Theory of Parton Distributions

Sven-Olaf Moch*

DESY Zeuthen

- 1. Our Goals in Physics
- 2. The Challenges for Theory
- 3. Summary

* in collaboration with J.A.M. Vermaseren and A. Vogt

- KITP Conference Collider Physics, Santa Barbara, January 13, 2004 -

Our Goals in Physics

Structure of the proton

- Structure functions F_2, F_3, F_L in deep-inelastic scattering
 - scaling violations \longrightarrow precision test of perturbative QCD
- Parton distributions
 - gluon distribution at small *x*, quark valence and sea distribution
 - important input for hard scattering reactions at hadron colliders
 - \longrightarrow precise parton luminosity at LHC for Higgs or SUSY searches

How well do we know (un)-polarized parton distributions?

$\alpha_{\it s}$ from DIS

- Fundamental parameter of Standard Model
 - determination in inclusive DIS independent of hadronic final state \longrightarrow ideal case

How well do we know α_s ?

Recent determinations of α_s

Bethke hep-ex/0211012

- NLO QCD analysis of HERA data for $F_2(x, Q^2)$ H1 coll. hep-ph/0012053

$$\alpha_s(M_Z^2) = 0.115 \pm 0.002(\exp) \pm 0.005(\text{theo})$$

Future

(

- NNLO QCD analysis of HERA data for $F_2(x, Q^2)$ in 2006

$$\alpha_s(M_Z^2) = x \pm 0.001(\exp) \pm 0.001(\text{theo})$$

Structure function measurements

- High precision experimental data \longrightarrow NLO QCD analysis for $F_2(x, Q^2)$
- HERA until 2006
 - \longrightarrow data with much higher statistics

PDF uncertainties

- QCD analyses require many choices \longrightarrow should be reflected in PDF uncertainties
- Treatment of experimental uncertainties
- Allowed functional form of PDF $xf(x,Q_0^2) = Ax^b(1-x)^c(1+dx+...)$
- Scale dependence \longrightarrow renormalization / factorization scale
- Treatment of heavy quarks

. . .

PDF uncertainties (cont'd)

Botje '00

- Similar analysis Barone, Pascaud, Zomer '99

- Analysis of 1999 DIS data with errors
 Botje '00
- Scale variation

$$Q/\sqrt{2} \le \mu \le \sqrt{2}Q$$

- Gluons (g) : stat. \oplus syst. \simeq input \simeq scale error
- Quarks (Σ) :
 scale error already dominates

Upshot

NNLO improvement of theory needed
 → three-loop splitting functions

Polarized deep-inelastic scattering

Blümlein, Böttcher '02

- Precision analysis of polarized DIS data with correlated errors \longrightarrow structure function g_1 Blümlein, Böttcher '02
- Polarized gluon distribution (ΔG) : syst. \simeq scale error from $\Lambda_{
 m QCD}$
- Theoretical uncertainties already dominate at present

Upshot

- Similar situation as for unpolarized scattering
- NNLO improvement of theory needed
 - \longrightarrow three-loop splitting functions
 - $\longrightarrow g_1^{\scriptscriptstyle \mathrm{C}}$ for charm production at NLO

Twist-two parton distributions and the spin puzzle

- Twist-two deep-inelastic structure functions
 - Unpolarized scattering F_2 , F_L valence and sea quarks, gluon distribution q_{val} , q_{sea} , $G \longrightarrow H1$, ZEUS, v-experiments
 - Longitudinally polarized scattering g_1 , distributions $\Delta q, \Delta G$
 - \longrightarrow SLAC, HERMES, COMPASS
 - Transversely polarized scattering h_1 , distribution $\delta q \longrightarrow$ HERMES, RHIC

The Challenges for Theory

What has been done?

- QCD corrections for DIS structure functions with massless quarks
- LO :
 - anomalous dimensions / splitting functions Gross, Wilczek '73; Altarelli, Parisi '77
- NLO :
 - complete one-loop F_2 and F_L Bardeen, Buras, Duke, Muta '78
 - two-loop anomalous dimensions / splitting functions Floratos, Ross, Sachrajda '79; Gonzalez-Arroyo, Lopez, Ynduráin '79; Curci, Furmanski, Petronzio '80; Furmanski, Petronzio '80
 - two-loop F_L Duke, Kimel, Sowell '82; Devoto, Duke, Kimel, Sowell '85; Kazakov, Kotikov '88; Kazakov, Kotikov, Parente, Sampayo, Sanchez Guillen '90
- NNLO :
 - complete two-loop F_2 , F_3 and F_L Zijlstra, van Neerven '92; S.M., Vermaseren '99
 - fixed Mellin moments of F_2 , F_3 and F_L at three loops Larin, Nogueira, van Ritbergen, Vermaseren '97; Retey, Vermaseren '00
 - approximate three-loop splitting functions Vogt, van Neerven '00

