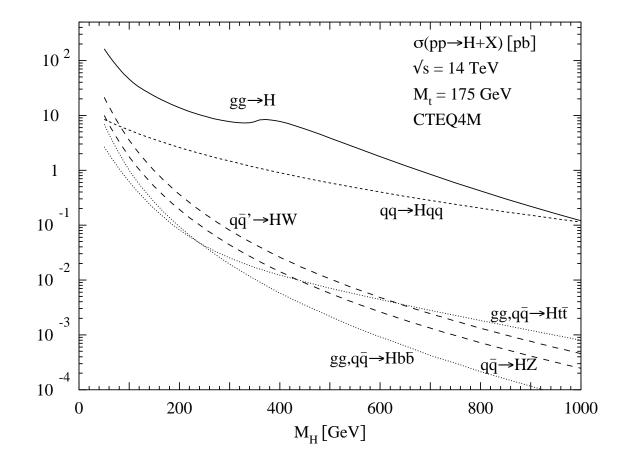
KITP Santa Barbara 2004


HIGGS BOSON PLUS 2 JET PRODUCTION WBF SIGNAL AND QCD "BACKGROUNDS"

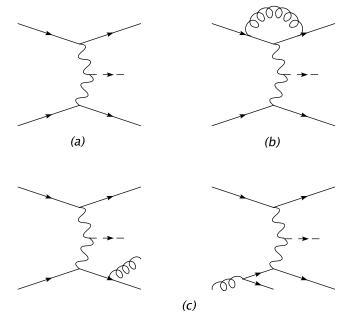
Ed Berger and John Campbell Argonne National Laboratory March 23, 2004

- 1. Introduction & Motivation
- 2. Production Dynamics and WBF Cuts
- 3. Results Event Rates, Signal Purity, and HWW Coupling Uncertainties
- 4. Comparison with Alternative WBF Prescriptions
- 5. Summary

1. Introduction and Motivation

- The Higgs boson is expected to be produced at the LHC through various partonic production processes and observed in its decays to SM particles
 - $gg \to hX$, with $h \to \gamma\gamma$, $h \to WW^*$, ZZ^* ;
 - $gg \to t \bar{t} h X$, with $h \to b \bar{b}$ or $h \to \gamma \gamma$;
 - $qq \to hqqX$ via $W^+W^-(ZZ) \to hX$, with $h \to WW^*$, $h \to \gamma\gamma$, or $h \to \tau^+\tau^-$
- ullet The fully inclusive gluon-gluon fusion subprocess gg o hX is the dominant production mechanism; qq o H+2 jets is next in line (figure from M. Spira)

1. Introduction and Motivation

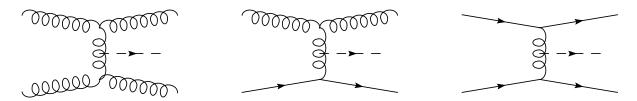

- Assume a SM-like Higgs boson has been discovered, $115 < m_H < 200 \ {\rm at\ the\ Tevatron\ or\ LHC}, \ {\rm and\ that\ a}$ sample exists of H+2 jet events at the LHC
- ullet Want to use these data to determine the Higgs boson couplings ${\it g}$ to weak vector bosons, W and Z
- Focus on two production subprocesses that contribute to H+2 jet events:

-
$$W+W \to H$$
 and $Z+Z \to H$ "WBF" - $g+g \to H$ "QCD background"

- ullet Question: How well can we resolve WBF production of H from QCD production of H?
- Independent calculation of H+2 jet processes
 - to gauge the effectiveness of cuts used to select the WBF signal, and
 - to evaluate the accuracy with which coupling g can be determined in experiments at the CERN LHC
- Define Purity $P = \frac{S}{S+B}$ Show results on P vs p_T of the jets
- Evaluate uncertainty $\frac{\delta g}{g}$ of the coupling in terms of P $\frac{\delta N}{N}$ $\frac{\delta S}{S}$ and $\frac{\delta B}{B}$

H+2 Jet Production – Signal

• Higgs boson H production via WW scattering in NLO QCD. Ex:

