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Content

e How gravitational waves interact: evidence and astrophysical signatures
e Sources of gravitational waves: which information we can extract
e Compact binaries made of black holes and/or neutron stars

e Laser interferometer gravitational-wave detectors: very high
experimental challenge

e What limits the interferometer sensitivity and how to improve
the performances for the years to come
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Einstein’s theory of gravitation and gravitational waves

In weak field limit Einstein’s equations are described by linear equation

Juv = Nuv + huv -+ O(hfw)
Using transverse traceless gauge (h,0 = 0,hg;; =0, g, =0) =
familiar wave equation: (V2 — 5 g—;) huw =0

The strain £, takes the form of a plane wave propagating at light’s speed

Since graviton is spin-2 boson, the waves have two components

h=h,(t—R/c)+ hy(t — R/c)
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How gravitational waves interact with free test particles

A freely moving particle travels through spacetime along a geodesic

The curvature of spacetime pushes neighboring spacetime geodesics
together or apart

GW detector: body of mass m at distance L from fiducial laboratory point

mé=m% [F(0,6,9) i + Fi(0,6,9) iy

& — infinitesimal displacement of the mass m
= AL=¢~LA
Fy «(0,¢,v) — beam-pattern factors
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Gravitational wave can induce a phase-shift on the light

Assumption: L < Agw/(27)

iL laser ¢ L —-AL
laser -

<
—-

AL=hL b=A

h — gravitational-wave strain
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Indirect observation of gravitational wa*

Neutron Binary System: PSR 1913 +16 - Timing Pulsars
Hulse & Taylor discovery (1974)

Separated by ~ 10 Km, m; = 1.4M,, ~ 8 hours
ma = 1.36 Mg, € = 0.617

e Prediction from GR: rate of change of orbital period

e Emission of gravitational waves:

— due to loss of orbital energy

— orbital decay in agreement with GR at the level of 0.5%
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Astrophysical sources and signatures

® Compact binary inspiral: “chirp" [duration ~ minutes to seconds]
— NS/NS, NS/BH and BH/BH

e Supernovae and Gamma-ray bursts: “bursts” [duration ~ mseconds]
— non axisymmetric collapse
— “coincidence” with signals in EMR
— neutrino detection
— Gamma-ray bursts triggered by merger of NS/NS or NS/BH

e Pulsars in our galaxy: “periodic”
— search for observed spinning neutron stars: Vela, Crab
— all sky search

e Cosmological signals: “stochastic”
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How to detect a gravitational-wave signal from inspiraling binaries

Track the signal phase and build up the signal-to-noise ratio

by integrating the signal for the time it stays in the detector band

Filter the detector output, 0 = h + n, with a template t which is an

(approximate) copy of the exact, observed signal h
Signal-to-noise ratio:

8 =2 df o) () +0" (1) 1] 55k

h — gravitational waveform, ¢ — template, o — detector’s output, n — detector’s noise
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Coalescing binary systems

Approximating compact bodies to point particles

Two-body equation of motions:
[Damour & Deruelle 81, 82; Damour, Blanchet & lyer 95; Will & Wiseman 95; Blanchet 96]
[Jaranowski & Schafer 98,99; Damour, Jaranowski & Schafer 00, 01; Blanchet & Faye 00,01]

=9 =GM 7+ Ajpn + Aspn + Ao spn + Asprn + Az spn + -]

I”l2

M = mq + ms, T=|fl—$_§, U = U1 — Uy, ﬁ:(fl_@)/r

Anpn — O(e™) relative to Newtonian term

2
UNGM

€ = -3 ~ 3~ — post-Newtonian parameter
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Gravitational waveforms

Gravitational field far from source:
[Wagoner & Will ‘76; Wiseman ‘92; Blanchet, Damour, lyer, Will & Wiseman ‘96]
[Blanchet ‘96, ‘98; Blanchet, Joguet & lyer, ‘01]

1] 2GM
h'? A [Q + Qo 5PN QlPN Q1 5PN Q2PN QQ spN T }
R — distance from the source
Quadrupole formula: 1" = ]%—54 I'(t — R/¢) I — source's quadrupole moment

h ~ GMT féw forr =~ 20 Km, M ~ 10°° Kg, fow ~ 100 Hz

R at 20 Mpc (Virgo cluster) = i ~ 10721 h = AL/L
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Science from observed inspiral, merger of NS/NS and tidal
disruption of NS/BH

Rh
ATGW 40 Hz — 240 Hz

detector bandwidth
- - fedn ~0.022¢3/GM

coalescence waveform

A — GW

NS/NS: M = (1.4 + 1.4) Mg — faao =~ 1600 Hz

e Information carried in NS/NS inspiral [Abramovici et al. ‘92; Cutler et al. ‘93; Schutz ‘86]