Task — calculate three-loop anomalous dimensions / splitting functions

What has been done? (cont' d)

- QCD corrections for DIS structure functions with massive quarks
- Neutral current $O(\alpha_s)$:
 - complete structure functions F_2 and F_L Witten '76; Glück, Reya '76
- Neutral current $O(\alpha_s^2)$:
 - complete $O(\alpha_s^2)$ structure functions F_2 and F_L Laenen, Riemersma, Smith, van Neerven '92
- Charged current $O(\alpha_s)$:
 - complete corrections to vN DIS Gottschalk '81; van der Bij, Oldenborgh '91; Kramer, Lampe '92
- Charged current $O(\alpha_s^2)$:
 - $O(\alpha_s^2 \ln^n (Q^2/m^2))$ contributions Buza, van Neerven '97
- Resummation of large logarithms $\ln^n(Q^2/m^2)$ Aivazis, Collins, Olness, Tung '94; Thorne, Roberts '98; Chuvakin, Smith, van Neerven '00

Task — fast NNLO evolution with massive quarks in PDF determinations

Heavy quark production

- Data for charm $F_2^c(x, Q)$ $\longrightarrow O(10\%) - O(30\%)$ of total $F_2(x, Q)$
- Heavy quark DIS via boson-gluon fusion \longrightarrow clean probe of the gluon distribution

Leading order infrared safe with heavy quark mass *m*

ZEUS Collaboration '03

Heavy quark production (cont'd)

- Possible treatments of heavy quarks
- Fixed flavor number scheme

 $\longrightarrow n_f$ light flavors + heavy quark of mass *m* at low scales

- $\longrightarrow n_f + 1$ light flavors at high scales
- Variable flavor number schemes → matching of two distinct theories
 Aivazis, Collins, Olness, Tung '94; Thorne, Roberts '98; Chuvakin, Smith, van Neerven '00
- Important aspects of variable flavor number schemes
 - mass factorization to be carried out before resummation
 - → mass factorization involves **both heavy and light** component of structure function

- matching conditions required through NNLO Chuvakin, Smith, van Neerven '00
 - \longrightarrow influence on HERA analysis at small $x \le 10^{-4}$ and low scales $Q^2 \le 100 \text{GeV}^2$
 - $\longrightarrow \alpha_s$ large at low scales

Optical theorem and the OPE

- Optical theorem relates hadronic tensor $W_{\mu\nu}$ to imaginary part of Compton amplitude $T_{\mu\nu}$

$$W_{\mu\nu} = e_{\mu\nu} \frac{1}{2x} F_L(x, Q^2) + d_{\mu\nu} \frac{1}{2x} F_2(x, Q^2) + i\epsilon_{\mu\nu\alpha\beta} \frac{p^{\alpha} q^{\beta}}{p \cdot q} F_3(x, Q^2)$$

- Bjorken limit (x fixed, $Q^2 \rightarrow \infty$) allows for OPE of $T_{\mu\nu}$ for short distances $z^2 \simeq 0$ Wilson '69; Brandt, Preparata '70; Zimmermann '70

$$T_{\mu\nu} = i \int d^{4}z e^{iq \cdot z} \langle \mathbf{P} | T \left(J^{\dagger}_{\mu}(z) J_{\nu}(0) \right) | \mathbf{P} \rangle =$$

$$= \sum_{N,j} \left(\frac{1}{2x} \right)^{N} \left[e_{\mu\nu} C_{L,j}^{N} \left(\frac{Q^{2}}{\mu^{2}}, \alpha_{s} \right) + d_{\mu\nu} C_{2,j}^{N} \left(\frac{Q^{2}}{\mu^{2}}, \alpha_{s} \right) + i \varepsilon_{\mu\nu\alpha\beta} \frac{p^{\alpha}q^{\beta}}{p \cdot q} C_{3,j}^{N} \left(\frac{Q^{2}}{\mu^{2}}, \alpha_{s} \right) \right] A_{\mathbf{P},N}^{j} \left(\mu^{2} \right)$$

- Coefficient functions $C_{2,i}^N, C_{3,i}^N$ and $C_{L,i}^N$ in Mellin space
- Matrix elements $A_{P,N}^{i}$ of operators O^{i} of leading twist

