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successes of machine learning

speech recognition Image recognition

bouquet of bottle of water glass of water with
red flowers ice and lemon

dining table
with breakfast
items

plate of fruit

banana
slices

fork

a person
sitting at a
table

— =

Karpathy & Li. Proc. IEEE CVPR 2015

all using deep neural networks
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neural network architecture

X y P X = input

hidden layer Y = hidden variables
= f(Ax + b)

A = parameter matrix

b = offset parameter vector

f = component-wise activation
function

p = probabilities
= g(y)

goal of learning: determine optimal A, b



neural network architecture

hidden layver 1 hidden layer 2 hidden layer 3

input layer
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deep neural network = network with several hidden layers




aCthatl on how to choose f ?

consider dp vs dx

X y = f(AX + b)
linear

\ any change in input leads to change in y hidden layer — p=g(y)

all elements contribute to dp

referendum machine




aCtlvatl on how to choose f ?

consider dp vs dx

linear L .
. any change in input leads to change iny
all elements contribute to dp
referendum machine
>
nonlinear common choice: clamp’

A r x>0

x€Tr) —
/() {O x <0

no change in output for x<0

elements can be indifferent

expert machine

X y = f(AX + b)

hidden layer p:g(y)
(3

input layer 7

1 ‘RelLLU’ = rectified linear



composition

e essential to have nonlinear activation
e saturation in activation = elements can act compositionally

(expert elements rather than jack-of-all-trades)
* allows approximate factorization of data space = fewer parameter DOF

* theory? (see Tubiana Monasson PRL 2016)

18t principle of successful machine learning: composition



composition

e essential to have nonlinear activation
e saturation in activation = elements can act compositionally

(expert elements rather than jack-of-all-trades)
* allows approximate factorization of data space = fewer parameter DOF

* theory? (see Tubiana Monasson PRL 2016)

18t principle of successful machine learning: composition

e.g. handwritten digits

hidden units ~ elementary strokes

O1a245789

Oladyse7¢69 G| g e o
O] 234566989 # . H
0123456789 | i
01234567%9 | gl | = i
01234567899 - = | W
01 2%45617 84

Tubiana Monasson 2016
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h I e ra rC h y . hidden layer 1 hidden layer 2 hidden layer 3
input layer

')

output layer

Lee, H, et al. Comm. ACM 54.10 (2011): 95-103.
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h I e ra rC h y . hidden layer 1 hidden layer 2 hidden layer 3
input layer

VR

output layer

what is role of deep structure? >

= bL IS H
»K“J. b

XSl L
. .r V=

Cemb Ol

Lee, H, et al. Comm. ACM 54.10 (2011): 95-103.

e deep structure = hierarchical features

e can represent functions with exponentially fewer parameters (Lin,Tegmark,Rolnick J.Stat.Phys 2017)

© 58
» empirically, deeper = better g g1 1 uu“lﬂll*ﬂ
vlllilll'=1'=II'=i::"""ll' Hl
| ATy M M hiesd GoogLeNet
H O h"“_l : ooglLeNe

Szegedy et al. Cvpr, 2015.

219 principle of successful machine learning: hierarchy



neural network paradigm

. hidden layer 1 hidden layer 2 hidden layer 3
input layver

architecture: composition & hierarchy =6 - ,,

training?

consider supervised’ learning — Y Y =

have training data pairs (Xdata, Pdata) KnOwn exactly

define “energy’ E(A,b) = 2. ( p(Xdata)-Pdata )

* minimizing E is a disordered physics problem ( disorder = fixed training data)
e do gradient descent
* phenomenology ~ classic glassy systems

what are the principles for learning?




IIm itatiOnS neural networks now (2018) are still very far from
human intelligence!

e.g. Winograd challenge

1. The city councilmen refused the demonstrators a permit because they feared violence.
2. The city councilmen refused the demonstrators a permit because they advocated violence.

Give 1. Ask 'who feared violence?’
Give 2. Ask 'who advocated violence?’

humans: > 90%

state-of-the-art (2016): 58%

what is the structure that makes these questions easy for us?

Quan Liu et al, of the University of Science and Technology, China

https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WS.html



a personal goal:

teach a machine to read &
understand a book

why?

f“:" ‘
. | A

© Global Robots Limited

2013 2014 2015 2016

# articles added to

720,968 887,602 809,128 1,140,078 PubMed each year



rigidity of language

1. Is John the man who is tall?

2. *Is John is the man who tall?



rigidity of language

1. Is John the man who is tall?

2. *Is John is the man who tall?

