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successes of machine learning

speech recognition image recognition

Karpathy & Li. Proc. IEEE CVPR 2015

all using deep neural networks



neural network architecture

pyx



neural network architecture

pyx x = input

y  = hidden variables

    = f(Ax + b)

p = probabilities

   = g(y)

A = parameter matrix
b = offset parameter vector
f = component-wise activation 


 function

goal of learning: determine optimal A, b



neural network architecture

py(1)x

deep neural network = network with several hidden layers

y(2) y(3)



activation
y = f(Ax + b)x

linear any change in input leads to change in y

referendum machine      

all elements contribute to dp

how to choose f ?

consider dp vs dx

p=g(y)



activation
y = f(Ax + b)x

linear any change in input leads to change in y

referendum machine      

all elements contribute to dp

how to choose f ?

consider dp vs dx

p=g(y)

common choice: clamp1 nonlinear

1 ‘ReLU’ = rectified linear
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no change in output for x<0

expert machine      

elements can be indifferent



composition

1st principle of successful machine learning: composition

• essential to have nonlinear activation

• saturation in activation ⇒ elements can act compositionally   


          (expert elements rather than jack-of-all-trades)

• allows approximate factorization of data space ⇒ fewer parameter DOF 


• theory? (see Tubiana Monasson PRL 2016)
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FIG. 2: Subset of 12 weight features produced by training on MNIST, regularized with L

1
,�1 = 10�3 (top panel),

and L

2
,�2 = 3.10�5 (bottom panel). Both have overall sparsity p ⇠ 0.036, but the latter is more homogeneously

distributed across hidden units.

FIG. 3: Six independent Monte Carlo Markov Chains realization for a RBM trained on MNIST, extracted from the
attached videos, see text.

II. SAMPLING FROM RBMS

RBM can be sampled by Markov Chains Monte Carlo. Due to the conditional independence property, Gibbs
sampling can be performed by alternative sampling of h from P [h|v], then v from P [v|h] [1, 2].

A. MCMC Videos

The two videos in Supplementary Material present visualize MCMC runs from RBM trained on MNIST with
Bernoulli, Gaussian, ReLU hidden units. Each square depicts a Markov chain started from a random initial condition.
20 Gibbs steps are performed between each image, and each chain is 500 images long. See Fig. 3 for a snapshot.

Tubiana Monasson 2016

hidden units ~ elementary strokes
e.g. handwritten digits



hierarchy
what is role of deep structure?

y(1)

y(2)

y(3)

Lee, H, et al. Comm. ACM 54.10 (2011): 95-103.



hierarchy

2nd principle of successful machine learning: hierarchy

• deep structure ⇒ hierarchical features


• can represent functions with exponentially fewer parameters (Lin,Tegmark,Rolnick J.Stat.Phys 2017)

• empirically, deeper = better

what is role of deep structure?

y(1)

y(2)

y(3)

Lee, H, et al. Comm. ACM 54.10 (2011): 95-103.

GoogLeNet
Szegedy et al. Cvpr, 2015.



neural network paradigm

consider `supervised’ learning

• minimizing E is a disordered physics problem ( disorder = fixed training data ) 

• do gradient descent 

• phenomenology ~ classic glassy systems

architecture: composition & hierarchy

training?

have training data pairs (xdata, pdata) known exactly

define `energy’ E(A,b) = Σ ( p(xdata)-pdata )2


what are the principles for learning? 



limitations
e.g. Winograd challenge

neural networks now (2018) are still very far from 
human intelligence!

state-of-the-art (2016):      58%

Give 1. Ask `who feared violence?’

Give 2. Ask `who advocated violence?’

1. The city councilmen refused the demonstrators a permit because they feared violence.
2. The city councilmen refused the demonstrators a permit because they advocated violence.

Quan Liu et al, of the University of Science and Technology, China

https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WS.html

humans:   > 90%

what is the structure that makes these questions easy for us?



© Global Robots Limited

a personal goal:

teach a machine to read & 
understand a book

why?

1,140,078

20162015

809,128

2014

887,502… 720,968

2013

# articles added to 
PubMed each year



rigidity of language 

1.       Is John the man who is tall?

2.      *Is John is the man who tall?



rigidity of language 

3.       Colorless green ideas sleep furiously.

1.       Is John the man who is tall?

Chomsky 1950s

2.      *Is John is the man who tall?

4.       *Furiously sleep ideas green colorless.



rigidity of language 

3.       Colorless green ideas sleep furiously.

1.       Is John the man who is tall?

Chomsky 1950s

2.      *Is John is the man who tall?