The parton picture

- Apply OPE to parton Green's functions, e.g. external quarks

- Apply \mathcal{P}_N to project the N-th moment; Gorishnii, Larin, Tkachev '83; Gorishnii, Larin '87

$$\mathcal{P}_{N} \equiv \left[\frac{q^{\{\mu_{1} \cdots q^{\mu_{N}}\}}}{N!} \frac{\partial^{N}}{\partial p^{\mu_{1}} \cdots \partial p^{\mu_{N}}} \right] \Big|_{p=0} \qquad \qquad \frac{1}{2x} = -\frac{p \cdot q}{q \cdot q}$$

Upshot

- Projection with $\mathcal{P}_N \longrightarrow$ only tree level operator matrix elements survive

- Anomalous dimensions $\gamma(\alpha_s, N)$ from scale dependence of renormalized operators

$$O^{\text{bare}} = Z O^{\text{ren}}$$
 $\frac{d}{d \ln \mu^2} O^{\text{ren}} = -\gamma O^{\text{ren}}$

Structure functions in Mellin space

- Parameters of OPE are directly related to Mellin moments of F_2, F_3 and F_L

$$\int_{0}^{1} dx x^{N-2} F_2(x, Q^2) = \sum_{i=\text{ns}, q, g} C_{2,i}^N \left(\frac{Q^2}{\mu^2}, \alpha_s \right) A_{P,N}^i(\mu^2)$$

The Feynman diagrams

- 625 diagrams with $q\gamma$ for nonsinglet F_3
- complete table for singlet F_2, F_L

	tree	1-loop	2-loop	3-loop	proj.
qγ	1	3	25	359	2
gγ		2	17	345	2
hγ			2	56	2
qφ		1	23	696	1
gφ	1	8	218	6378	1
hφ		1	33	1184	1
sum	3	20	362	9778	

0

- $\mathit{P}_{\mathrm{qq}}, \mathit{P}_{\mathrm{qg}} \longrightarrow$ DIS with external photon γ^{*}
- $\mathit{P}_{\mathrm{gq}}, \mathit{P}_{\mathrm{gg}} \longrightarrow$ DIS with external scalar ϕ
- Gluonic currents $\longrightarrow \phi F^a_{\mu\nu} F^{\mu\nu}_a$ term in QCD Lagrangian Kluberg-Stern, Zuber '75; Collins, Duncan, Joglekar '77 \longrightarrow different current product, but same parton opertor matrix elements and same OPE
- Gluon polarizations
 - \longrightarrow diagrams with external ghost h

Integrals and how we break them to little pieces

• Reduction scheme for given diagram

Scalar diagram with external momenta p and q

$$- \int d^{D}l_{1}d^{D}l_{2}d^{D}l_{3} \frac{1}{(p-l_{1})^{2}} \frac{1}{l_{1}^{2} \dots l_{8}^{2}}$$

- N-th moment \longrightarrow coefficient c_N

$$- \underbrace{\qquad} = \frac{\left(2 p \cdot q\right)^{N}}{\left(q^{2}\right)^{N+\alpha}} c_{N}$$

$$\frac{1}{(p-l_1)^2} = \sum_i \frac{(2p \cdot l_1)^i}{(l_1^2)^{i+1}} \longrightarrow \frac{(2p \cdot l_1)^N}{(l_1^2)^N}$$

• Two-point functions with symbolic powers

Basic building blocks

• 10 topologies for basic building blocks

General strategy of mapping

- Mapping of complicated topologies to simpler topologies
 - hierachy : non-planar \longrightarrow benz \longrightarrow ladder
 - composite building blocks \longrightarrow basic building blocks
- Integration by parts, scaling identies, form factor relations (Passarino–Veltman), ...
 't Hooft, Veltman '72; Chetyrkin, Tkachov '81; Larin '81; S.M., Vermaseren '99

$$\int d^{D}l_{1}d^{D}l_{2}d^{D}l_{3} \frac{\partial}{\partial l_{i}^{\mu}} \Big[l_{j}^{\mu}f(l_{1},...l_{n}) \Big] = 0 , \qquad q^{\mu}\frac{\partial}{\partial q^{\mu}}, \qquad p^{\mu}\frac{\partial}{\partial q^{\mu}}, \qquad p^{\mu}\frac{\partial}{\partial q^{\mu}}, \qquad p^{\mu}\frac{\partial}{\partial p^{\mu}} \frac{\partial}{\partial q^{\mu}} \Big]$$

$$\frac{\partial}{\partial q^{\mu}} \int d^{D}l_{1}d^{D}l_{2}d^{D}l_{3} \Big[l_{j}^{\mu}f(l_{1},...l_{n}) \Big] = \frac{\partial}{\partial q^{\mu}} \Big[q^{\mu}I^{(q)} + p^{\mu}I^{(p)} \Big]$$