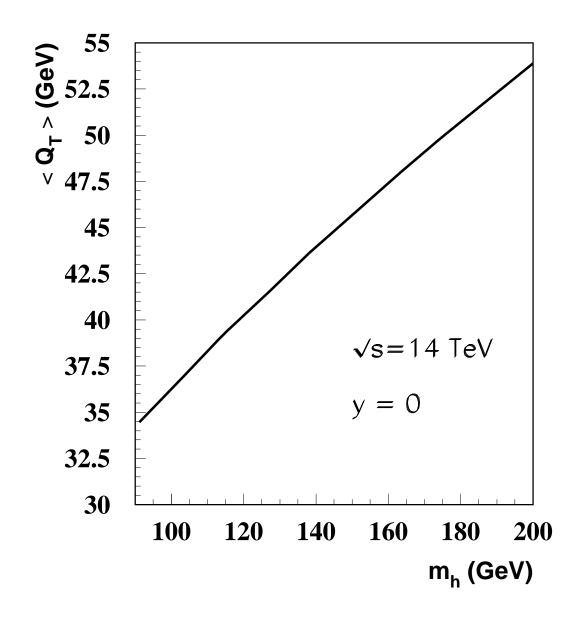

- ullet QCD NLO calculation of H+2 jet with CTEQ6M parton densities; renormalization/factorization scale $\mu=m_H$
- μ dependence $\sim 2\%$ for $\frac{1}{2}m_H < \mu < 2m_H$, and CTEQ PDF uncertainty $\sim 3\%$, both in the WBF region of phase space
- Events generated with the MCFM code
 - J. Campbell & R. K. Ellis PRD65,113007 (2002)
- Independent results (dipole subtraction method) verify the NLO calculation of

Figy, Oleari, and Zeppenfeld, PRD68, 073005 (2003).

K-factor $\sim 10\%$, with small variation over the phase space appropriate for the WBF signal

H+2 Jet Production – Background

Higgs boson H production via gg scattering. Ex:


- Fully differential NLO calculation of H+2 jet production $gg \to H+j+j+X$ does not exist; contribution computed at LO Kauffman Desai and Risal, PRD55, 4005 (1997); PRD58, 119901 (1998)
- ullet Effective ggH coupling included in the limit of $m_H << 2m_t$ (c.f. Del Duca et al NP B616, 367 (2001))
- ullet NLO enhancement (K) factor is needed in the region of the WBF cuts. It can be estimated from
 - inclusive NLO $gg \to H$ $K \sim 1.7-1.8$ Harlander & Kilgore PRD64, 013015 (2001); Anastasiou & Melnikov, NP B646, 220 (2002)
 - NLO $gg \to H+1$ jet $K \sim 1.3-1.5$ Ravindran, Smith, van Neerven NP B665, 325 (2003)
 - or from NLO $pp \to Z+2$ jets + X, but parton subprocesses are different $K \sim 1 \pm 10\%$
 - J. Campbell, R. K. Ellis, & D. Rainwater PRD68, 094021 (2003)
- ullet Fully differential NLO calculation is needed of the QCD process gg o H+2 jets so that the NLO enhancement can be obtained in the WBF region of phase space

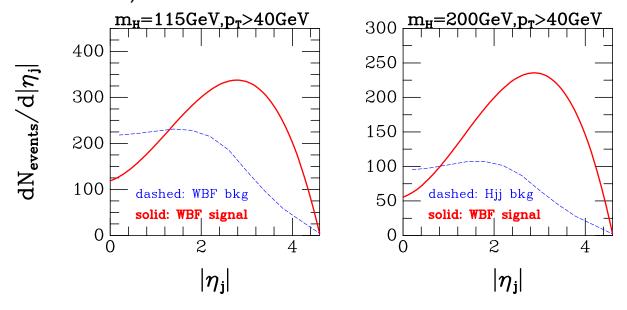
Event Characteristics

- ullet Hallmark of WBF events is a Higgs boson accompanied by two "tagging" jets having large $p_T \sim \mathcal{O}(\frac{1}{2}M_W)$
- ullet QCD gg
 ightarrow H + 2 jets will generate a softer p_T spectrum
- The rapidity spectra also differ figures later
- The p_T spectrum of the Higgs boson is also relatively hard. All-orders resummed calculation Berger and Qiu PRD 67, 034026 (2003) provides $< p_T^H > \sim 35$ GeV at $m_H = M_Z$, growing to $< p_T^H > \sim 54$ GeV at $m_H = 200$ GeV
- ullet Require reliable QCD representation of Hjj for jets at large p_T . Hard matrix elements are needed. A showering approach for generating the momentum distributions of the jets would not suffice

