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• Cross sections for hadron colliders are calculated using pertur-
bation theory.

• The particles involved carry strong interactions.

• αs(1 fm) ∼ 1.
Justification

• αs(r) � 1 for r � 1 fm.

• It is a property of QCD that we can factor the short distance
parts from the long distance parts.

• Why?

• What is lacking in the “proof.”



If the use of perturbative predictions is based on faith shared

among the community of theorists rather than on solid science,

perhaps we can apply for additional funding for the LHC experi-

mental program:



“President George W. Bush’s Faith-Based and

Community Initiative represents a fresh start and

bold new approach to government’s role . . . . ”



The basic factorization formula for p + p̄ → µ+ + µ−

dσ

dQ2dy
=

∫
dxa fa/A(xa)

∫
dxa fb/A(xb)

dσ̂ab(xa, xb)

dQ2dy
+ O

(
m2

Q2

)
.

Including a measurement function, say for p+ p̄ → µ++µ−+jets,

σ =
∫

dxa fa/A(xa)
∫

dxa fb/A(xb)

×
∫

d4Q
∑
N

1

N !

N∏
i=1

(∫
d�pi

)
dσ̂ab(xa, xb)

dQ2dy d�p1 · · · d�pN

×SN(Q2, y, �p1, · · · , �pN)

+O(m2/Q2).

with

SN+1(Q
2, y, �p1, · · · , λ�pN, (1 − λ)pN) = SN(Q2, y, �p1, · · · , �pN)

SN+1(Q
2, y, �p1, · · · , �pN, λPA) = SN(Q2, y, �p1, · · · , �pN)

SN+1(Q
2, y, �p1, · · · , �pN, λPB) = SN(Q2, y, �p1, · · · , �pN).



Comments

dσ

dQ2dy
=

∫
dxa fa/A(xa)

∫
dxa fb/A(xb)

dσ̂ab(xa, xb)

dQ2dy
+ O

(
m2

Q2

)
.

1. This is not “leading log.” Corrections are power suppressed.

2. Parton distributions have a separate (universal) definition.

3. Parton distributions are non-perturbative.

4. dσ̂ has an expansion in powers of αs.



dσ

dQ2dy
=

∫
dxa fa/A(xa)

∫
dxa fb/A(xb)

dσ̂ab(xa, xb)

dQ2dy
+O

(
m2

Q2

)
.

5. The formula is supposed to be true at any order of pertur-

bation theory. What does that mean?

(a) Describe initial hadrons using Bethe-Salpeter wave func-

tions.

(b) Final states are µ+, µ− and quarks and gluons.

(c) Remaining parts summed up to order αN
s .



dσ

dQ2dy
=

∫
dxa fa/A(xa)

∫
dxa fb/A(xb)

dσ̂ab(xa, xb)

dQ2dy
+O

(
m2

Q2

)
.

6. dσ̂ is probably not defined beyond perturbation theory.

(a) (presumably) dσ̂(N) ∝ N !.

(b) Stop when Nαs ≈ 1.

(c) An ambiguity remains,

N !αN
s = N ! (1/N)N ≈ e−N = e−1/αs ≈

(
Λ2/Q2

)const.
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An instructive exercise

σ = 1 + αsI + O(α2
s)

I =
∫ ∞

0
dk2 1

k2 + m2

Q2

Q2 + k2

First, analysis with naive accounting for leading regions.

I =
∫
k2�Q2

dk2 1

k2 + m2
+

∫
k2∼Q2

dk2 1

k2

Q2

Q2 + k2
+ O(m2/Q2)

So

σ =

(
1 + αs

∫
k2�Q2

dk2 1

k2 + m2

) (
1 + αs

∫
k2∼Q2

dk2 1

k2

Q2

Q2 + k2

)

+O(α2
s) + O(m2/Q2)

≡ f × σ̂ + O(α2
s) + O(m2/Q2).



Now, analysis with subtractions.

I =
∫ ∞

0
dk2

(
k2

µ2

)ε
1

k2 + m2
× 1

+
∫ ∞

0
dk2

(
k2

µ2

)ε
1

k2 + m2

(
Q2

Q2 + k2
− 1

)

=

[∫ ∞

0
dk2

(
k2

µ2

)ε
1

k2 + m2
− 1

ε

]

+

[∫ ∞

0
dk2

(
k2

µ2

)ε
1

k2

(
Q2

Q2 + k2
− 1

)
+

1

ε

]

+O(m2/Q2)

= f(1) + σ̂(1) + O(m2/Q2)

A subtraction scheme is necessary to really control multiloop

diagrams. Unfortunately, the existing demonstrations of factor-

ization use the naive method.