Recursion relations

Recursion relations —> difference equations

$$a_0(N)F(N)-\ldots-a_n(N)F(N-n)-G(N)=0$$

- Example : single-step difference equation in N

$$-\underbrace{\frac{1}{1}}_{1} \underbrace{\frac{1}{1}}_{1} \underbrace{\frac{1}{1}}_{1} = -\frac{N+3+3\epsilon}{N+2} \frac{2p \cdot q}{q^{2}} \underbrace{\frac{1}{1}}_{1} \underbrace{\frac{1}{1}}_{1} \underbrace{\frac{1}{1}}_{1} + \frac{2}{N+2} \underbrace{\frac{1}{1}}_{1} \underbrace$$

- Formal solution of single-step difference equations

$$\mathbf{F}(\mathbf{N}) = \frac{\prod_{j=1}^{N} a_1(j)}{\prod_{j=1}^{N} a_0(j)} \mathbf{F}(\mathbf{0}) + \sum_{\mathbf{i}=1}^{\mathbf{N}} \frac{\prod_{j=i+1}^{N} a_1(j)}{\prod_{j=i}^{N} a_0(j)} \mathbf{G}(\mathbf{i})$$

- Implementation in computer algebra system FORM Vermaseren '89-'03
- id lafun(n1?,l1?,0,0,l2?,k2?,n3?,l3?,0,<n4?,0,0>,...,<n8?,0,0>,k9?) =

```
theta_(N-k2)*sign_(N)* fac_(n1+n3-k2)*invfac_(N+n1+n3-k2)*
Gamma(-7+N+3*ep+n1+n3+...+n8-k2-k9+l1+l2+l3+1)*
```

```
InvGamma(-7+3*ep+n1+n3+...+n8-k2-k9+11+12+13+1)*
```

LA(n1+l1,l2,n3+l3,n4,n5,n6,n7,n8,0,k2,0,0,0,0,0,0,k9)

- sum1(j1,1,N)* theta_(N-j1)*sign_(N-j1)* fac_(j1+n1+n3-k2-1)*invfac_(N+n1+n3-k2)*
 Gamma(-7+N+3*ep+n1+n3+...+n8-k2-k9+l1+l2+l3+1)*
 InvGamma(-7+j1+3*ep+n1+n3+...+n8-k2-k9+l1+l2+l3+1)* (
 -n1*lafun(1+n1,-1+l1,0,0,l2,k2,n3,l3,0,<n4,0,0>,...,<n8,0,0>,k9)
 - -n3*lafun(n1,l1,0,0,l2,k2,1+n3,-1+l3,0,<n4,0,0>,...,<n8,0,0>,k9));

Mathematics of harmonic sums

- Harmonic sums $S_j(N)$ Gonzalez-Arroyo, Lopez, Ynduráin '79; Vermaseren '98; Blümlein, Kurth '98
 - recursive definition $S_{m_1,\dots,m_k}(N) = \sum_{i=1}^N \frac{1}{i^{m_1}} S_{m_2,\dots,m_k}(i)$
- Algebra of multiplication $S_j(N)S_k(N) \longrightarrow S_{\{j,k\}}(N)$
- Harmonic sums originate from :
 - expansion of Γ -functions in powers of ϵ
 - solutions of recursion relations
 - sums of type :

$$\sum_{i=1}^{N} (-1)^{i} (\frac{N}{i}) \frac{1}{i^{3}} = -S_{1,1,1}(N)$$

Multiple polylogarithms in *x*-space
 Goncharov '98; Borwein, Bradley, Broadhurst, Lisonek '99; Remiddi, Vermaseren '99

Recursion relations and algebra of harmonic sums —> breakthrough in technology

Systematic study of nested sums

S.M., Uwer, Weinzierl '01

- Nested S-sums with multiple scales $x_1, ..., x_k$, depth k, weight $w = m_1 + ... + m_k$

$$S(n;m_1,...,m_k;x_1,...,x_k) = \sum_{i=1}^n \frac{x_1^i}{i^{m_1}} S(i;m_2,...,m_k;x_2,...,x_k)$$

Key aspects of technology

- Solve loop integrals via reductions and difference equations \longrightarrow analytical solutions
- Use algebraic properties of harmonic sums \longrightarrow algorithmic solution of nested sums
- Check efficienctly \longrightarrow compute fixed values of N
- Use very flexible and highly optimized FORM programs