Mean Transverse Momentum of H Production

ullet All orders resummation for ${oldsymbol H}$ production via gg scattering

$$< p_T^H > \simeq 0.18 m_H + 18 GeV$$

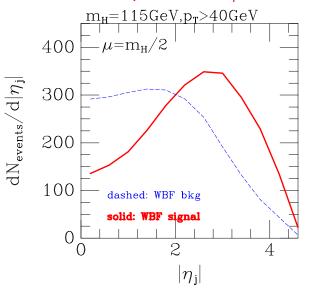

Berger and Qiu Phys Rev D 67, 034026 (2003)

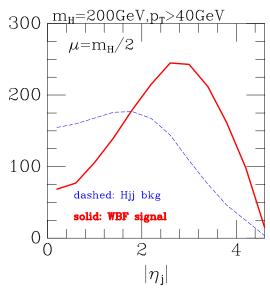
Generic Cuts

- ullet Generic cuts Figy et al. Jets from the Monte Carlo runs are clustered according to the k_T algorithm with
 - $p_T^{
 m jet} > 20$ GeV, to be raised
 - jet pseudo-rapidity $|\eta^{
 m jet}| < 4.5$, and
 - jet separation $\Delta R_{jj} = \sqrt{\Delta \eta_{jj}^2 + \Delta \phi_{jj}^2} > 0.8$
- The two jets with the highest p_T are chosen as the tagging jets and ordered in rapidity, $\eta_{j_1}<\eta_{j_2}$
- To approximate the acceptance for the Higgs boson decay products imagine a Higgs boson decay to two charged particles, denoted "leptons"
 - Require $p_T^{
 m lept}>20~{
 m GeV}$, $|\eta^{
 m lept}|<2.5$, $\Delta R_{j\ell}>0.6$, $\eta_{j_1}<\eta_{
 m lept}<\eta_{j_2}$
- Higgs decay products lie between the tagging jets

H+2 Jet Production – Jet Rapidity Distribution

• Higgs boson H production via WW scattering in NLO and via gg QCD processes (LO) (for 1 fb^{-1} , no BR included):

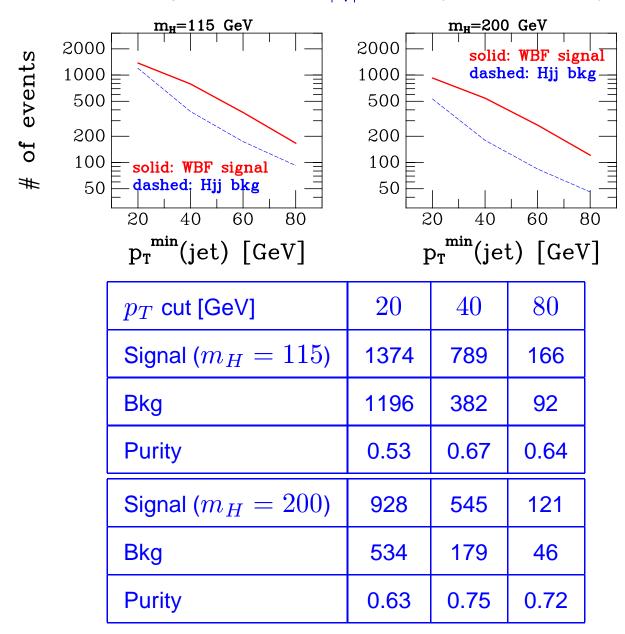

- Shape of the signal distribution depends very little on the Higgs boson mass or on the p_T cut for the tagging jets. Peak at $|\eta|\sim 3$. Full width at half-max ~ 2.8
- ullet Background falls off sharply beyond $|\eta|\sim 2$
- Motivates a simple WBF prescription:


$$\eta_{
m peak}-\eta_{
m width}/2<|\eta_j|<\eta_{
m peak}+\eta_{
m width}/2$$
 $j=j_1$ or $j=j_2$, $\eta_{
m peak}$ =3, and $\eta_{
m width}$ =2.8

Our working definition of the WBF region

H+2 Jet Production – μ dependence

• Higgs boson H production via WW scattering in NLO and via gg QCD processes (LO) (for 1 fb $^{-1}$, no BR included) $\mu=m_H/2$:



- \bullet Magnitude and shape of the signal distribution depend very little on μ
- Magnitude of the background is much greater at $\mu=m_H/2$. Not much effect on the shape
- ullet Not much question that a differential NLO calculation is needed for the background process H+2 jets

