from neural networks to the structure of language: a physicist's perspective

Eric DeGiuli

Institut de Physique Théorique Philippe Meyer École Normale Supérieure, Paris

successes of machine learning

speech recognition

image recognition

Example output of the model

Karpathy \& Li. Proc. IEEE CVPR 2015

neural network architecture

X
y
p
hidden layer

neural network architecture

$$
\begin{aligned}
& x=\text { input } \\
& y=\text { hidden variables } \\
& =f(A x+b) \\
& \text { A = parameter matrix } \\
& \text { b = offset parameter vector } \\
& \mathrm{f}=\text { component-wise activation } \\
& \text { function } \\
& \mathrm{p}=\text { probabilities } \\
& =g(y)
\end{aligned}
$$

goal of learning: determine optimal A, b

neural network architecture

$x \quad y^{(1)} \quad y^{(2)} \quad y^{(3)} \quad p$
input layer
hidden layer 1 hidden layer 2 hidden layer 3

deep neural network = network with several hidden layers

activation

how to choose f?
consider dp vs dx

$$
x \quad y=f(A x+b)
$$

any change in input leads to change in y
all elements contribute to dp
referendum machine

activation

how to choose f?

consider dp vs dx

$$
x \quad y=f(A x+b)
$$

any change in input leads to change in y
all elements contribute to dp
referendum machine

common choice: clamp ${ }^{1}$

$$
f(x)= \begin{cases}x & x \geq 0 \\ 0 & x<0\end{cases}
$$

no change in output for $x<0$
elements can be indifferent
expert machine

1 'ReLU’ = rectified linear

composition

- essential to have nonlinear activation
- saturation in activation \Rightarrow elements can act compositionally
(expert elements rather than jack-of-all-trades)
- allows approximate factorization of data space \Rightarrow fewer parameter DOF
- theory? (see Tubiana Monasson PRL 2016)
$1^{\text {st }}$ principle of successful machine learning: composition

composition

- essential to have nonlinear activation
- saturation in activation \Rightarrow elements can act compositionally
(expert elements rather than jack-of-all-trades)
- allows approximate factorization of data space \Rightarrow fewer parameter DOF
- theory? (see Tubiana Monasson PRL 2016)
$1^{\text {st }}$ principle of successful machine learning: composition
e.g. handwritten digits

hidden units ~ elementary strokes

hierarchy

$y^{(1)}$
what is role of deep structure?

$y^{(2)}$
input layer
$y^{(3)}$

Lee, H, et al. Comm. ACM 54.10 (2011): 95-103.

hierarchy

$y^{(1)}$
what is role of deep structure?

$y^{(2)}$

Lee, H, et al. Comm. ACM 54.10 (2011): 95-103.

- deep structure \Rightarrow hierarchical features
- can represent functions with exponentially fewer parameters (Lin,Tegmark,Rolnick J.Stat.Phys 2017)
- empirically, deeper = better

neural network paradigm

architecture: composition \& hierarchy training?
consider `supervised' learning have training data pairs (Xdata, \(\mathrm{p}_{\text {data }}\)) known exactly define `energy' $E(A, b)=\Sigma\left(p\left(X_{\text {data }}\right)-p_{\text {data }}\right)^{2}$

- minimizing E is a disordered physics problem (disorder = fixed training data)
- do gradient descent
- phenomenology ~ classic glassy systems
what are the principles for learning?

limitations

neural networks now (2018) are still very far from human intelligence!

e.g. Winograd challenge

1. The city councilmen refused the demonstrators a permit because they feared violence.
2. The city councilmen refused the demonstrators a permit because they advocated violence.

Give 1. Ask `who feared violence?’ Give 2. Ask `who advocated violence?'

$$
\begin{array}{rr}
\text { humans: } & >90 \% \\
\text { state-of-the-art (2016): } & 58 \%
\end{array}
$$

what is the structure that makes these questions easy for us?

a personal goal:

teach a machine to read \& understand a book

why?