Computational complexity

- Complexity with respect to complete two-loop calculation of F_2, F_3 and F_L S.M., Vermaseren '99 \longrightarrow three orders of magnitude
 - done in 2000 on Pentium III of 700 MHz
 - done in 2001 on equivalents of Pentium III of 1.3 GHz with tabulation of integrals
 - done in 2003 on Pentium IV of 3.06 GHz with massive tabulation of integrals
 - \longrightarrow 3 GBytes of tables

- Sizable extensions of capabilities of computer algebra system FORM Vermaseren '89-'03

Anomalous dimensions in Mellin space

- One-loop : Gross, Wilczek '73

$$\gamma_{\rm ns}^{(0)}(N) = C_F (2(\mathbf{N}_- + \mathbf{N}_+)S_1 - 3)$$

- Two-loop : Floratos, Ross, Sachrajda '79; Gonzalez-Arroyo, Lopez, Ynduráin '79

$$\begin{split} \gamma_{\rm ns}^{(1)}(N) &= 4C_A C_F \left(2\mathbf{N}_+ S_3 - \frac{17}{24} - 2S_{-3} - \frac{28}{3}S_1 + (\mathbf{N}_- + \mathbf{N}_+) \left[\frac{151}{18}S_1 + 2S_{1,-2} - \frac{11}{6}S_2 \right] \right) \\ &+ 4C_F n_f \left(\frac{1}{12} + \frac{4}{3}S_1 - (\mathbf{N}_- + \mathbf{N}_+) \left[\frac{11}{9}S_1 - \frac{1}{3}S_2 \right] \right) + 4C_F^2 \left(4S_{-3} + 2S_1 + 2S_2 - \frac{3}{8} \right) \\ &+ \mathbf{N}_- \left[S_2 + 2S_3 \right] - (\mathbf{N}_- + \mathbf{N}_+) \left[S_1 + 4S_{1,-2} + 2S_{1,2} + 2S_{2,1} + S_3 \right] \right) \end{split}$$

- Compact notation : $\mathbf{N}_{\pm}f(N) = f(N \pm 1)$, $\mathbf{N}_{\pm \mathbf{i}}f(N) = f(N \pm i)$

 Three-loop : fermionic contributions to nonsinglet anomalous dimension S.M., Vermaseren, Vogt '02

$$\begin{split} \gamma_{\rm ns}^{(2)}(N) &= 16C_A C_F n_f \left(\frac{3}{2}\zeta_3 - \frac{5}{4} + \frac{10}{9}S_{-3} - \frac{10}{9}S_3 + \frac{4}{3}S_{1,-2} - \frac{2}{3}S_{-4} + 2S_{1,1} - \frac{25}{9}S_2 + \frac{257}{27}S_1 \right. \\ &\left. - \frac{2}{3}S_{-3,1} - \mathbf{N}_+ \left[S_{2,1} - \frac{2}{3}S_{3,1} - \frac{2}{3}S_4\right] + (1 - \mathbf{N}_+) \left[\frac{23}{18}S_3 - S_2\right] - (\mathbf{N}_- + \mathbf{N}_+) \left[S_{1,1} + \frac{1237}{216}S_1 + \frac{11}{18}S_3 - \frac{317}{108}S_2 + \frac{16}{9}S_{1,-2} - \frac{2}{3}S_{1,-2,1} - \frac{1}{3}S_{1,-3} - \frac{1}{2}S_{1,3} - \frac{1}{2}S_{2,1} - \frac{1}{3}S_{2,-2} + S_1\zeta_3 + \frac{1}{2}S_{3,1}\right] \right) \\ &\left. + 16C_F n_f^2 \left(\frac{17}{144} - \frac{13}{27}S_1 + \frac{2}{9}S_2 + (\mathbf{N}_- + \mathbf{N}_+) \left[\frac{2}{9}S_1 - \frac{11}{54}S_2 + \frac{1}{18}S_3\right]\right) + 16C_F^2 n_f \left(\frac{23}{16} - \frac{3}{2}\zeta_3 + \frac{4}{3}S_{-3,1} - \frac{59}{36}S_2 + \frac{4}{3}S_{-4} - \frac{20}{9}S_{-3} + \frac{20}{9}S_1 - \frac{8}{3}S_{1,-2} - \frac{8}{3}S_{1,1} - \frac{4}{3}S_{1,2} + \mathbf{N}_+ \left[\frac{25}{9}S_3 - \frac{4}{3}S_{3,1} - \frac{1}{3}S_4\right] \\ &\left. - \frac{1}{3}S_4\right] + (1 - \mathbf{N}_+) \left[\frac{67}{36}S_2 - \frac{4}{3}S_{2,1} + \frac{4}{3}S_3\right] + (\mathbf{N}_- + \mathbf{N}_+) \left[S_1\zeta_3 - \frac{325}{144}S_1 - \frac{2}{3}S_{1,-3} + \frac{32}{9}S_{1,-2} - \frac{4}{3}S_{1,-2,1} + \frac{4}{3}S_{1,1} + \frac{16}{9}S_{1,2} - \frac{4}{3}S_{1,3} + \frac{11}{18}S_2 - \frac{2}{3}S_{2,-2} + \frac{10}{9}S_{2,1} + \frac{1}{2}S_4 - \frac{2}{3}S_{2,2} - \frac{8}{9}S_3\right] \right) \end{split}$$