Masses (a few %), Spins (few %), Distance (~ 10%), Location on sky (~ 1 degree)

¢ Information carried in NS/BH inspiral and NS tidal disruption [Thorne '87; Vallisneri ‘00]

NS radius to 15%, equation of state, nuclear physics
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Black hole - Neutron star binary
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Black hole - Black hole binary
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Main issues for most promising sources: comparable-mass BH/BH

AR hGW
detector bandwidth

inspiral waveform W’-"/-":(r coalescence waveform BH/BH: M = (15 + 15) Mo — f 1sco ~ 150 Hz
BH/BH: M = (10 + 10) My — ~ 220 H
| ring—down / (10 +10) Mg f ISCO z

",—‘,—"—"QGQGLI>

. time

e ) ISCO
Plunge

e GWs emitted where PN expansion fails (v/c ~ 0.3)

I : . . . .
ssues: 4 Spin effects: precession orbital plane, modulations, etc.

e Numerical relativity [Potsdam, Cornell, .. ]

lutions: . i i
Solutions: | Analytical approaches: PN resummation techniques

[Damour, lyer & Sathyaprakash ‘97; A.B. & Damour ‘00,'01; Damour, Jaranowski & Schaefer ‘01]
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Effective-one-body resummation (up to 3 post-Newtonian order)

[A.B. & Damour '99, '00]

p = mqymeo/M
v = my 'm,g/M2
0<v<1/4

matching rules:
Ereal = f(Eerr)
Jreal = Jefr
Nieal = Noes

Real description Effective description

m2 H

2%
/\?‘<
9w 9
m, m,
Ereal/]\ _ — Eeff/]\ —
Jeal Niea Jet Nt
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Relativistic energy for two-body system of comparable masses

Classical gravity (up to 3PN)

Eeff
Erzeal — m?+m§+2m1m2 ( Py )

Quantum electrodynamics [Brézin, ltzykson & Zinn-Justin 70]

1
E? m? + mg + 2mq1 mo

el 1+ 2262/ (n — ;)
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Including spin effects
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[A.B., Chen, Chernoff & Vallisneri, work in progress]
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International network of earth-based GW interferometers

Livingston Observatory =

Frequency band: 10 — 10* Hz

< Hanford Observatory
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Virgo Observatory (France-ltaly) =

GEO Observatory (UK-Germany) TAMA Observatory (Japan)
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Laser Interferometer Space Antenna (LISA)

relative orbit
® of spacecraft

2 Venus
Mercury

Frequency band: 10™* — 0.1 Hz

e Giant stars, main sequence stars, white dwarfs, neutron stars, black holes

spiraling around supermassive black hole of ~ 10° — 10®M

e Binaries made of white dwarfs, neutron stars or black holes
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Earth-based GW interferometers
Frequency band: 10 — 10* Hz

TN i
¥ e Arms = \/Sn(f) Af = %7 hp = Sn(f)

§ Sn — noise power per unit frequency, A f — bandwidth
* s * L — arm-cavity length (4 Km)
A P &

= LIGO-I/VIRGO at f ~ 100 Hz: AL ~ 107 '°cm
bright port
[

LIGO-1l at f ~ 100 Hz: AL ~ 107 ecm ~

mirror 1/10%x radius of hydrogen atom!

arm cavity \

Quantum mechanical formalism to describe optical noise

and internal dynamics
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First generation GW interferometers

mirror +/"\+
2
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®
mirror* ? *
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Ql mirror mirror
cl
3,
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S

The detector output contains the GW signal, noisy terms scaling such as /1 (radiation pressure)

and 1/+/1 (shot noise), and fluctuations associated to initial quantum displacement of mirrors

Iy — laser light at beamsplitter
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Quantum optical-mechanical noise

optchal field GW signal free test mass

~ N 1 ~ 0 A—— N —
Output:  O(Q) = [Z(Q) — Wﬂm] + Th(Q) + zO(Q)
2 — shot noise ﬁ — radiation-pressure force

Q2 — GW sideband frequency, u = Mmirror/4, h(£2) —GW strain, L — arm-cavity's length

e GW interferometers: The output noise is not influenced by the test-mass
initial quantum state [Braginsky, Gorodetsky, Khalili, Matsko, Thorne & Vyatchanin ‘01]

= Shot noise and radiation-pressure noise are the only sources of quantum
noise
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First-generation interferometer

First science-run planned for 2002

,‘\‘ TS
: Crab upper limit

)
|

[Thorne ‘01]
Rate NS/NS at 20 Mpc:
1/3000 yrs to 1/3 yrs

Rate BH/BH at 100 Mpc:
1/300 yrs to 1/ yrs

h.(f) (Hz %)
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Standard quantum limit for GW interferometer [Braginsky ‘68, ‘70; Caves ‘81]