© Global Robots Limited

2013	2014	2015	2016
720,968	887,502	809,128	$1,140,078$

\# articles added to
PubMed each year

rigidity of language

1. Is John the man who is tall?
2. *Is John is the man who tall?

rigidity of language

1. Is John the man who is tall?
2. *Is John is the man who tall?

3. Colorless green ideas sleep furiously.
4. *Furiously sleep ideas green colorless.

rigidity of language

1. Is John the man who is tall?
2. *Is John is the man who tall?

3. Colorless green ideas sleep furiously.
4. *Furiously sleep ideas green colorless.
syntax = logical structure
semantics = `meaning' = connection to 'truth'

formal grammars
 (Pāṇini 400BC, Chomsky, Backus 1950s)

grammar ${ }^{1}=$ set of string rewriting rules

A,B,C,.... hidden ${ }^{2}$ symbols
a,b,c,.... observable ${ }^{3}$ symbols
begin with start symbol, S
repeatedly apply rules until string of observables

formal grammars (Pāṇini 400BC, Chomsky, Backus 1950s)

grammar ${ }^{1}=$ set of string rewriting rules
$\mathrm{A}, \mathrm{B}, \mathrm{C}, \ldots$. hidden 2 symbols
$\mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots$. observable 3 symbols
begin with start symbol, S
repeatedly apply rules until string of observables

$$
\begin{aligned}
& \text { e.g. } S \rightarrow S S \\
& S \rightarrow \text { aSb } \\
& S \rightarrow a b \\
& S \rightarrow \text { SS } \rightarrow \text { aSbS } \rightarrow \text { aabbS } \\
& \rightarrow \text { aabbab } \\
& \text { equivalent to (()) () }
\end{aligned}
$$

language = set of observable strings

Chomsky hierarchy (1950's)

recursively enumerable
context-sensitive
context-free
regular
complex \& rich

Chomsky hierarchy (1950's)

recursively enumerable
automaton with infinite memory ${ }^{1}$
context-sensitive
automaton with finite memory ${ }^{2}$
context-free $\quad . . \ldots \ldots \ldots \ldots$. automaton with stack memory ${ }^{3}$
regular
finite-state automaton
${ }^{1}$ Turing machine
2 linear-bounded non-deterministic Turing machine
${ }^{3}$ non-deterministic pushdown automaton

structure of derivations

regular grammar:

- always linear
- used in computer science (e.g. search patterns)

structure of derivations

regular grammar:

- always linear
- used in computer science (e.g. search patterns)
context-free grammar:
- always a tree
- used in linguistics for phrase structure (Chomsky 1956)
- central to computer science since Backus-Naur works ~1960

structure of derivations

context-sensitive grammar:

$\mathrm{S} \Rightarrow \mathrm{aSBC} \Rightarrow \mathrm{aaBCBC} \Rightarrow$ aabCBC
$\Rightarrow \mathrm{aabBCC} \Rightarrow \mathrm{aabbCC} \Rightarrow \mathrm{aabbc} C$
\Rightarrow aabbcc

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{aSBC} \\
& \mathrm{~S} \rightarrow \mathrm{aBC} \\
& \mathrm{CB} \rightarrow \mathrm{BC} \\
& \mathrm{aB} \rightarrow \mathrm{ab} \\
& \mathrm{bB} \rightarrow \mathrm{bb} \\
& \mathrm{bC} \rightarrow \mathrm{bc} \\
& \mathrm{cC} \rightarrow \mathrm{cc}
\end{aligned}
$$

what about natural languages?

- ~7000 existing languages
- only 2 have confirmed non-context-free features (Swiss-German, Bambara)
i.e. context-free languages define an ensemble for natural language syntax

what about natural languages?

- ~7000 existing languages
- only 2 have confirmed non-context-free features (Swiss-German, Bambara)
i.e. context-free languages define an ensemble for natural language syntax

meaning of the tree?
'the park' behaves like 'park'
'in the park' behaves like 'in-noun'

$1^{\text {st }}$ principle of language: composition
$2^{\text {nd }}$ principle of language: hierarchy
\Rightarrow statistical mechanics of language !

The feelings of kindness and gentleness which I had entertained but a few moments before gave place to hellish rage and gnashing of teeth.

random language model

can we understand something about typical context-free grammars?

1. can assume binary tree ${ }^{1}$
all rules either $A \rightarrow B C$ or $A \rightarrow b$

${ }^{1}$ binary tree = 'Chomsky normal form'

random language model

can we understand something about typical context-free grammars?