4.       *Furiously sleep ideas green colorless.

syntax = logical structure

 semantics = `meaning’ = connection to `truth’



formal grammars  
(Pānini 400BC, Chomsky, Backus 1950s)

grammar1 = set of string rewriting rules

A,B,C,….  hidden2 symbols

.

a,b,c,….  observable3 symbols

2 ‘nonterminal’ 3 ‘terminal’

begin with start symbol, S 

repeatedly apply rules until string of 
observables

1 grammar = ‘generative grammar’



formal grammars  
(Pānini 400BC, Chomsky, Backus 1950s)

grammar1 = set of string rewriting rules

A,B,C,….  hidden2 symbols

.

a,b,c,….  observable3 symbols

2 ‘nonterminal’ 3 ‘terminal’

begin with start symbol, S 

repeatedly apply rules until string of 
observables

language = set of observable strings

S → SS
S → aSb
S → ab

e.g.

equivalent to ( ( ) ) ( )

1 grammar = ‘generative grammar’

S → SS → aSbS → aabbS 
→ aabbab



recursively enumerable

context-sensitive

context-free

regular

Chomsky hierarchy (1950’s)

simple & limited

complex & rich



recursively enumerable

context-sensitive

context-free

regular

Chomsky hierarchy (1950’s)

automaton with finite memory 2

finite-state automaton

automaton with stack memory 3

3 non-deterministic pushdown automaton
2 linear-bounded non-deterministic Turing machine

automaton with infinite memory 1

1 Turing machine



structure of derivations
regular grammar:

S

a           c           x             y              e

A A B C
• always linear

• used in computer science 

(e.g. search patterns)



structure of derivations
regular grammar:

context-free grammar:

S

a           c           x             y              e

A A B C

S

a        S        B          

b        B        C       

         x         t       y       

y       

D

         x

• always a tree

• used in linguistics for phrase 

structure (Chomsky 1956)

• central to computer science 

since Backus-Naur works 
~1960

• always linear

• used in computer science 

(e.g. search patterns)



         b                      

structure of derivations
S ⇒ aSBC ⇒ aaBCBC ⇒ aabCBC 

⇒ aabBCC ⇒ aabbCC ⇒ aabbcC 

⇒ aabbcc

context-sensitive grammar:

S

a        S        B       C    

a        B        C       

         b         B       C       
S→ aSBC 
S → aBC 
CB → BC 
aB → ab 
bB → bb 
bC → bc 
cC →cc                  c       c       

grammar:



what about natural languages?
• ~7000 existing languages 

• only 2 have confirmed non-context-free features (Swiss-German, Bambara)

Pullum & Gazdar 1982, Shieber 1985, Culy 1985

i.e. context-free languages define an 
ensemble for natural language syntax



what about natural languages?
• ~7000 existing languages 

• only 2 have confirmed non-context-free features (Swiss-German, Bambara)

Pullum & Gazdar 1982, Shieber 1985, Culy 1985

‘the park’ behaves like ‘park’


‘in the park’ behaves like ‘in—noun’

meaning of the tree?

i.e. context-free languages define an 
ensemble for natural language syntax



W. Gilpin, online 2017



W. Gilpin, online 2017

2nd principle of language: hierarchy
1st principle of language: composition

⇒ statistical mechanics of language !



can we understand something about typical context-free grammars?

random language model

1. can assume binary tree1

1 binary tree = ‘Chomsky normal form’

all rules either    A → BC or  A → b



can we understand something about typical context-free grammars?

random language model

1. can assume binary tree1

2. so far, rules have been yes/no. let rules → conditional probabilities

1 binary tree = ‘Chomsky normal form’

all rules either    A → BC or  A → b

then a grammar is defined by 
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random language model
2 ERIC DEGIULI

In what follows we will consider as fixed the topology T of the tree, namely the identity (terminal, non-
terminal, or empty) of each node. We write ⌦ for the set of internal factors, i.e. factors of the form A ! BC,
and @⌦ for the boundary factors, i.e. those associated to A ! a rules. The number of boundary factors
is written `T , which is also the number of leaves. Since we consider a tree, the number of internal factors
is `T � 1. We will write � for non-terminal symbols, and o for terminals; these can be enumerated in an
arbitrary way 0, . . . , N � 1 and 0, . . . , T � 1, respectively. Given T , we can write �i for the value of the
non-terminal on site i, and similarly oj for the terminal on site j. The number of �i is 2`T � 1, while the
number of oj is `T . Conditioned on T , the relevant grammar probabilities are
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where P�0 is the probability that the root takes the value �0, and each ↵ = (↵1,↵2,↵3) is a factor in the
order �↵1 ! �↵2�↵3 . In linguistics, it is customary to consider a unique start symbol that begins every
derivation, which we can take to be 0. In this case P�0 = ��0 . The fixed M,O, T partition function is
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If we have free boundary conditions on the leaves, and there are no fields, then Z = 1.