Splitting functions in *x***-space**

$$\begin{split} P_{\mathrm{ns}}^{(2)}(x) &= 16C_{A}C_{F}n_{f}\Big(\mathbf{p}_{\mathrm{qq}}(\mathbf{x})\Big[\frac{5}{9}\zeta_{2}-\frac{209}{216}-\frac{3}{2}\zeta_{3}+\frac{1}{3}\mathrm{Li}_{3}(\mathbf{x})-\frac{167}{108}\ln(x)+\frac{1}{3}\ln(x)\zeta_{2}-\frac{1}{4}\ln^{2}(x)\ln(1-x) \\ &-\frac{7}{12}\ln^{2}(x)-\frac{1}{18}\ln^{3}(x)-\frac{1}{2}\ln(x)\mathrm{Li}_{2}(x)\Big]+p_{\mathrm{qq}}(-x)\Big[\frac{1}{2}\zeta_{3}-\frac{5}{9}\zeta_{2}-\frac{2}{3}\ln(1+x)\zeta_{2}+\frac{1}{6}\ln(x)\zeta_{2}-\frac{10}{9}\ln(x)\ln(1+x) \\ &+\frac{5}{18}\ln^{2}(x)-\frac{1}{6}\ln^{2}(x)\ln(1+x)+\frac{1}{18}\ln^{3}(x)-\frac{10}{9}\mathrm{Li}_{2}(-x)-\frac{1}{3}\mathrm{Li}_{3}(-x)-\frac{1}{3}\mathrm{Li}_{3}(x)+\frac{2}{3}\mathrm{H}_{-1,0,1}(x)\Big] \\ &+(1+x)\Big[\frac{1}{6}\zeta_{2}+\frac{1}{2}\ln(x)-\frac{1}{2}\mathrm{Li}_{2}(x)-\frac{2}{3}\mathrm{Li}_{2}(-x)-\frac{2}{3}\ln(x)\ln(1+x)+\frac{1}{24}\ln^{2}(x)\Big]+(1-x)\Big[\frac{1}{3}\zeta_{2}-\frac{257}{54} \\ &+\ln(1-x)-\frac{17}{9}\ln(x)-\frac{1}{24}\ln^{2}(x)\Big]+\delta(1-x)\Big[\frac{5}{4}-\frac{167}{54}\zeta_{2}+\frac{1}{20}\zeta_{2}^{2}+\frac{25}{18}\zeta_{3}\Big]\Big)+16C_{F}n_{f}^{2}\Big(\mathbf{p}_{\mathrm{qq}}(\mathbf{x})\Big[-\frac{1}{54} \\ &+\frac{5}{54}\ln(x)+\frac{1}{36}\ln^{2}(x)\Big]+(1-x)\Big[\frac{13}{54}+\frac{1}{9}\ln(x)\Big]-\delta(1-x)\Big[\frac{17}{144}-\frac{5}{27}\zeta_{2}+\frac{1}{9}\zeta_{3}\Big]\Big)+16C_{F}^{2}n_{f}\Big(\mathbf{p}_{\mathrm{qq}}(\mathbf{x})\Big[\frac{5}{3}\zeta_{3}-\frac{55}{48} \\ &-\frac{2}{3}\mathrm{Li}_{3}(\mathbf{x})+\frac{5}{24}\ln(x)+\frac{1}{3}\ln(x)\zeta_{2}+\frac{10}{9}\ln(x)\ln(1-x)+\frac{1}{4}\ln^{2}(x)+\frac{2}{3}\ln^{2}(x)\ln(1-x)+\frac{2}{3}\ln(x)\mathrm{Li}_{2}(x)-\frac{1}{18}\ln^{3}(x)\Big] \\ &+p_{\mathrm{qq}}(-x)\Big[\frac{10}{9}\zeta_{2}-\zeta_{3}+\frac{4}{3}\ln(1+x)\zeta_{2}-\frac{1}{3}\ln(x)\zeta_{2}-\frac{5}{9}\ln^{2}(x)+\frac{20}{9}\ln(x)\ln(1+x)-\frac{1}{9}\ln^{3}(x)+\frac{1}{3}\ln^{2}(x)\ln(1+x) \\ &+\frac{20}{9}\mathrm{Li}_{2}(-x)+\frac{2}{3}\mathrm{Li}_{3}(-x)+\frac{2}{3}\mathrm{Li}_{3}(x)-\frac{4}{3}\mathrm{H}_{-1,0,1}(x)\Big] +(1+x)\Big[\frac{7}{36}\ln^{2}(x)-\frac{67}{72}\ln(x)+\frac{4}{3}\ln(x)\ln(1+x) \\ &+\frac{1}{12}\ln^{3}(x)+\frac{2}{3}\mathrm{Li}_{2}(x)+\frac{4}{3}\mathrm{Li}_{2}(-x)\Big] +(1-x)\Big[\frac{1}{9}\ln(x)-\frac{10}{9}-\frac{4}{3}\ln(1-x)+\frac{2}{3}\ln(x)\ln(1-x)-\frac{1}{3}\ln^{2}(x)\Big] \\ &-\delta(1-x)\Big[\frac{23}{16}-\frac{5}{12}\zeta_{2}-\frac{29}{30}\zeta_{2}^{2}+\frac{17}{6}\zeta_{3}\Big]\Big) \end{split}$$