H+2 Jet Production – Event Rates for 1 fb $^{-1}$

• Event rates for the Hjj WBF signal(NLO) and Hjj background(LO), including our WBF requirement that at least one jet have $1.6 < |\eta| < 4.4$ (no BR included)

$$\bullet \ \, \operatorname{Recall} \qquad \qquad P = S/(S+B)$$

• p_T cut of 40 GeV yields a good S/B across the range $m_H=115$ –200 GeV. p_T cut of 20 GeV is marginal

H+2 Jets – Derivation of Coupling Uncertainty

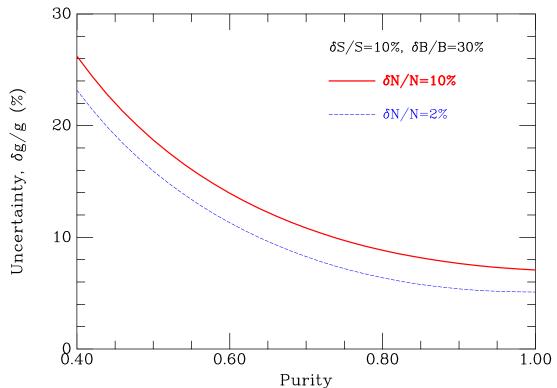
- ullet Both the signal and the background have H+2 jets
- Want the uncertainty $\delta g/g$ on the coupling of the Higgs boson to vector bosons
- Define $r=g_{
 m observed}^2/g_{
 m predicted}^2$
- \bullet Assume deviation in the expected total number of events arises from the effective coupling $\to r = \frac{(N-B)}{S}$
- Uncertainty in *r*:

$$\delta r/r = \sqrt{(\delta S/S)^2 + ((\delta N)^2 + (\delta B)^2)/(N-B)^2}$$

• In terms of purity P = S/(S + B)

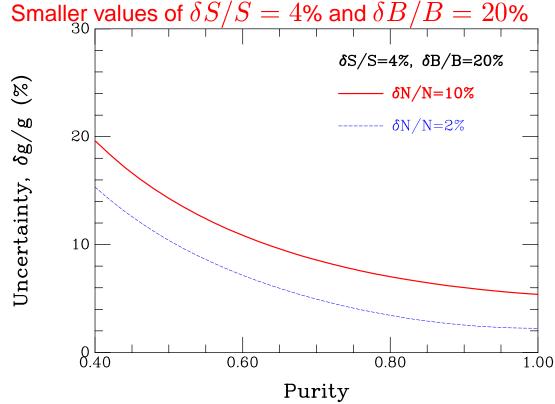
$$\frac{\delta g}{g} = \frac{1}{2} \sqrt{(\frac{\delta S}{S})^2 + \frac{1}{P^2} (\frac{\delta N}{N})^2 + \frac{(1-P)^2}{P^2} (\frac{\delta B}{B})^2}$$

- Factor 1/P that multiplies $\delta N/N \to P < 1$ dilutes statistical power of data
- Factor (1-P)/P that multiplies $\delta B/B$ \to $P \to 1$ reduces role of uncertainty in B
- Size of background is included in P

