What we need to know about Top and why

David Rainwater

Inspirational Message KITP Feb. 3, 2004

Major milestones in particle physics

- 1970s particle zoo understood: u, d, s bound states
 - 1974 charm discovered
 - 1975 au^{\pm} discovered 3 rd generation lepton
 - 1978 bottom discovered 3^{rd} gen. quark; up-type partner (top) hypothesized
 - 1979 gluon discovered: SU(3) of QCD becomes rock-solid
 - 1983 W^{\pm}, Z discovered: strong belief in $SU(2)_L$ established
 - 1990 LEP data supports 3 neutrinos (gen.'s)
 - 1995 top quark candidate discovered
- 1990s LEP $e^+e^- o W^+W^-$ confirmation of $SU(2)_L$ gauge theory
 - 2000 $\nu_{ au}$ discovered (*yawn*)

→ Reinforces Standard Model gauge theory of all forces except gravity:

$$SU(3)_c\otimes SU(2)_L\otimes U(1)_Y$$
 (strong, weak, EM)

Matter particles we see in nature:

$$egin{array}{lll} egin{array}{lll} egin{arra$$

Note that we *have* to have 3 generations to have CP violation!

Top candidate is abnormally heavy, but otherwise looks like SM top quark:

- \cdot $\sigma_{tar{t}}$ is right size for QCD production
- BR $(t \rightarrow W^+b) \sim 1$ is expected weak decay

▶
$$Q = +\frac{2}{3}$$
 or $-\frac{4}{3}$, but not determined

 $oldsymbol{Q_t}$ meas'mt at LHC - no surprises excpected So why study top in more detail?

- 1. top is background to NP @ LHC model it well!
- 2. top is SM-like, but not well-measured $g_{\gamma tt}$, g_{Ztt} , g_{Wtb} , V_{tb} not known!
- top can be a window to NP
 2HDMs, SUSY, Little Higgs, Topcolor, flavor, ...
- 1,2,3 are related, but different aspects

Modeling top

ightharpoonup corrections to $\sigma_{t\bar{t}}$:

NLO+NLL+[NNLO+NNLL]
$$\sim +40\%$$
,
but uncertainty $\sim 5-20\%$! (exp. $< 10\%$)
 \rightarrow need full NNLO+NNLL

- $\sigma_{t\bar{t}+jets}$: add'tl hard partons dominant bkg to Higgs, other searches Pythia/Herwig give wrong (low) rates! LO matrix elements IR unsafe simple matching possible, not rigorous also: $t \to Wbj$ needs proper matching
- lacktriangle off-shell top production: difficult, crucial issue at LHC for $H o W^+W^- o \ell^+\ell^- + X$
- ▶ $t\bar{t}$ spin correlations:

$$rac{1}{\sigma} rac{d^2 \sigma}{d(\cos heta_i) d(\cos heta_{ar{i}})} = rac{1}{4} (1 - C lpha_i lpha_{ar{i}} \cos heta_i \cos heta_{ar{i}})$$
 C_{NLO} important, depends on spin basis

→ theor. unc. > exp. unc. in all cases!
(similar issues for single-top production)

Top properties - SM?

- $ightarrow \sigma_{tar{t}}$ suggests $g_{gtt}=g_s$ (t is color triplet) QCD anom. coups tough at Tev2, LHC
- $ightarrow g_{\gamma tt}$, g_{Ztt} essentially unprobed must measure $t \bar{t} Z, t \bar{t} \gamma$ rates
- $ightarrow g_{Wtb}$ roughly limited from BR $(t
 ightarrow Wb) \sim 1$ and lack of single-top so far CLEO $b
 ightarrow s \gamma$ data more constraining
- $ightarrow \Gamma_t$ (lifetime): involves g_{Wtb} and V_{tb} only indirectly at Tev/LHC (and tough) directly via threshold fit at LC!
- ightarrow Yukawa coupling: $Y_t pprox 1?$ direct meas'mt via t ar t H production confirm spont. sym. breaking gen.'s m_f
- $ightarrow \; tar{t} \; ext{spin correlation:} \ S = rac{1}{2} \; , \; au_t \; ext{too short to hadronize}, \; |V_{tb}| > 0.03$
- ightarrow charge (Q_t) $(Q_t=-4/3$ is exotic, not likely) need LHC to confirm w/ $tar{t}\gamma$ production or lucky $t o b\ell
 u$ events @ Tev2 w/ Q_b

Type II 2HDMs (incl. SUSY)

ightarrow driven by parameters M_A and aneta, ratio of up/down vevs v_2,v_1

(small or large an eta preferred, ~ 3 or ~ 30)

Five physical states:

- \cdot h,H CP-even, typically one is SM-like mixing of states parameterized by lpha
- A CP-odd, typically degenerate w/H
- \cdot H^{\pm} typically degenerate w/ H,A

 $t o H^+b$ non-trivial if kinem. allowed $tar t\phi$ ($\phi=h,H,A$) production possible, unless ϕ heavy

$$g_{tth} \propto \frac{\cos \alpha}{\sin \beta} = \sin(\beta - \alpha) + \frac{1}{\tan \beta} \cos(\beta - \alpha)$$
 $g_{ttH} \propto \frac{\sin \alpha}{\sin \beta} = \cos(\beta - \alpha) - \frac{1}{\tan \beta} \sin(\beta - \alpha)$
 $g_{ttA} \propto \cot \beta$

(may be difficult to observe...)