3. Grammatical Inference

A practical question is: given a set of observable sequences, what can we say about the set of grammars for
which these are valid sentences? This problem is quite di�cult, because the required marginalization over
all {�i} in (6) adds significant complications, even at fixed T . Instead, we will consider a simpler problem,
in which we specify entire configurations, both terminal and non-terminal symbols, and enforce that the
probability of the entire configuration is above a given threshold. We aim to count all grammars for which
this is true.

In analogy with Gardner and Derrida 1988, we fix a set of p ‘patterns’ {�µ
i , o

µ
i }, and consider
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from which one can compute pf = hpwi = �@h logZ(h), where f is the fraction of K0�unlikely patterns.
This process can probably be justified as maximizing the log-likelihood of the grammar (Levin,Tishby,Solla
1990).

In the space of grammars, we will consider 4 parameters: N , the number of non-terminals; T , the number
of terminals (excluding ?, which plays no role in the inference problem), and the sparsity of the grammar,
defined through

sN =
1

N3
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1 2 3 4 5 6 7 8 

for simplicity, fix tree topology

note: M,O are probabilities for a fixed grammar, then we have an ensemble of grammars
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If we have free boundary conditions on the leaves, and there are no fields, then Z = 1.

3. Grammatical Inference

A practical question is: given a set of observable sequences, what can we say about the set of grammars for
which these are valid sentences? This problem is quite di�cult, because the required marginalization over
all {�i} in (6) adds significant complications, even at fixed T . Instead, we will consider a simpler problem,
in which we specify entire configurations, both terminal and non-terminal symbols, and enforce that the
probability of the entire configuration is above a given threshold. We aim to count all grammars for which
this is true.
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from which one can compute pf = hpwi = �@h logZ(h), where f is the fraction of K0�unlikely patterns.
This process can probably be justified as maximizing the log-likelihood of the grammar (Levin,Tishby,Solla
1990).

In the space of grammars, we will consider 4 parameters: N , the number of non-terminals; T , the number
of terminals (excluding ?, which plays no role in the inference problem), and the sparsity of the grammar,
defined through
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what is the physics?

Z contains all the context-free grammars 
& all grammatical sentences in the 
universe!
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random language model

2 ERIC DEGIULI

In what follows we will consider as fixed the topology T of the tree, namely the identity (terminal, non-
terminal, or empty) of each node. We write ⌦ for the set of internal factors, i.e. factors of the form A ! BC,
and @⌦ for the boundary factors, i.e. those associated to A ! a rules. The number of boundary factors
is written `T , which is also the number of leaves. Since we consider a tree, the number of internal factors
is `T � 1. We will write � for non-terminal symbols, and o for terminals; these can be enumerated in an
arbitrary way 0, . . . , N � 1 and 0, . . . , T � 1, respectively. Given T , we can write �i for the value of the
non-terminal on site i, and similarly oj for the terminal on site j. The number of �i is 2`T � 1, while the
number of oj is `T . Conditioned on T , the relevant grammar probabilities are
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where P�0 is the probability that the root takes the value �0, and each ↵ = (↵1,↵2,↵3) is a factor in the
order �↵1 ! �↵2�↵3 . In linguistics, it is customary to consider a unique start symbol that begins every
derivation, which we can take to be 0. In this case P�0 = ��0 . The fixed M,O, T partition function is
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If we have free boundary conditions on the leaves, and there are no fields, then Z = 1.

3. Grammatical Inference

A practical question is: given a set of observable sequences, what can we say about the set of grammars for
which these are valid sentences? This problem is quite di�cult, because the required marginalization over
all {�i} in (6) adds significant complications, even at fixed T . Instead, we will consider a simpler problem,
in which we specify entire configurations, both terminal and non-terminal symbols, and enforce that the
probability of the entire configuration is above a given threshold. We aim to count all grammars for which
this is true.