3. Colorless green ideas sleep furiously.

4, *Furiously sleep ideas green colorless.

Chomsky 1950s



rigidity of language

1. Is John the man who is tall?

2. *Is John is the man who tall?

3. Colorless green ideas sleep furiously.

4, *Furiously sleep ideas green colorless.

syntax = logical structure
semantics = meaning’ = connection to truth’

Chomsky 1950s



formal grammars
(Panini 400BC, Chomsky, Backus 1950s)

grammar! = set of string rewriting rules

A,B,C,.... hidden? symbols

a,b,c,.... observable® symbols

begin with start symbol, S

repeatedly apply rules until string of
observables

1 grammar = ‘generative grammar’ 2 ‘nonterminal’ 3 ‘terminal’



formal grammars
(Panini 400BC, Chomsky, Backus 1950s)

grammar! = set of string rewriting rules

A,B,C,.... hidden? symbols e.g. S— SS
S — aSb
a,b,c,.... observable3 symbols S — ab
begin with start symbol, S S - SS = aSbS — aabb$S
. . — aabbab
repeatedly apply rules until string of
observables equivalentto (()) ()

language = set of observable strings

1 grammar = ‘generative grammar’ 2 ‘nonterminal’ 3 ‘terminal’



Chomsky hierarchy (1950’s)

recursively enumerable complex & rich

context-sensitive

context-free

regular simple & limited



Chomsky hierarchy (1950’s)

recursively enumerable ----c-ceeeeeees automaton with infinite memory
context-sensitive  -:ococeeiiiiiinnn automaton with finite memory 2
context-free «-..coovviiiiiiii automaton with stack memory °
regu|ar ........................... finite-state automaton

! Turing machine
2 linear-bounded non-deterministic Turing machine
3 non-deterministic pushdown automaton



structure of derivations

regular grammar: .
e always linear

e used in computer science

S T’A T A ‘T_’ B T’ C h\ (e.g. search patterns)
a C X y e



structure of derivations

regular grammar: ,
e always linear

e used in computer science

S T’A T A ‘T_’ B T’ C h\ (e.g. search patterns)
a C X y e

context-free grammar: i\
e always atree a S B
e used in linguistics for phrase
structure (Chomsky 1956) / *\ \v D
e central to computer science b B C y o
since Backus-Naur works
~1960 B v
X




structure of derivations

context-sensitive grammatr: S = aSBC = aaBCBC = aabCBC
= aabBCC = aabbCC = aabbcC

= aabbcc

grammar:

S— aSBC
S — aBC
CB — BC
aB — ab
bB — bb
bC — bc
cC —cc




what about natural languages?

e ~7000 existing languages
e only 2 have confirmed non-context-free features (Swiss-German, Bambara)

l.e. context-free languages define an
ensemble for natural language syntax

S

/\
NP VP
%\
Det N V NP PP
the dog saw Det N P NP
| N BN
a man in Det N
| |
the park

Pullum & Gazdar 1982, Shieber 1985, Culy 1985



what about natural languages?

e ~7000 existing languages
e only 2 have confirmed non-context-free features (Swiss-German, Bambara)

l.e. context-free languages define an
ensemble for natural language syntax

S

NP VP meaning of the tree?
Det N V NP - _
| | | PN PaN ‘the park’ behaves like ‘park’

the dog saw Det N P NP
| L N ‘In the park’ behaves like ‘in—noun’
a man in Det N

| |
the park

Pullum & Gazdar 1982, Shieber 1985, Culy 1985



NP VP

DT NN PP SBAR
the feelings WHNP S
IN NP
of WDT NP VP
JJCCNNS which

kindness and gentleness PRP VBDVBD SBARXS

| had entertained NPVP

CCDTJJNN ADVP VBD SBARxS

but a few moments BB gave NP VP

before
The feelings of kindness and gentle- NP PP CCVBG PP
ness which I had entertained but a N TONe and IN NP
few moments before gave place to gnashing
place to JJNN of NN

hellish rage and gnashing of teeth.