1. can assume binary tree ${ }^{1}$
all rules either $A \rightarrow B C$ or $A \rightarrow b$

2. so far, rules have been yes/no. let rules \rightarrow conditional probabilities then a grammar is defined by

$$
\begin{aligned}
M_{A B C} & =\mathbb{P}(A \rightarrow B C \mid A \rightarrow \text { hidden }), \\
O_{A b} & =\mathbb{P}(A \rightarrow b \mid A \rightarrow \text { observable }),
\end{aligned}
$$

${ }^{1}$ binary tree = 'Chomsky normal form'

random language model

for simplicity, fix tree topology

$$
\begin{aligned}
M_{A B C} & =\mathbb{P}(A \rightarrow B C \mid A \rightarrow \text { hidden }), \\
O_{A b} & =\mathbb{P}(A \rightarrow b \mid A \rightarrow \text { observable }), \\
M_{\sigma_{i} \sigma_{j} \sigma_{k}} & =\mathbb{P}\left(\sigma_{i} \rightarrow \sigma_{j} \sigma_{k} \mid \sigma_{i}, \sigma_{j}, \sigma_{k} \in \chi_{N}\right), \\
O_{\sigma_{i} o_{j}} & =\mathbb{P}\left(\sigma_{i} \rightarrow o_{j} \mid \sigma_{i} \in \chi_{N}, o_{j} \in \chi_{T}\right),
\end{aligned}
$$

$\mathbb{P}\left(\left\{\sigma_{i}, o_{t}\right\} \mid M, O, \mathcal{T}\right)=P_{\sigma_{0}} \prod_{\alpha \in \Omega} M_{\sigma_{\alpha_{1}} \sigma_{\alpha_{2}} \sigma_{\alpha_{3}}} \prod_{\alpha \in \partial \Omega} O_{\sigma_{\alpha_{1}} o_{\alpha_{2}}}$,
note: M, O are probabilities for a fixed grammar, then we have an ensemble of grammars

random language model

what is the physics?

$$
\begin{aligned}
M_{\sigma_{i} \sigma_{j} \sigma_{k}} & =\mathbb{P}\left(\sigma_{i} \rightarrow \sigma_{j} \sigma_{k} \mid \sigma_{i}, \sigma_{j}, \sigma_{k} \in \chi_{N}\right), \\
O_{\sigma_{i} o_{j}} & =\mathbb{P}\left(\sigma_{i} \rightarrow o_{j} \mid \sigma_{i} \in \chi_{N}, o_{j} \in \chi_{T}\right),
\end{aligned}
$$

$$
Z=\int D M \int D O \sum_{\mathcal{T}} \sum_{\{\sigma\}} \sum_{\{o\}} e^{\log \mathbb{P}}
$$

Z contains all the context-free grammars \& all grammatical sentences in the universe!

random language model

what is the physics?

$$
\begin{aligned}
M_{\sigma_{i} \sigma_{j} \sigma_{k}} & =\mathbb{P}\left(\sigma_{i} \rightarrow \sigma_{j} \sigma_{k} \mid \sigma_{i}, \sigma_{j}, \sigma_{k} \in \chi_{N}\right), \\
O_{\sigma_{i} o_{j}} & =\mathbb{P}\left(\sigma_{i} \rightarrow o_{j} \mid \sigma_{i} \in \chi_{N}, o_{j} \in \chi_{T}\right),
\end{aligned}
$$

Z contains all the context-free grammars \& all grammatical sentences in the universe!
impose normalization of probabilities
\& \# of nonzero rules

random language model

what is the physics?

$$
\begin{aligned}
M_{\sigma_{i} \sigma_{j} \sigma_{k}} & =\mathbb{P}\left(\sigma_{i} \rightarrow \sigma_{j} \sigma_{k} \mid \sigma_{i}, \sigma_{j}, \sigma_{k} \in \chi_{N}\right), \\
O_{\sigma_{i} o_{j}} & =\mathbb{P}\left(\sigma_{i} \rightarrow o_{j} \mid \sigma_{i} \in \chi_{N}, o_{j} \in \chi_{T}\right),
\end{aligned}
$$

Z contains all the context-free grammars \& all grammatical sentences in the universe!