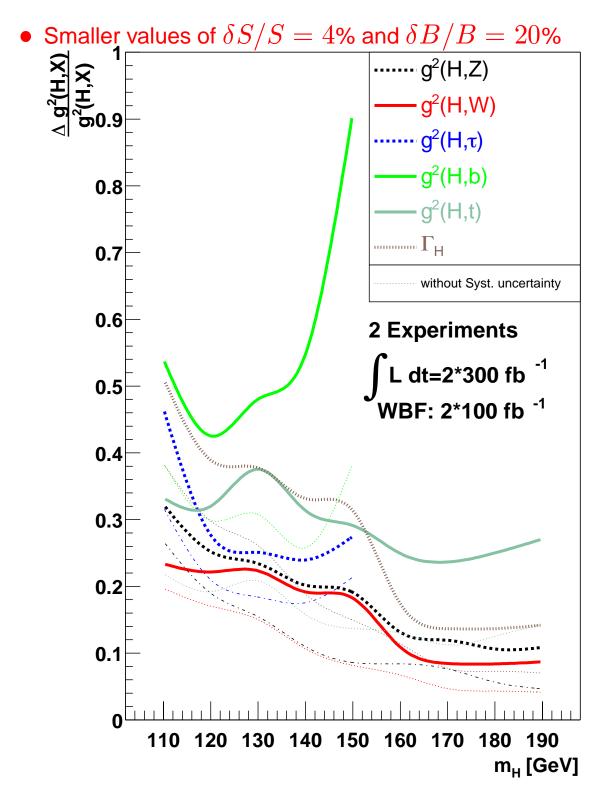

Estimates of Uncertainties in $S,\,B,\,{\rm and}\,N$

- Let $\delta S/S=10\%$ NLO effects are known; μ dep and PDF uncert are estimated
- Let $\delta B/B=30\%$ NLO effects not calculated yet for H+2 jets; μ dep of the NLO inclusive process is $\sim 20\%$ for $\frac{1}{2}m_H<\mu<2m_H$; PDF another $\sim 5\%$
- ullet For N and $\delta N/N$, we must specify decay modes of H
 - for $m_H=115$ GeV, pick $H\to \tau^+\tau^-$ with one τ decaying to hadrons and one to leptons combined branching ratio 0.033 tagging efficiency 0.26; net reduction factor $\epsilon\sim 0.01$
 - for $m_H=200$ GeV, pick $H\to W^+W^-$; if both decay to leptons, $\epsilon\sim 0.036$
- "Low luminosity" minimum of $\sim 10~{\rm fb^{-1}}$ integrated luminosity is needed to discover H in the WBF process ATLAS, S. Asai et al hep-ph/0402254 one (good) year of LHC operation at $10^{33}~{\rm cm^{-2}s^{-1}}$
 - $(S+B)\sim 12000\times 0.01=120$ events at $m_H=115$ GeV and $p_T^{
 m cut}=40$ GeV; $\delta N/N\sim 10\%$
 - $(S+B)\sim7000 imes0.036\sim250$ events at $m_H=200$ GeV and $p_T^{
 m cut}=40$ GeV; $\delta N/N\sim6\%$

Estimates of Uncertainties in S, B, and N


- \bullet "High luminosity" after 5 years of LHC operation, anticipate an integrated luminosity of $\sim 200~{\rm fb}^{-1}$
 - at $m_H=115$ GeV and $p_T^{
 m cut}=40$ GeV; $\delta N/N\sim 2\%$
 - at $m_H=200$ GeV and $p_T^{
 m cut}=40$ GeV; $\delta N/N\sim 1.5\%$

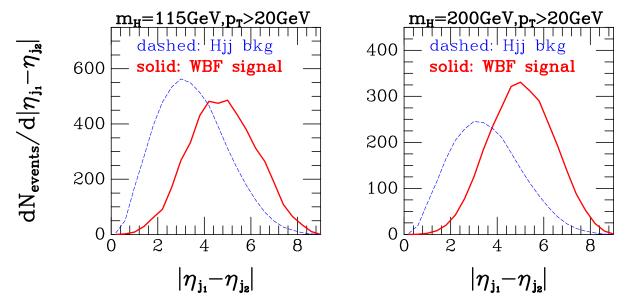
Coupling Uncertainty vs Signal Purity


- If $\delta N/N \sim 10\%$ $\delta g/g \sim 11\%$ for P=0.7
- \bullet If $\delta N/N \sim 2\%$ $~~\delta g/g \sim 8\%$ ~~ for P=0.7
- Uncertainties in S and in B dominate uncertainty in g. With P=0.7 and $\delta N/N=2\%$, then $\delta S/S$ and $\delta B/B$ have to be reduced to 3% and 6% before statistics control the answer
- P>0.65 permits $\delta g/g\sim 10\%$ after $200~{\rm fb}^{-1}$ Obtained for $p_T^{\rm cut}>40~{\rm GeV}$ at $m_H=115~{\rm GeV}$ and for $p_T^{\rm cut}>20~{\rm GeV}$ at $m_H=200~{\rm GeV}$
- Suppose $K_{
 m background}^{
 m NLO}\sim 1.6$ P=0.56 for $p_T^{
 m cut}>40$ GeV at $m_H=115$ GeV ightarrow $\delta g/g=13\%$ P=0.52 for $p_T^{
 m cut}>20$ GeV at $m_H=200$ GeV ightarrow $\delta g/g=15\%$