Naive derivation of SQL: independent measurements
of free test-mass displacements

If positions measured with high precision then test-mass momenta
perturbed (“Heisenberg microscope”)

As time passes momentum perturbations produce position uncertainties

If momentum perturbations and measurement errors are not correlated

we have minimum possible spectral density

=  S5QL(Q) = M?Thﬂ for GW signal h = AL
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Free mass SQL for GW interferometers

Noise spectral density (noise power per unit frequency)

Sh() = Sghot 4 Grad press 4 g Georr

SzhOt 0.6 SZZ

rad press corr
Sn p X Srr Sn X Szr

Szhot Sql:bad press __ |S?€:Lorr|2 > SSQL/4 SSQL(Q) — h%QL(Q) _

_ __2h
w2 L2

Standard configuration of first generation interferometer (LIGO-I, TAMA, VIRGO)

SET=0 =

Su() = hyy(Q) > 5;°7(Q)
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Toward quantum-limited GW interferometers

hsqr = 2 x 10724 /Hz'/? at f = 100 Hz

-21

10

10 100 1000
f (Hz)
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Building up correlations by changing the internal dynamics

e Signal-recycling interferometers: LIGO-II (2007)
[Drever ‘82; Vinet et al ‘88; Meers ‘88; Mizuno et al. ‘93]

-23

10

e With high light power is crucial to take
into account radiation-pressure force
[A.B. & Chen ‘00, ‘01]

hEIGOT /hsor =~ 0.5 over band of Af ~ f

10 100 1000
f (Hz)
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Signal recycled interferometer: LIGO-1I (2007)

mirror /\
\ \
2
3
e
@
mirro” }
Al V4
& N
Laser e o \06§§< arm cavity >
\ <rﬁirror mir_rT)r
A
y signal recycling
Y Y mirror
\
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LIGO-II as an optical spring [A.B. & Chen ‘00, ‘01]

Equation of motion for Z(£2):

radiat.—press. force
_ A"

[EES N\

—pQ22(Q) = GW Force + [F5() — Kepring () ()]

Test-mass mirrors buffeted by radiation pressure F\O, but also subject
to harmonic restoring force with frequency-dependent spring constant

Optical-mechanical resonances: no longer free test-mass!
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Quantum-optical noise augmented by other sources of noise

Current estimate of internal thermal, thermoelastic and seismic noises

—— Optical Noise

107 - :
——— Total Noise
—— Thermoelastic Noise
i —— Internal Thermal Noise
102 | — SQL

10 | 160 | “““1‘0‘00
f (Hz)
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[Thorne ‘01]

Rate NS/NS at 300 Mpc:

1/ yr to 2/ day

Rate BH/BH at z = 0.4:

2/ month to 10/ day

Rate BH/NS at 650 Mpc:

1/ yrs to 4/ day

Science in LIGOII (2007)

Vela ppgr limit

N\

*
rab upper limit

\\ \\\\
102 | s\ NS/NS at 300 MpC ~< ]
10 100 1000
’ f (Hz) :
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How to improve at low frequency (~ 10 — 102 Hz)

e Thermal noise

— Cryogenic techniques
(TAMA, Glasgow, ...)

e Radiation-pressure noise

— Larger mirror masses ~ 100 — 200 Kg

— Low laser power

e Seismic noise

e Seismic gravity-gradient noise

[Hughes & Thorne ‘98, Cella & Cuoco ‘98]

—— Tot. Noise

—— Opt. + Seism. + GG
—— Opt. Noise

—— Seismic Noise

—— Gravity Grad. Noise
-23

~10

TN

T

€

CC S |

~ NS/NS. at z = 0.045
-24 N
10 *<NS/NS at z = 0.25
10 100
f (H)
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How to improve at high frequency (~ 10% — 3 x 103 Hz)

10? Broadband configuration Narrowband configuration

-24

10

10 100 1000 ]
, f (H2) , 10 100 1000 -
’ f (H2) f
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Speed meter

Output signal proportional to the 107
relative speeds of test masses
rather than relative positions 1072

[Braginsky, Gorodetsky, Khalili & Thorne ‘99|

New optical topologies

[Chen & Purdue, work in progress|

— Tot. Noise LIGOI
—— Opt. Noise LIGOII
—— Opt. Noise Speed Meter
— SQL

10 100 1000
f (Hz)
[Purdue ‘01]
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Summary

e Gravitational-wave research: joint effort of high-energy physicists,
astrophysicists, relativists and experimentalists

e Interesting astrophysics from direct detection of gravitational waves
e Binary black holes: delicate issue of late dynamical evolution

e Advanced GW detectors: quantum mechanical formalism to
describe optical-mechanical noise and build up correlations

e For the years to come: reduce thermal noise, use low power
circulating in arm cavities and ... new designs!
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