hellish rage
teeth

W. Gilpin, online 2017



18t principle of language: composition
2"d principle of language: hierarchy

NP VP
DT NN PP SBAR
the feelings WHNP S . . .
= statistical mechanics of language !
IN NP
of WDT  NPVP
JJCCNNS which

kindness and gentleness PRP VBD VBD SBARXS

| had entertained NPVP

CCDT JJNN ADVP VBD SBARxS

but a few moments RB gave NP VP

before

The feelings of kindness and gentle- NP PP CCVBG PP
ness which I had entertained but a N TONe and IN NP
few moments before gave place to gnashing

place to JINN of NN

hellish rage and gnashing of teeth.

hellish rage
teeth

W. Gilpin, online 2017



random language model

can we understand something about typical context-free grammars?

1. can assume binary tree’ .

/\
NP VP
%\
all rules either A—=BCor A—Db Det N V NP PP
| | | N TN
the dog saw Det N P NP
| I N
a man in Det N
| |
the park

! binary tree = ‘Chomsky normal form’



random language model

can we understand something about typical context-free grammars?

1. can assume binary tree’ .

/\
NP VP
%\
all rules either A—=BCor A—Db Det N V NP PP
| | N N
the dog saw Det N P NP
| I BN
a man in Det N
| |
the park

2. so far, rules have been yes/no. let rules — conditional probabilities

then a grammar is defined by Mapc = P(A — BC | A — hidden),
Oap =P(A — b| A — observable),

! binary tree = ‘Chomsky normal form’



random language model / \

for simplicity, fix tree topology / \ / \
Mapc =P(A — BC | A — hidden), / - /\ / /\

Oap =P(A — b| A — observable), ONe () (=) ) (2 (1)
My,o,0, = P05 — 0501|043, 05,01 € XN), ‘I M l l l l l l
Oaioj — IP)(O-Z — Oj‘o-i € XN, 05 < XT)) 2 5 “ 6

({Uzaat}‘M O, T Pao H Oaq0as0ag H Oaa10a27

acld acof?

note: M,O are probabilities for a fixed grammar, then we have an ensemble of grammars



random language model

what is the phySiCS? MO’iO'jO'k: = P(o; — O'jO'k’O'Z" 0,0k € XN),
OGin — IP)(O-’L — O]‘O-’L E XN7 Oj 6 XT)7

Z:/DM/DO DN ) ol

7 Ao} {o} Z contains all the context-free grammars
& all grammatical sentences in the
universe!
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random language model

what is the phySiCS? MO’iO'jO'k: = P(o; — O'jO'k’O'Z" 0,0k € XN),
OGin — IP)(O-’L — O]‘O-’L E XN7 Oj 6 XT)7

Z:/DM/DO D s

4y 7 Aot ol Z contains all the context-free grammars
& all grammatical sentences in the
universe!

impose normalization of probabilities
& # of nonzero rules

logP({os,0:}|M,0,7T) = log Py, + Z log My, 00,00, + Z log Og.,, 0,

ael) a €O
/ Oay

looks a bit like a spin model ... except



random language model

remarkably we can count all the context-free 7 = / DM / DO S: S:S: glogl
grammars in the universe T {0} {o}

what is the miracle? discrete Fourier transform \SHGSR)

Z=2, Y Ny "

T {o} {o}




random language model

remarkably we can count all the context-free 7 = / DM / DO S: S:S: glogl
grammars in the universe T {o} {0}

what is the miracle? discrete Fourier transform

H = -k Z (N250|a,0|5 — 50a170ﬁ1) T

o, BEN Z=2p% Y Y ¥

A

~ Potts model




the SETI problem

PRI PCRUIBR PR FRBIRCBFRTBOQRFRQRCFREORCNIFHEICRISTRORUR G

alallsiaidslaisizlolelaablalziehllapbalzinials lelalniatalcaralalalelalalalnlain s [aialy

@ e Inash B aalziaataaolle(aaldatleralan e alnlal e dalalalclnaialallelaralala

GClEURRRPPLECRPRROCAGIISIOINPBIUSQAAPQRUSEFIORNRAR R RARCRA
FAGICERICPRRRIQPE!

can we learn its language?



the SETI problem

PRI PCRUIBR PR FRBIRCBFRTBOQRFRQRCFREORCNIFHEICRISTRORUR G

alallsiaidslaisizlolelaablalziehllapbalzinials lelalniatalcaralalalelalalalnlain s [aialy