In analogy with Gardner and Derrida 1988, we fix a set of p ‘patterns’ {�µ
i , o

µ
i }, and consider
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Let us say that a pattern �µ
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t is K0�unlikely when its probability is less than eK0 . Then pw is the number

of K0�unlikely patterns. We define the partition function
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from which one can compute pf = hpwi = �@h logZ(h), where f is the fraction of K0�unlikely patterns.
This process can probably be justified as maximizing the log-likelihood of the grammar (Levin,Tishby,Solla
1990).

In the space of grammars, we will consider 4 parameters: N , the number of non-terminals; T , the number
of terminals (excluding ?, which plays no role in the inference problem), and the sparsity of the grammar,
defined through
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| logOAb|2m (11)

what is the physics?

impose normalization of probabilities

& # of nonzero rules

Z contains all the context-free grammars 
& all grammatical sentences in the 
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If we have free boundary conditions on the leaves, and there are no fields, then Z = 1.

3. Grammatical Inference

A practical question is: given a set of observable sequences, what can we say about the set of grammars for
which these are valid sentences? This problem is quite di�cult, because the required marginalization over
all {�i} in (6) adds significant complications, even at fixed T . Instead, we will consider a simpler problem,
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probability of the entire configuration is above a given threshold. We aim to count all grammars for which
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from which one can compute pf = hpwi = �@h logZ(h), where f is the fraction of K0�unlikely patterns.
This process can probably be justified as maximizing the log-likelihood of the grammar (Levin,Tishby,Solla
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random language model
remarkably we can count all the context-free 
grammars in the universe 

what is the miracle? discrete Fourier transform
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random language model

~ Potts model

remarkably we can count all the context-free 
grammars in the universe 

what is the miracle? discrete Fourier transform
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ଫଝଫଫଗଜଧପଞଜଫଝଫଛଓପଢଗଓଙବଝଓଠଦଙକଦବଗଙଢଚବଗଘପଙକଖଙଜପଖଛଠଢଧଚବଔ
ଭଦଛଫନଧପତକଡଠଠବବଫଭଙଛଓପଡଛଥଥତଙଜଚଫଠଢଡକକଔବଣଜଜଗଠଚଜଚଜଦଘପଟଟଘ
ଗଜଫଘଟଡଣଗଣକଢଡତଭଝଜଚଠଡଔଟତଧଭଣଡଣଟଘଓଛଔଢନଚଫଙଢଟକଓଘକଢଡଛଓଗଣଜକ
ଗଣଝଧଢଢଚଡଛତଟଛଡଢଢକଟଭଔଧଣଠଣଘଡଞଫଧଝଭନକବପଣଣଫଝଚଜକଡଘଜଜବଥବଗବଘଘ

ଙଘଖଦଡଗଧଚଡବବଢପଦଫଔ

the SETI problem

can we learn its language?
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can we learn its language?

assume it is generated by a CFG


count number of grammars for which text is grammatical 1 

‘Gardner’ volume

1 more precisely, below some threshold K in probability
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ଙଘଖଦଡଗଧଚଡବବଢପଦଫଔ

the SETI problem

what do we expect?

I am working on the full solution..


in a simple (wrong) approximation 
it is equivalent to Gardner’s result 
for the perceptron
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perspectives
ambiguity: For a typical sentence, how many grammatical parses are there?


If n = 1, sentence is unambiguous

If n > 1, sentence is ambiguous

If n = 0, sentence is ungrammatical


Natural languages are typically ambiguous, e.g.

“Two cars were reported stolen by the Groverton police yesterday” 1
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perspectives
phase diagram: What is the phase diagram of languages?


Are human languages atypical?


neural networks and learning:   

What is the optimal architecture to learn highly compositional functions?


For natural language processing, how best to incorporate syntax into 
neural network approaches?


Can tools of disordered physics (e.g Thouless-Anderson-Palmer 
equations) help to learn languages?



perspectives

 1 from S Pinker, The Language Instinct

semantics:  

Is there a physical approach to semantics? 

c.f. dependency grammars, Montague grammars, …


syntax isn’t everything..


e.g. who is ‘he’ in this dialogue: 1


Alice: I’m leaving you. 
Bob: Who is he?! 



conclusions

Mathematical linguistics has been around for 60 years. 
It’s time for physical linguistics!

• successful machine learning architectures are compositional and 
hierarchical 

• natural languages are also compositional and hierarchical 
• context-free grammars define a simple model for these properties 
• ensemble of grammars = random language model  
• the statistical mechanical problem is not trivial, but not intractable
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