SUSY decays of top

In addition to $t \to H^+b$, top can decay to SUSY pairs (\mathcal{R} -parity conserving) or SUSY/SM mixed pairs (\mathcal{R} -parity violating).

 $\rightarrow \mathcal{R}$ -parity conserved: SUSY pairs only

$$t
ightarrow ilde{t} ilde{g} \hspace{1cm} {\cal O}(1)$$

$$t o ilde b\chi_1^+ \qquad {\cal O}(1)$$

$$t
ightarrow ilde{t} \chi_1^0 \qquad {\cal O}(1)$$

where kinematically accessible (light \tilde{t}, \tilde{b} perhaps not so likely)

- o \mathcal{R} -parity violated: tree-level e.g. $t o ilde{ au}b o au b ilde{\chi}_1^0$
- $ightarrow {\cal R}$ -parity violated: 1-loop $t
 ightarrow c ilde{
 u} \quad BR \sim 10^{-3}$

→ loop-induced FCNC decays

$$t
ightarrow cg \qquad BR \sim 10^{-3}$$

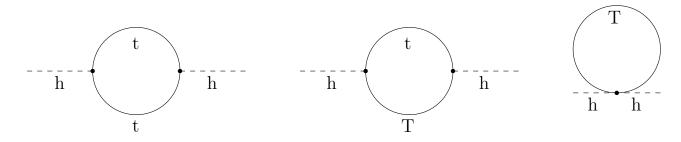
$$t
ightarrow c \gamma \qquad BR \sim 10^{-5}$$

$$t
ightarrow cZ$$
 $BR \sim 10^{-4}$

$$t
ightarrow ch$$
 $BR \sim 10^{-4}$

Little Higgs models

Motivation:


precision data constrains new flavor physics to $f\sim 10$ TeV: Little Heirarchy solve the SM Higgs sector Big Heirarchy problem by postponing it to f

Basic idea: some large gauge group broken down at scale $f \sim 1-10$ TeV to SM minimal new content:

$$h,\pi,\pi',\pi^\pm,\pi^{\pm\pm},T,Z',W'^\pm$$

next to minimal is 2HDM: add H,A,H^\pm

(elaborate) new gauge structure cancels quadratic divergence to one-loop order - new physics cutoff $@f \sim 10$ TeV scale

Little Higgs phenomenology

Begin with SU(5) Yukawa Lagrangian:

$$\mathcal{L}_Y = -\lambda_1 f \, ar{t}_R \, ext{Tr}[\Xi^*(iT_2^2)\Xi^*\hat{\chi}_L] - \lambda_2 f \, ar{T}_L T_R + h.c.$$

where $\hat{\chi}_L$ is 5x5 matrix containing t_L,b_L,T_L

t and T mixtures of chiral t_3 & vector-like $ilde{t}$:

$$\sin_L = s_L \simeq rac{\lambda_1}{\lambda_2} rac{m_t}{m_T}$$

T too heavy? Check SM top observables:

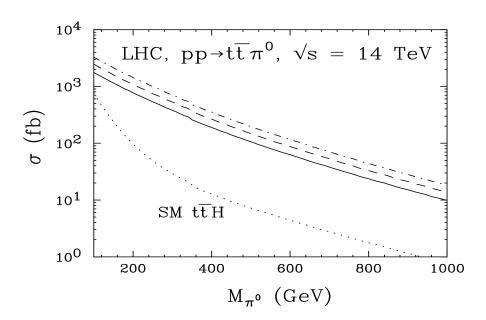
1. CKM not unitary:

$$V_{tb} = c_L\,V_{tb}^{SM} \qquad V_{Tb} = s_L\,V_{Tb}^{SM}$$

2. modified FFV couplings:

$$egin{aligned} W^{\mu}\,ar{t}_L b_L & rac{ig}{\sqrt{2}}[1-(rac{v^2}{f^2})rac{1}{2}(x_L^2+c^2(c^2-s^2))]\gamma^{\mu}V_{tb}^{SM} \ W^{\mu}\,ar{T}_L b_L & rac{g}{\sqrt{2}}(rac{v}{f})x_L\,\gamma^{\mu}V_{tb}^{SM} \ \gammaar{t}t & eQ_t ext{ (unaffected)} \ \gammaar{T}t & 0 \ \gammaar{T}T & 0 \ Zar{t}t & ext{really complicated...} \end{aligned}$$

3. modified Yukawa couplings as well


Viable strong dynamics model: Topcolor

 $ightarrow 3^{rd}$ generation is special:

 $SU(3)_h\otimes SU(3)_l\otimes U(1)_h\otimes U(1)_l\otimes SU(2)_L$

Breaks down to SM + extra U(1) (find Z'!)

Eff. 2HDM: H_{TC2} , H_{ETC} + "top-pion" triplet

top decays $t o \pi^+ b$ also possible

Expect to see rare FCNC top decays:

$$t \rightarrow c\gamma, cZ, cg$$

Expect FCNC single-top production:

$$pp
ightarrow tar{c}, tg,$$
 etc.

 $Ztar{t}$ coupling non-SM due to Z,Z' mixing

Summary

- EW data/theory require t, partner of b
- We believe this m=175 GeV object to be SM top, but it is not fully verified!
- LHC/FLC must verify charge, spin, top-gauge couplings, CKM V_{tb} , ...
- In general, any new physics has some observable effect on top:
 - → rare decays
 - → FCNC production
 - ightarrow altered couplings to Z,W,γ,g
 - → richer Yukawa structure
- Even if no new physics directly in top, must understand SM top far better, as a bkg to new physics