For the simplest graph,

it’s just kinematics.

dσ

dQ2dy
=

∫
dkA,T dkB,Tdk−Adk+

B Hµ,ν(Q
+, Q−, kA,T + kB,T )

×Tr{γµΦA(Q+ − k+
B , kA,T , k−A)γνΦB(k+

B , kA,T , Q− − k−A)}
with Q± = [Q2 + (kA,T + kB,T )2]1/2e±y/

√
2. Simply approximate

k2
A,T , k2

B,T � Q2,

k−A � Q−,

k+
B � Q+.



Alas, it’s not so simple.

Naive analysis of leading (pinch singular) integration regions

gives the following:

Hard (Large PT or way off shell)

Collinear (to A or to B, small PT )

Soft (All components small, includes “Glauber.”)



The extra collinear gluons

would be a big problem be-

cause the factorization for-

mula contemplates collisions

of only one parton from

each hadron. But the

collinear gluons are OK

• The extra collinear gluons have εµ ∝ kµ.

• There effect can be approximated as shown with eikonal lines,
with u in the − direction for hadron A, u in the + direction for
hadron B,

propagator =
i

k · u + iε
vertex = −igtauµ



The parton distribution functions

Before I built σ̂ I’d ask to know

What I was factoring in or factoring out

fq/p(x, µ) =
1

4π

(
1

2

∑
s

) ∫
dy−eixP+y−

×〈P, s|ψ̄(0)E(0)γ+E†(y−)ψ(0, y−, 0)|P, s〉,

where

E†(y−) = P exp

(
−ig

∫ ∞

y−
dz−A+

a (0, z−,0T ) ta

)
.

The operator product needs UV renormalization, which is per-

formed using the MS prescription.



fq/p(x, µ) =
1

4π

(
1

2

∑
s

) ∫
dy−eixP+y−

×〈P, s|ψ̄(0)E(0)γ+E†(y−)ψ(0, y−, 0)|P, s〉,

Comments

1. The renormalization group equation for f is the DGLAP
equation.

2. f does not have a perturbative expansion.

3. One sometimes hears of a “bare” f , but I don’t know what
that is.



4. For consistency with a NNLO calculation, one needs f that

obeys the DGLAP equation with the two loop kernel, which

is usually called “NLO”.

5. In my opinion, using data compared to NLO theory in ob-

taining f does not “contaminate” f so that it is unsuitable

for use with an NNLO calculation.

• Cf. αs(Mz), which is obtained from experiments compared

to NLO theory and other experiments compared to NNLO

theory.



Parton distribution in diagrams

Compare



Soft gluon exchanges

• It seems that a soft gluon exchanged from a spectator quark in
hadron A to the active quark in hadron B can rotate the quark’s
color and thus keep it from annihilating.

• Soft gluon approximations (with eikonal lines) needs q± not too
small. But q± contours can be trapped in “too small” region.



The soft gluons go away

• This part is quite technical.

• Ingredients: unitarity, causality, gauge invariance.

• We use the fact that the initial state is a color singlet bound
state and that we can sum over all final states.



Comments

1. The proof explicitly uses the facts that the incoming partons

are somewhat off-shell and are in a color singlet bound state.

2. One would like also a proof for on-shell colored incoming

partons.

• This is the case in calculations of σ̂.

3. We need a proof with subtractions.

• This would give a construction of σ̂.



4. There is no detailed proof for hadron collisions with a non-

trivial measurement function.

• The perturbative part of this should be pretty simple.

• But an analysis with proper final state hadron bound states

is needed.

• We need to show that it is correct to apply the same

measurement function SN(Q2, y, �p1, · · · , �pN) to the partons

as to the hadrons.



An example

• Consider diffractive deeply inelastic scattering.

e + p → e + p + X

with large Q2, proton loses a small fraction xIP of its momentum

and gets a small invariant momentum transfer q2 ≡ t.

• Factorization works for this, with new parton distributions

dfdiff(x)/dxIPdt. (See paper by Collins, also Berera and Soper.)

• The hard scattering cross section dσ̂ is the same as for inclusive

DIS.



• But we expect factorization not to work for

p + p̄ → Z + p + X

With spectator scattering, it is much more likely to break up the
proton:



• Experimentally, the factorization formula for p+ p̄ → Z +p+X

fails by a big factor.