Easy-to-use parametrization

- Combine exact limits for $x \rightarrow 0$ and $x \rightarrow 1$ with smooth fit for intermediate x
- Notation : end-point logarithms $L_0 = \ln(x)$, $L_1 = \ln(1-x)$, +-distributions $\mathcal{D}_i = \left[\frac{\ln^i(1-x)}{1-x}\right]_+$

$$P_{\rm ns}^{(2)}(x) \cong n_f \left(-183.187 \,\mathcal{D}_0 - 173.927 \,\delta(1-x) - 5120/81 \,L_1 - 197.0 + 381.1 \,x + 72.94 \,x^2 + 44.79 \,x^3 - 1.497 \,x L_0^3 - 56.66 \,L_0 L_1 - 152.6 \,L_0 - 2608/81 \,L_0^2 - 64/27 \,L_0^3\right) + n_f^2 \left(-\mathcal{D}_0 - (51/16 + 3\zeta_3 - 5\zeta_2) \,\delta(1-x) + x \,(1-x)^{-1} L_0 \,(3/2 \,L_0 + 5) + 1 + (1-x) \,(6+11/2 \,L_0 + 3/4 \,L_0^2)\right) \,64/81$$

Comparison with estimates from fixed moments

van Neerven, Vogt '00

Three-loop coefficient functions

- OPE and optical theorem
 - \longrightarrow obtain simultaneously anomalous dimension $\gamma_{ns}(N)$ and coefficient function $C_{2,ns}^N$ or $C_{L,ns}^N$
- Coefficient function $C_{2,ns}^N$ at three loops
 - \longrightarrow numerically the most relevant part of NNNLO corrections
- Longitudinal coefficient function $C_{L,ns}^N$ at three loops \longrightarrow needed for NNLO analysis of $R = \sigma_L / \sigma_T$
- Easy-to-use parametrizations

$$c_{L,ns}^{(3)}(x) \cong n_f \left(\frac{1024}{81} L_1^3 - \frac{112.4}{L_1^2} + \frac{340.3}{L_1} + \frac{409}{210x} - \frac{762.6x^2 - \frac{1792}{81xL_0^3}}{L_0^2 + \frac{0.046}{6(1-x)}} \right)$$

+ $L_0 L_1 \left(\frac{969.2 + 304.8}{L_0} - \frac{288.2}{L_1} \right) + \frac{200.8}{L_0} + \frac{64}{3L_0^2} + \frac{0.046}{6(1-x)} \right)$
+ $n_f^2 \left(\frac{3xL_1^2}{L_1^2} + \frac{(6 - 25x)L_1}{L_1} - \frac{19}{(317/6} - \frac{12}{\zeta_2})x - \frac{6xL_0L_1}{6xL_0} + \frac{6xL_0}{L_1} + \frac{6xL_0}{2(x)} \right)$
+ $9xL_0^2 - \frac{(6 - 50x)L_0}{64/81}$

