more NNLO calculations (DIS; hadron collider jets; e+e- jets & shapes)
- need consistent definition and treatment of syst. uncertainties
- need optimisation of tools; high statistics collider data at diff. energies .