Coupling Uncertainty vs Signal Purity

- $\bullet \ \ \mbox{If } \delta N/N \sim 10\% \ \ \ \ \delta g/g \sim 9\% \ \ \ \mbox{for } P=0.7$
- \bullet If $\delta N/N \sim 2\%$ $~~\delta g/g \sim 5\%$ ~~ for P=0.7
- New lower values of $\delta g/g$ are very similar to Düehrssen et al, Les Houches 2003 for comparable luminosity
- Not evident from these figures that there is much to gain from P > 0.7

Coupling Uncertainty vs Les Houches Results

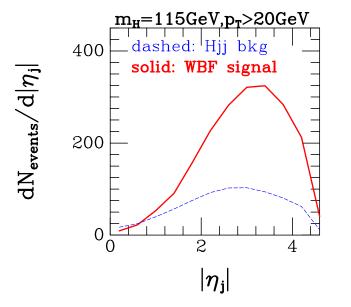

 Scope of the Les Houches study is more ambitious, but the WBF results at high luminosity are quite similar

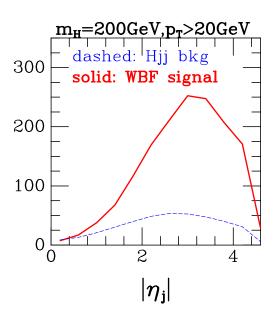
4. Alternative WBF Prescriptions

- \bullet We use the requirement that at least one jet have $1.6 < |\eta| < 4.4$
- A different prescription requires instead a rapidity separation requirement $|\eta_{j1}-\eta_{j2}|>4$
- Another requires an invariant mass cut $M_{jj}>800~{\rm GeV}$ \rightarrow Figures and Tables
- ullet With these alternatives, there is a significant gain in P for $p_T^{
 m cut}=20$ GeV, but not for larger values. The gain is accompanied by loss in signal rate at all p_T
- \bullet Potential advantages of simple cut on $|\eta|$ of one jet in a high luminosity environment
 - In data (and at higher orders in QCD) there are several jets; our prescription may be easier to implement
 - In a high luminosity environment, with more than one event per beam crossing, selection on only one jet (plus the H) reduces chance that jets from different events are used
- ullet Full experimental simulation would be useful. One could begin with hard QCD LO H+2 jet matrix elements plus Pythia showering improvement over current ATLAS studies (c.f., S. Asai et al hep-ph/0402254)

H+2 Jet Production – Jet Rapidity Separation

• Higgs boson ${\it H}$ production via WW scattering in NLO and via gg QCD processes (LO) (for $1~{\rm fb}^{-1}$)


Shape motivates a rapidity separation cut


$$|\eta_{j1} - \eta_{j2}| > 4$$

p_T cut [GeV]	20	40	80
Signal ($m_H=115$)	1297	718	137
Bkg	758	207	38
Purity	0.63	0.78	0.78
Signal ($m_H=200$)	911	521	106
Bkg	349	102	20
Purity	0.72	0.84	0.84

H+2 Jet Production – Jet Rapidity with Mass Cut

• Higgs boson ${\it H}$ production via WW scattering in NLO and via gg QCD processes (LO) (for $1~{\rm fb}^{-1}$)

• Alternative WBF prescription:

$$M_{jj} > 800 GeV$$

p_T cut [GeV]	20	40	80
Signal ($m_H=115$)	808	561	158
Bkg	304	183	82
Purity	0.73	0.75	0.66
Signal ($m_H=200$)	617	428	121
Bkg	157	95	43
Purity	0.80	0.82	0.74

5. Summary

- Studied H+2 jet production at the energy of the LHC. WBF signal at NLO; QCD background at LO with estimates of NLO effects. Fully differential hard matrix elements used to generate p_T spectra
- Investigated effectiveness of 3 different prescriptions to separate/enhance the WBF signal with respect to the irreducible QCD background
- ullet Evaluated the signal purity P (fraction of real H events produced by WBF) in each case as a function of the transverse momentum cut used to define the tagging jets
- \bullet All 3 methods work about equally well in the high-luminosity environment where a large value of the p_T cut is needed
- After $200~{\rm fb^{-1}}$ are accumulated, it should be possible to achieve an accuracy $\delta g/g\sim 10\%$ in the effective coupling of the Higgs boson to weak bosons
- ullet A fully differential NLO calculation of the H+2 jet distributions is needed, applicable in the WBF region of phase space, so that P and $\delta g/g$ can be determined more accurately