 $\begin{aligned} c_{2,ns}^{(3)}(x) &\cong n_f \left(\frac{640}{81} \mathcal{D}_4 - \frac{6592}{81} \mathcal{D}_3 + 220.573 \mathcal{D}_2 + 294.906 \mathcal{D}_1 - 729.359 \mathcal{D}_0 \right. \\ &+ 2572.597 \,\delta(1-x) - \frac{640}{81} L_1^4 + \frac{167.2 L_1^3}{1} - \frac{315.3 L_1^2}{1} + \frac{4742 L_1}{1} \\ &+ 762.1 + 7020 x + 989.4 x^2 + L_0 L_1 \left(\frac{326.6}{1} + \frac{65.93 L_0}{1} + \frac{1923 L_1}{1} \right) \\ &+ 260.1 L_0 + \frac{186.5 L_0^2}{1} + \frac{12224}{243} L_0^3 + \frac{728}{243} L_0^4 \right) \\ &+ n_f^2 \left(\frac{64}{81} \mathcal{D}_3 - \frac{464}{81} \mathcal{D}_2 + \frac{7.67505 \mathcal{D}_1}{1} + \frac{1.00830 \mathcal{D}_0}{103.2655} \delta(1-x) \right. \\ &- \frac{64}{81} L_1^3 + \frac{15.46 L_1^2}{1} - \frac{51.71 L_1}{1} + \frac{59.00 x}{10} + \frac{70.66 x^2}{10} + L_0 L_1 \left(-\frac{80.05}{10} \right) \\ &- \frac{10.49 L_0}{1} + \frac{41.67 L_1}{10} - \frac{8.050 L_0}{10} - \frac{1984}{243} L_0^2 - \frac{368}{243} L_0^3 \right) \end{aligned}$

Applications

- Coefficient function $C_{2,\mathrm{ns}}$ for $N \to \infty$ cf. $x \to 1$

 \longrightarrow large double logarithmic corrections from soft and collinear regions in Feynman diagrams

Use factorization properties in soft/collinear limit → resummation of large logarithms
 Collins, Soper '81; Sterman '87; Catani, Trentadue '89; Magnea, Sterman '90; Catani, Webber '98; etc. . . .

 $C_{2,\mathrm{ns}}(\alpha_s,N) = g(Q^2) \exp[G_{\mathrm{DIS}}(\alpha_s,N)] =$

 $(1+\alpha_{\mathrm{s}}g_{01}+\alpha_{\mathrm{s}}^2g_{02}+\ldots)\exp\left[\ln(N)g_1(\alpha_{\mathrm{s}}\ln(N))+g_2(\alpha_{\mathrm{s}}\ln(N))+\alpha_{\mathrm{s}}g_3(\alpha_{\mathrm{s}}\ln(N))+\ldots\right]$

- Resumming to NNLL accuracy requires $g_3 \longrightarrow$ new coefficients A_3 , B_2 and D_2^{DIS}
 - matching : n_f -terms in A_3 from $\gamma_{ns}^{(2)}$ and B_2, D_2^{DIS} from $c_{2,ns}^{(3)}$
 - independent check on A_3 Berger '02

$$A_3 = (1178.8 \pm 11.5) - 183.18743n_f - 0.79012n_f^2$$
$$B_2 = 36.26570 + 6.34888n_f \qquad D_2^{\text{DIS}} = 0$$

Numerical analysis

– LL, NLL, NNLL resummed exponent $G^N(Q^2)$ for $\mu = Q$, $n_f = 4$ and $\alpha_s = 0.2$

- $G^N(Q^2)$ convoluted with typical input shape $xf = x^{1/2}(1-x)^3$

Upshot

- Large perturbative corrections to structure functions for $x \rightarrow 1$
- Use NNLO + NNLL resummed perturbative QCD
- Investigate implications for higher twist
 - common phenomenological ansatz

$$F_2^{\text{DATA}} = F_2^{\text{QCD}} \left(1 + \frac{ht(x)}{Q^2} \right)$$

- ansatz mixes $1/Q^2$ -corrections with leading twist perturbative QCD corrections

Summary

What do we want?

- NNLO analysis of deep-inelastic structure functions $F_2, F_3 \longrightarrow$ high precision
 - match experimental accuracy in final HERA data
 - provide precise parton distributions for LHC

What do we learn?

- Mellin moments and nested sums —> powerful technology
 - apply innovative and efficient method to solve multi-loop integrals
- Formalism with wide range of applications
 - get photon structure function at order $O(\alpha \alpha_s^2)$ and other distributions at three loops

What do we get (in the end)?

- Calculation of deep-inelastic structure functions F_2 , F_3 and F_L at NNLO (and beyond)
 - nonsinglet n_f -terms done S.M., Vermaseren, Vogt '02
 - more results on disk and completion of calculation under way
- Phenomenology for deep-inelastic scattering and hard hadronic interactions
 - reach new level of precision