$$
\log \mathbb{P}\left(\left\{\sigma_{i}, o_{t}\right\} \mid M, O, \mathcal{T}\right)=\log P_{\sigma_{0}}+\sum_{\alpha \in \Omega} \log M_{\sigma_{\alpha_{1}} \sigma_{\alpha_{2}} \sigma_{\alpha_{3}}}+\sum_{\alpha \in \partial \Omega} \log O_{\sigma_{\alpha_{1}} o_{\alpha_{2}}}
$$

looks a bit like a spin model ... except

random language model

remarkably we can count all the context-free grammars in the universe

$$
Z=\int D M \int D O \sum_{\mathcal{T}} \sum_{\{\sigma\}} \sum_{\{0\}} e^{\log \mathbb{P}}
$$

what is the miracle? discrete Fourier transform

$$
Z=Z_{0} \sum_{\mathcal{T}} \sum_{\{\sigma\}} \sum_{\{o\}} e^{-H}
$$

random language model

remarkably we can count all the context-free grammars in the universe

$$
Z=\int D M \int D O \sum_{\mathcal{T}} \sum_{\{\sigma\}} \sum_{\{o\}} e^{\log \mathbb{P}}
$$

what is the miracle? discrete Fourier transform

$$
H=-k \sum_{\alpha, \beta \in \Omega}\left(N^{2} \delta_{\sigma|\alpha, \sigma| \beta}-\delta_{\sigma_{\alpha_{1}}, \sigma_{\beta_{1}}}\right)+\cdots
$$

the SETI problem

can we learn its language?

the SETI problem

can we learn its language?
assume it is generated by a CFG
count number of grammars for which text is grammatical ${ }^{1}$
‘Gardner’ volume

${ }^{1}$ more precisely, below some threshold K in probability

the SETI problem

what do we expect?

the SETI problem

what do we expect?

I am working on the full solution..
in a simple (wrong) approximation it is equivalent to Gardner's result for the perceptron

$$
L=\frac{\ell}{N_{D O F}}
$$

perspectives

For a typical sentence, how many grammatical parses are there?
If $\mathrm{n}=1$, sentence is unambiguous
If $n>1$, sentence is ambiguous
If $\mathrm{n}=0$, sentence is ungrammatical
Natural languages are typically ambiguous, e.g.
"Two cars were reported stolen by the Groverton police yesterday" ${ }^{1}$

perspectives

ambiguity:
For a typical sentence, how many grammatical parses are there?
If $n=1$, sentence is unambiguous
If $n>1$, sentence is ambiguous
If $\mathrm{n}=0$, sentence is ungrammatical
Natural languages are typically ambiguous, e.g.
"Two cars were reported stolen by the Groverton police yesterday" ${ }^{1}$

${ }^{1}$ from S Pinker, The Language Instinct

perspectives

ambiguity:
For a typical sentence, how many grammatical parses are there?
If $n=1$, sentence is unambiguous
If $n>1$, sentence is ambiguous
If $\mathrm{n}=0$, sentence is ungrammatical
Natural languages are typically ambiguous, e.g.
"Two cars were reported stolen by the Groverton police yesterday" ${ }^{1}$

which situation?

${ }^{1}$ from S Pinker, The Language Instinct

perspectives

phase diagram: What is the phase diagram of languages?
Are human languages atypical?
neural networks and learning:

What is the optimal architecture to learn highly compositional functions?
For natural language processing, how best to incorporate syntax into neural network approaches?

Can tools of disordered physics (e.g Thouless-Anderson-Palmer equations) help to learn languages?

perspectives

semantics: syntax isn't everything..
e.g. who is 'he' in this dialogue: ${ }^{1}$

Alice: I'm leaving you.
Bob: Who is he?!

Is there a physical approach to semantics? c.f. dependency grammars, Montague grammars, ...

conclusions

- successful machine learning architectures are compositional and hierarchical
- natural languages are also compositional and hierarchical
- context-free grammars define a simple model for these properties
- ensemble of grammars = random language model
- the statistical mechanical problem is not trivial, but not intractable

Mathematical linguistics has been around for 60 years. It's time for physical linguistics!

Thanks to my colleagues at ENS and elsewhere in Paris:

Remi Monasson, Jorge Kurchan, Francesco Zamponi, Guilhem Semerjian, Pierfrancesco Urbani