@ e Inash B aalziaataaolle(aaldatleralan e alnlal e dalalalclnaialallelaralala

GClEURRRPPLECRPRROCAGIISIOINPBIUSQAAPQRUSEFIORNRAR R RARCRA
FAGICERICPRRRIQPE!

can we learn its language?

assume it is generated by a CFG

count number of grammars for which text is grammatical

‘Gardner’ volume

&
O

T more precisely, below some threshold K in probability



the SETI problem

PR PLPCRUIBR P PRBUIRCBEFRRBOFARRCFRERCANIFCAHIFRISL0RUE!
alalbinidbiaailelelalalhlalzivehlpbialzinlahlelalzialalcafanlnialelalnlalnlaia Biaaln
‘ CRDACRECENRPEAR®RORGICAURERECUCREIRACPFRC@EBUNRRLBLISR
CEIRVRROPREC'RPRRXDC'ABRISIOSAPBIUT AP RIULEFPLERPPARRRARCIRQA

i FACRRCRICPRRIQXE
what do we expect?

A

N
> L
L*

A

N




the SETI problem

PRI PCRUIBR PR FRBIRCBFRTBOQRFRQRCFREORCNIFHEICRISTRORUR G

alallsiaidslaisizlolelaablalziehllapbalzinials lelalniatalcaralalalelalalalnlain s [aialy

@ e Inash B aalziaataaolle(aaldatleralan e alnlal e dalalalclnaialallelaralala

GClEURRRPPLECRPRROCAGIISIOINPBIUSQAAPQRUSEFIORNRAR R RARCRA
FAGICERICPRRRIQPE!

what do we expect?

A

n
| am working on the full solution..

in a simple (wrong) approximation
> L it is equivalent to Gardner’s result
L* for the perceptron

Npor



perspectives

ambiguity: For a typical sentence, how many grammatical parses are there?

If n =1, sentence is unambiguous
If n > 1, sentence is ambiguous
If n = 0, sentence is ungrammatical

Natural languages are typically ambiguous, e.qg.

“Two cars were reported stolen by the Groverton police yesterday” 1

! from S Pinker, The Language Instinct
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If n =1, sentence is unambiguous
If n > 1, sentence is ambiguous
If n = 0, sentence is ungrammatical

Natural languages are typically ambiguous, e.qg.

“Two cars were reported stolen by the Groverton police yesterday” 1

VP VP
/ l ~ / \NP
\Y NP PP M / N
AN 1 .
p discuss / \4
P

discuss N NP l NP
Lol M
sex with  Jon Stewart

with  Jon Stewart

! from S Pinker, The Language Instinct



perspectives

ambiguity: For a typical sentence, how many grammatical parses are there?

If n =1, sentence is unambiguous
If n > 1, sentence is ambiguous
If n = 0, sentence is ungrammatical

Natural languages are typically ambiguous, e.qg.

“Two cars were reported stolen by the Groverton police yesterday” 1

n
/ \ which situation?
A
n
> /
- /_\
> ¢
g*
> (

! from S Pinker, The Language Instinct



perspectives

phase diagram: \What is the phase diagram of languages?

Are human languages atypical?

neural networks and learning:

What is the optimal architecture to learn highly compositional functions?

For natural language processing, how best to incorporate syntax into
neural network approaches?

Can tools of disordered physics (e.g Thouless-Anderson-Palmer
equations) help to learn languages?



perspectives

semantics: syntax isn’t everything..

e.g. who is ‘he’ in this dialogue:

Alice: I'm leaving you.
Bob: Who is he”!

Is there a physical approach to semantics?
c.f. dependency grammars, Montague grammars, ...

! from S Pinker, The Language Instinct



conclusions

P \ ® successful machine learning architectures are compositional and
hierarchical
_‘ e natural languages are also compositional and hierarchical

e context-free grammars define a simple model for these properties
¢ cnsemble of grammars = random language model
e the statistical mechanical problem is not trivial, but not intractable

Mathematical linguistics has been around for 60 years.
It’s time for physical linguistics!

Thanks to my colleagues at ENS and elsewhere in Paris:

Remi Monasson, Jorge Kurchan, Francesco Zamponi,
Guilhem Semerjian, Pierfrancesco Urbani



